IEEE CEDA CTS, Nov. 12, 2013



# Nanometer IC Design for Manufacturability and Reliability in Extreme Scaling and Beyond

David Z. Pan Dept. of Electrical and Computer Engineering The University of Texas at Austin <u>http://www.cerc.utexas.edu/utda</u>

## **Nanometer Issues**











**Conventional Planar FET** 



#### **Lithography Status & Challenges** 10 [Courtesy Intel] Rounding Disappea Lithography Wavelength 365nm 248nm 1 193nm um Pinch, Gap 130nm 0.1 Pullback 90nm 3nm 65nm Feature EUV Size 1980 1990 2000 2010 2020

#### The industry forced to extend 193nm lithography

- Immersion, extreme RET
- > Double/Triple Patterning Lithography for 22nm/14nm, ...

#### **Resolution Limit of Optical Lithography**



#### With single exposure, the practical limit is ~80 nm

## What is Double Patterning?





**Overlay Error** 



## **Back in 2003**



Jeffrey: "Daddy, don't worry. I can show you some **bright** ideas!"



"Double patterning!!!"

# **Emerging Lithography**

193i w/ DPL



**Quadruple patterning** 



EUV



DSA



3D-IC







# The "Moore", the Merrier!

#### More Moore

- Nano-Patterning for Extreme Scaling
- Lithography Aware Physical Design

#### A different kind of "Moore"

- 3D Integration
- New devices (e.g., nanophotonics) ...

#### Need synergistic design and technology cooptimization for cross-layer resilience

#### **DPL Layout Decomposition Minimum Stitch Insertion** 1) Minimize stitch # Stitch 2) A bit more overlap Stitch margin for stitch, but area increases [Lucas SPIE'08] **Overlay Compensation** [Yang+, ASPDAC10] 2<sup>nd</sup> patterning 2<sup>nd</sup> patterning 2<sup>nd</sup> patterning 1<sup>st</sup> patterning $\pm C_1 - \Delta C_1$ $C_2 - \Delta C_2 \pm$ $C_2 + \Delta C_2 \mp$ $\pm C_1 - \Delta C_1$ 2<sup>nd</sup> patterning 1<sup>st</sup> patterning 1<sup>st</sup> patternir 1<sup>st</sup> patterning Without Overlay Compensation With Overlay Compensation

## A Graph-Partitioning Based, Multi-Objective Decomposer

#### [Yang+, ASPDAC10] **Decomposition Graph Construction** E Α Ā(20) X(9 Ē Ā Α Z(5) Ζ Ē(17 Ē Ā E(15 Y(9) Α Constraint: Ā Ē $(A, \overline{A})$ and $(E, \overline{E})$ are repulsive pairs.

**Theorem :** Stitch minimization problem is equivalent to the min-cut partitioning of the decomposition graph

**Extensions of the framework:** to incorporate other constraints and costs into graph partitioning, e.g., balanced density, overlay compensation, and so on

#### **Overlay Compensation & Density Balancing**





# **Triple Patterning**

- Extension of double patterning concept
- Original layout is divided into three masks
  - > Resolve native conflicts of DPL
  - > Achieve further feature-size scaling (14nm, 11nm)



- Very active research area!
- DAC'12 Best Paper; ICCAD'13 Best Paper
- ICCAD'13 Special Session
  - > Session 3B: Triple Patterning, Triple the Trouble?

# **Electronic Beam Lithography**

- Maskless technology, which shoots desired patterns directly into a silicon wafer
- Low throughput is its major hurdle
  - > E.g., Variable Shaped Beam (VSB)



Total number of 11 shots are needed

#### **Character Projection (CP) Technology**

 Print some complex shapes in one electronic beam shot, rather than writing multiple rectangles.



#### **Overlapped Characters Planning** [Yuan and Pan, ISPD'11 Best Paper Award] The number of characters is limited due to the area constraints of the stencil Blank Spanned region Blank Character of electron beam Layout A Layout **B** from shaping W aperture **Character B Character A** • By over-lapping adjacent characters, more characters are allowed to be put on the stencil





# The "Moore", the Merrier!

#### More Moore

- Nano-Patterning for Extreme Scaling
- Lithography Aware Physical Design
- A different kind of "Moore"
  - 3D Integration
  - New devices (e.g., nanophotonics) ...

Need synergistic design and technology cooptimization for cross-layer resilience



- Double/multiple patterning layout compliance/decomposition
- Post-layout, maybe too late!
- ◆ Lithography Aware Physical Design (LAPD) →
- Litho Hotspot Detection
- Litho Friendly Design

LAPD

- › Hotspot Avoiding/Correction
- > Correct by Construction/Prescription





Correction



#### Lithographic hotspots

- What you see (at design) is NOT what you get (at fab)
- > Hotspots mean poor printability
- > Highly dependent on manufacturing conditions
- > Exist after resolution enhancement techniques

## Litho-simulations are extremely CPU intensive

- > Full-blown OPC could take a week
- Impossible to be used in inner design loop

# **Various Approaches**

[Xu+ ICCAD07] [Yao+ ICCAD08, [Khang SPIE06], etc.



Pattern/Graph Matching

#### Pros and cons

- Accurate and fast for known patterns
- But too many possible patterns to enumerate
- Sensitive to changing manufacturing conditions
- > High false-alarms



SVM [J. Wuu+ SPIE09] [Drmanac+ DAC09] Neural Network Model [Norimasa+ SPIE07][Ding + ICICDT09] Regression Model [Torres+ SPIE09]

**Data Mining/Machine Learning** 

#### Pros and cons

- Good to detect unknown or unseen hotspots
- Accuracy may not be good for "seen" patterns (cf. PM)
- Hard to trade-off accuracy and false alarms

# **A New Meta-Classification Paradigm**

Pattern Matching Methods Good for detecting previously known types of hotspots Machine Learning Methods Good for detecting new/previously unknown hotspots

A New Unified Formulation (EPIC) Good for detecting all types of hotspots with advantageous accuracy/false-alarm (Meta-Classifier)

 Meta-Classification combines the strength of different types of hotspot detection techniques

[Ding et al, ASPDAC 2012]

# **Components of Meta-Classifier Core**



- Base classifier results are first collected
- Weighting functions to make the overall meta decision (e.g., quadratic programming)
- Threshold with accuracy and false-alarm trade-off

#### **False-alarm Rate and Accuracy**



# AENEID Router [Ding+, DAC'11]



 Using the machine learning models, we built a new detailed router AENEID to avoid hotspot patterns

#### **Abstraction to Synthesis & Above?**

- Can we further extend the abstraction up to logic synthesis?
  - Not just lithography hotspot, but other hotspots such as reliability metrics including BTI, oxide breakdown
- Machine learning to raise the abstraction?
- NSF/SRC FRS program (started April 1, 2003)
- NSF/SRC/DFG Cross-Layer Resilience Workshop in Austin, July 11 and 12

# The "Moore", the Merrier!

#### More Moore

- Nano-Patterning for Extreme Scaling
- Lithography Aware Physical Design
- A different kind of "Moore"
  - 3D Integration
  - New devices (e.g., nanophotonics) ...

Need synergistic design and technology cooptimization for cross-layer resilience

# **Thermal/Mechanical Stress**

| Material | CTE in 10 <sup>-6</sup> /K at 20°C |  |  |  |
|----------|------------------------------------|--|--|--|
| Si       | 3                                  |  |  |  |
| W        | 4.5                                |  |  |  |
| Cu       | 17                                 |  |  |  |

**CTE : Coefficient of thermal expansion** 

TSV: 250 °C ~400 °C process (Higher than operating temperature) Since Cu has larger CTE than Si  $\rightarrow$  tensile stress in Si near TSV.





# **Stress => Variability/Reliability**

- Systematic Variations
  - Mobility
  - > Timing



#### Reliability (interfacial crack, EM, etc.)



**Interfacial Crack** 





Electromigration Effect – Open

Electromigration Effect – Short

#### Lateral Linear Superposition [ECTC'11, DAC'11]

Full-chip stress analysis considering multiple TSVs



# (Lateral &) Vertical Superposition

#### Stress components are added up "vertically"









## **Reliability/Variability Impact of Stress**

#### 1. Von Mises Reliability

• Von Mises Yield is function of stress tensor



2. Crack: Energy release rate (ERR)

TSV stress affects
ERR of TSV structure
→ aggravate crack



# 3. Mobility/ V<sub>th</sub> variation of MOS

 TSV stress changes mobility of hole/electron
→ timing, V<sub>th</sub> variation



(a) Hole mobility variation



[J. Yang et al., DAC'10]

# **From Stress to Reliability**

Von Mises Reliability Metric

$$\sigma_{v} = \sqrt{\frac{(\sigma_{xx} - \sigma_{yy})^{2} + (\sigma_{yy} - \sigma_{zz})^{2} + (\sigma_{zz} - \sigma_{xx})^{2} + 6(\sigma_{xy}^{2} + \sigma_{yz}^{2} + \sigma_{zx}^{2})}{2}}$$

### Physical meaning



# Wide I/O 3D DRAM



case (b) shows that chip/package codesign can greatly reduce mechanical reliability problem in TSV-based 3D ICs

(a) Pkg-bumps are placed (b) Pkg-bumps are placed underneath TSV arrays 200um apart from TSV arrays

| case | von Mises stress distribution (MPa) |         |         |         |         |  |
|------|-------------------------------------|---------|---------|---------|---------|--|
|      | 780-810                             | 810-840 | 840-870 | 870-900 | 900-930 |  |
| (a)  | 30                                  | 114     | 52      | 220     | 608     |  |
| (b)  | 182                                 | 842     | 0       | 0       | 0       |  |

[Jung et al, DAC'12]

# **TSV Interfacial Crack**



- Cu shrinks faster than Si under negative thermal load ( $\Delta T = -250^{\circ}C$ )
- Model through Energy Release Rate (ERR)
- Full chip model with design-of-experiments of different layout styles and multiple TSV structures

# **Full-Chip Crack Analysis and Study**

Regular vs. irregular TSV arrays



# **Stress Effect on Mobility & Current**

CMOS (Stress: 200MPa, R=r)

[Yang+, DAC' 10]



# Stress Aware Design Flow [Yang+, DAC' 10]



# **Stress-Aware ECO**

#### **Original cell placement**

#### After cell perturbation



# The "Moore", the Merrier!

#### More Moore

- Nano-Patterning for Extreme Scaling
- Lithography Aware Physical Design
- A different kind of "Moore"
  - 3D Integration
  - New devices (e.g., nanophotonics) ...

Need synergistic design and technology cooptimization for cross-layer resilience



Holistic Optical Interconnect Planning and Synthesis

- > Co-design and optimization with electrical interconnect
- Optical interconnect library (OIL) ) [Ding+, DAC'09, SLIP'09, and available <u>http://www.cerc.utexas.edu/~ding/oil.htm]</u>
- > WDM, partitioning, routing, ...
- Nanophotonics is a very active field
- Many new research problems for CAD community!

#### Case Study 1: O-Router [Ding et al, DAC'09]



- Objectives: performance (throughput, latency, power), cost (\$\$, economics)
- Constraints (SNR, signal integrity, reliability, system-level reqs.)

#### **Case Study 2: GLOW**

[Ding et al, ASPDAC'12]

 Global router for low-power thermal-reliable optical interconnect synthesis using Wavelength Division Multiplexing (WDM)



# Conclusion

- Optical lithography still pushing ahead for 14nm, 11nm, 7nm → extreme scaling
  - > Multiple patterning, EUV, DSA, and hybrid lithography
- Design enablement with lithography capability cooptimization from mask to physical synthesis (and higher level, e.g., NSF/SRC FRS)
  - > Cross-layer resilience
- ♦ Horizontal scaling → Vertical scaling: 3D-IC
  - Reliability/Variability issues
- New material/devices → new CAD paradigms and tools

# Acknowledgment

Support/collaboration from NSF, SRC, NSFC, Sematch, IBM, Intel, Oracle, Fujitsu, Qualcomm, Synopsys, Mentor Graphics, Toshiba, ...

- The materials in this talk include results from many former/current PhD students at UTDA
  - > They are the ones who did the real work!
- Collaborators
  - > DFM: IBM, Intel, Globalfoundries, Mentor, Synopsys, etc.
  - > 3D-IC: Prof. Sung Kyu Lim's group at Georgia Tech
  - > Optical: Prof. Ray Chen's group at UT Austin