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Nanometer Issues

Rounding

= Gl Dty
(Fanout 4)
- Locat /
(Scaled) . &«

w0 wilh Repeaters

Disappeara
-nce

e Giobal wio Repeaters

Relative Delay

Pullback

0.1
250 180 130 100 70 50 35

Process Technology Node (nm)

R L e

Conventional Planar FET




Lithography Status & Challenges
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¢ The industry forced to extend 193nm lithography
> Immersion, extreme RET
> Double/Triple Patterning Lithography for 22nm/14nm, ...



Resolution Limit of Optical Lithography
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With single exposure, the practical limit is ~80 nm
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What is Double Patterning?
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Jeffrey: "Daddy, don’t worry. | can
show you some bright ideas!”

“Double patterning!!!”



Emerging Lithography

EUV

Quadruple patterning

193i w/ DPL
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The “Moore”, the Merrier!

B
¢+ More Moore
Nano-Patterning for Extreme Scaling

Lithography Aware Physical Design

¢ A different kind of “Moore”

3D Integration

New devices (e.g., nanophotonics) ...

= Need synergistic design and technology co-
optimization for cross-layer resilience



DPL Layout Decomposition

_rl\/ninimum Stitch Insertion
SO

1) Minimize stitch #

2) A bit more overlap
margin for stitch,
but area increases

' . Stitch .
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Overlay Compensation [Yang+, ASPDAC10]
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A Graph-Partitioning Based, Multi-

_YObjective Decomposer

Decomposition Graph Construction

[Yang+, ASPDAC10]

Constraint:
(A, A) and (E, E) are repulsive pairs.

Theorem : Stitch minimization problem is equivalent to the
min-cut partitioning of the decomposition graph

Extensions of the framework: to incorporate other
constraints and costs into graph partitioning, e.g., balanced
~1density, overlay compensation, and so on
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Overlay Compensation & Density Balancing
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Triple Patterning

—y
"+ Extension of double patterning concept

¢+ Original layout is divided into three masks
» Resolve native conflicts of DPL
> Achieve further feature-size scaling (14nm, 11nm)

Conflicts
a a
¢ Very active research area!
¢+ DAC’12 Best Paper; ICCAD’13 Best Paper

¢ ICCAD’13 Special Session
» Session 3B: Triple Patterning, Triple the Trouble?
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Electronic Beam Lithography

—Y
4+ Maskless technology, which shoots desired
patterns directly into a silicon wafer

¢ Low throughput is its major hurdle
» E.g., Variable Shaped Beam (VSB)

2 9

4 11

Total number of 11 shots are needed



Character Projection (CP) Technology

—Y
\ ¢ Print some complex shapes in one electronic beam
shot, rather than writing multiple rectangles.

3 shots only
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Overlapped Characters Planning
_\.'{Yuan and Pan, ISPD’11 Best Paper Award]

‘ ¢ The number of characters is limited due to the
area constraints of the stencil | H

: Spanned region i \Character
E of electron beam !
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The “Moore?”, the Merrier!

—y
¢ More Moore

Nano-Patterning for Extreme Scaling

Lithography Aware Physical Design

¢ A different kind of “Moore”

3D Integration

New devices (e.g., nanophotonics) ...

=» Need synergistic design and technology co-
optimization for cross-layer resilience
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LAPD Another LAPD

-

¢ Double/multiple patterning layout
compliance/decomposition

¢ Post-layout, maybe too late!

¢ Lithography Aware Physical Design
(LAPD) =

¢ Litho Hotspot Detection
¢ Litho Friendly Design

» Hotspot Avoiding/Correction
» Correct by Construction/Prescription
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Lithography Hotspot Detection

Layout Litho simulations

¢+ Lithographic hotspots
» What you see (at design) is NOT what you get (at fab)
» Hotspots mean poor printability
» Highly dependent on manufacturing conditions
» Exist after resolution enhancement techniques

¢ Litho-simulations are extremely CPU intensive
» Full-blown OPC could take a week

» Impossible to be used in inner design loop
18
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Various Approaches

[Xu+ ICCADO7]
[Yao+ ICCADOS,
[Khang SPIE06],
etc.

Pattern/Graph Matching

¢ Pros and cons

> Accurate and fast for known

patterns

> But too many possible
patterns to enumerate

» Sensitive to changing
manufacturing conditions

» High false-alarms

SVM [J. Wuu+ SPIEQ09]
[Drmanac+ DACO09]
Neural Network Model
[Norimasa+ SPIEOQ7][Ding
+ ICICDTO09]

Regression Model
[Torres+ SPIE09]

Data Mining/Machine Learning

¢ Pros and cons

¢+ Good to detect unknown or
unseen hotspots

¢ Accuracy may not be good for
“seen” patterns (cf. PM)

» Hard to trade-off accuracy and
false alarms

19



A New Meta-Classification Paradigm

Y
1 Pattern Matching Methods Machine Learning Methods
Good for detecting previously Good for detecting new/previously
known types of hotspots unknown hotspots

A New Unified Formulation (EPIC)
Good for detecting all types of hotspots

with advantageous accuracy/false-alar
Meta-Classifier)

¢+ Meta-Classification combines the strength of different
types of hotspot detection techniques

[Ding et al, ASPDAC 2012]
20



Components of Meta-Classifier Core

R
/ Meta-Classifier Core \
Critical Pattern/ || Base Weighting Functions
Feature Classifier || and Decision
Extraction Decision Parameters

¢ Base classifier results are first collected

¢+ Weighting functions to make the overall meta
decision (e.g., quadratic programming)

¢ Threshold with accuracy and false-alarm trade-off
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False-alarm Rate and Accuracy
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AENEID Router [Ding+, DAC’11]

-
1 | [ Routing Path

[Inltlallze Lagrangian Multlpller Prediction Kernel

i . Hotspot
D

E Solve the MCSP Problem etection Kernel

topping criteria solution
Satisfied?

;'/:Update Layout Fragmentation Database:

— Update Lithography Cost : litho(e) f

Update Lagrangian Multiplier

¢ Using the machine learning models, we built a new
detailed router AENEID to avoid hotspot patterns
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Abstraction to Synthesis & Above?

Y

+ Can we further extend the abstraction up to logic
synthesis?

» Not just lithography hotspot, but other hotspots such
as reliability metrics including BTI, oxide breakdown

¢+ Machine learning to raise the abstraction”?
¢ NSF/SRC FRS program (started April 1, 2003)

¢+ NSF/SRC/DFG Cross-Layer Resilience
Workshop in Austin, July 11 and 12
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The “Moore?”, the Merrier!

—y
¢ More Moore

Nano-Patterning for Extreme Scaling

Lithography Aware Physical Design

¢ A different kind of “Moore”

3D Integration

New devices (e.g., nanophotonics) ...

=» Need synergistic design and technology co-
optimization for cross-layer resilience
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| Thermal/Mechanical Stress

-

Material CTE in 10°/K at 20°C
Si 3
W 4.5
Cu 17

CTE : Coefficient of thermal expansion

TSV: 250 °C ~400 °C process (Higher than operating temperature)
Since Cu has larger CTE than Si = tensile stress in Si near TSV.

Mobility change in a channel near TSV

Silicon

Silicon

26



Stress => Variability/Reliability

Y
. . 40
¢ Systematic Variations orEr | TL=45nm
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¢+ Reliability (interfacial crack, EM, etc.)

Si
_ Electromigration Electromigration
Interfacial Crack Effect — Open Effect — Short



Lateral Linear Superposition [ECTC'11, DAC11]
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¢ Full-chip stress analysis considering multiple TSVs
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(Lateral &) Vertical Superposition
-

‘ ¢+ Stress components are added up “vertically”

stress (MPa)
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Reliability/Variability Impact of Stress

1. Von Mises

Reliability

2. Crack: Energy
release rate (ERR)

3. Mobility/ V,,
variation of MOS

* \Von Mises Yield is
function of stress tensor

(MPa)
l 350
320
290
260
230

200
170

©00)
© 0 O}

(a) Von Mises stress with TSV array

(b) Von Mises stress with three TSVs
o

/

» TSV stress affects
ERR of TSV structure

—> aggravate crack
shrinking

:initial crack
ngth

rack front

(a) Side view
liner

substrate

(b) Top view

« TSV stress changes
mobility of hole/electron
- timing, V,, variation

J

(b) Electron mobility variation

.

[J. Mitra et al., ECTC'11]

[M. Jung et al., ICCAD’11]

[J. Yang et al., DAC’10]




From Stress to Reliability

-
~+ Von Mises Reliability Metric
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¢ Physical meaning

€
linear plastjc If o, > yielding strength,
elastic deformation will be permanent

and non-reversible

L AL
‘—-)—' Yielding strength
N Cu: 225 ~ 600 MPa

strain € = T - Si: 7,000 MPa

yielding strength oV



Wide 1/0 3D DRAM

Y
4 8mm S
! Bank0 : : Bank1 BankO : 5 BankA
R R case (b) shows that
ONONON(NONONO ©O00®O fonum chip/package co-
E [ IHHEHEHHTTTTTT i design can greatly
c% ~ ‘_’* ~ IR | reduce mechanical
O O O P ONO O ocoodooo reliability problem in
. m“ 2.8 TSV a ay | Pk -bump TSV-based 3D ICs
= 1024 TSVs in t tdIQ OO P O O
\| Bank2 Bank Bank2 : i Banktﬁ

(a) Pkg-bumps are placed (b) Pkg-bumps are placed
underneath TSV arrays 200um apart from TSV arrays
von Mises stress distribution (MPa)

H 780-810 810-840 840-870 870-900 900-930

(a) 30 114 52 220 608
(b) 182 842 0 0 0

[Jung et al, DAC’12]




TSV Interfacial Crack
— Y

Id: initial crack length liner

crack front

substrate
(a) Side view (b) Top view

« Cu shrinks faster than Si under negative thermal load (AT = -250°C)
 Model through Energy Release Rate (ERR)

« Full chip model with design-of-experiments of different layout styles
and multiple TSV structures

[Jung et al, ICCAD11]



Full-Chip Crack Analysis and Study

¢ Regular vs. irregular TSV arrays
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Stress Effect on Mobility & Current

-

' CMOS (Stress: 200MPa, R=r) [Yang+, DAC’ 10]

NMOS: 0.5 Ap (Alds:+1.5%)
PMOS: 0.6Ap (Alds:+1.8%)

Cmos I \
4

NMOS: 0.75Ap (Alds:+2.25%)
PMOS: -0.1Ap(Alds:-0.3%)

Cmos I \

NMOS: Ap(Alds:+3%)
PMOS: -Ap(Alds:-3%) FS corner

Cmos I]

Cell characterizations
based on distance and
orientation are needed
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Stress Aware Design FIOW [vang+, pac' 10

-
l Pre-placed TSV location P| Stress estimation induced by TSVs

\ 4

Mobility change (Ap/p) calculation

> Cell characterization with mobility
(Cell name change in Verilog)

Verilog netlist

A\ 4

Stress aware Verilog netlist

A\ 4

Verilog, SPEF merging for 3D STA

=Ll e 3D Timing Analysis with
timing with different : -
" PrimeTime
mobility

\ 4

Critical gate selection

A 4

Optimized layout TSV stress aware layout
with TSV stress optimization




-

Stress-Aware ECO

Original cell placement After cell perturbation

Rising critical
optimization
with
hole contour

electron contour

Falling critical
optimization
with
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The “Moore?”, the Merrier!

—y
¢ More Moore

Nano-Patterning for Extreme Scaling

Lithography Aware Physical Design

¢ A different kind of “Moore”

3D Integration

New devices (e.g., nanophotonics) ...

=» Need synergistic design and technology co-
optimization for cross-layer resilience
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Nanophotonics On-chip Integration

-

Electro-Optical Electro-Optical
Interconnect Interconnect

Planning Synthesis

¢ Holistic Optical Interconnect Planning and Synthesis
» Co-design and optimization with electrical interconnect

» Optical interconnect library (OIL) ) [Ding+, DAC’'09,
SLIP’09, and available http://iwww.cerc.utexas.edu/~ding/oil.htm]

> WDM, partitioning, routing, ...
¢+ Nanophotonics is a very active field
¢+ Many new research problems for CAD community!




Case Study 1: O-Router [Ding et al, DAC’09]

-

- wafer-to-wafer TSV

uﬂ = optical and electrical

dedjcated photonic layer
data conversion

optical wavegui
Metal L ayers pin4ﬂ %
pin3ﬂ ‘ Si

DN
:iy/—'vz
Metak'L ayers

(b)
¢+ Objectives: performance (throughput, latency, power),

cost ($3, economics)

¢ Constraints (SNR, signal integrity, reliability, system-level
regs.)

Metal L ayers

pinl




Case Study 2: GLOW

[Ding et al, ASPDAC’12]
—Y

|0 Global router for low-power thermal-reliable optical
Interconnect synthesis using Wavelength Division
Multiplexing (WDM)

/Synthesis Engine \/ Max{inter. Delay} <= A
GLOW for On-Chip
Optical/Electrical

Qnterconnect

!

Circuit implementation

Minimize Power
(Laser driving ——>
power)

«—  Max{SNR} <= B

/vriMin{Ther. Reliability} >= C

Min{Pathend power} >= D
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Conclusion

—Y

Optical lithography still pushing ahead for 14nm,
11nm, 7nm =» extreme scaling

Multiple patterning, EUV, DSA, and hybrid lithography

Design enablement with lithography capability co-

optimization from mask to physical synthesis (and
higher level, e.g., NSF/SRC FRS)

Cross-layer resilience
Horizontal scaling = Vertical scaling: 3D-IC
Reliability/Variability issues
New material/devices = new CAD paradigms and
tools
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