lg/-lsizlgegm

How Test Automation Drives
Agile Software Development

September 10, 2015
Austin, TX

Chris Durand
CTO, Bridge360

ﬁ/-l?ﬁt\:lgegm“

About Me

CHRTS

Chris Durand

CTO, Bridge360
Chris Durand@Bridge360.com

www.Bridge360.com

www.Bridge360Blog.com

© 2015 Bridge360

lg/-li’i\:lgegm“

Agenda

* Money, Money, Money!

* Traditional Testing Review
* Agile & Scrum Review

* How to Do Automated Testing Right
* The Future!

* Additional Resources

© 2015 Bridge360

4 sBridge360”

Money, Money, Money!

© 2015 Bridge360

4 §Bridge360'”

QA Spend

* QA is becoming a larger and larger % of IT and project
budgets*
— Average QA budget is 23% of IT budget

— QA budget growing 5% per year vs. 2-3% growth in overall IT budgets
=>» not sustainable

2013 2046

*World Quality Report 2013-14: http://www.slideshare.net/capgemini/world-quality-report-2013-14

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Why is QA spend SO hlgh?

© 2015 Bridge360

ﬁ@geg&a '

* Ever larger and complicated applications

Increasing Application Complexity

— More complicated ecosystem for applications / more
interconnections

e More environments

— Mobile platforms (iOS, Android, Windows Phone)
— Browsers (Chrome, Firefox, IE, Safari, Opera, etc.) and versions

* More features

— Multi-language support, accessibility, etc.

* More users of software

© 2015 Bridge360 7

ﬁf\ ~ Android Fragmentation (July 2013) —
ridge360 . . .
11,868 distinct variants seen in past year

ll!lll-"'l' =
- -- N
I l:.li:l . I
o R

. =

il -
i %II_““'I.. el il =

| "III'“'"
= . mi AN NR =t
» e T "gllu i EE=m s
: - ! .. m .! !!ulu I! . [=
. e :: -;: "' T :'-'.';;:.!;:":EE..::. Jris
! g = n"
! |=
-. .. I"_'_E

_, P10
"-c’:'r" [l]

http://opensignal.com/reports/fragmentation-2013/

= =L

sesd _uesnciag]

..- !- !!.ll IIIIEI !Il...m= A
momaE"

© 2015 Bridge360 8

/g/-Bit\igegaza '

* Object oriented

More Efficient Development
x86 Assembly Language

.model tiny

development, ==

dynamic typing, woin oroc

higher levels of nov ah,c

abStraCthn, r:r-l:; g.zfli-offset hello message
frameworks, etc. retn

hello message db 'Hello, world!s’

main endp
end main

Python

"Hello, world!™

http://en.wikipedia.org/wiki/List_of Hello_world_program_examples

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

What does all

> this MNEedn-

X

© 2015 Bridge360

lg/-lsit\:lgeg&“

We need to figure out how to

Do QA Better

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

TRADITIONAL
THESTING

© 2015 Bridge360

/ﬁc\:lgegm“

Waterfall Project Phases

. . . - .

© 2015 Bridge360 13

4 sBridge360"‘

Waterfall Testing Steps

Automate Test
Cases

© 2015 Bridge360 14

ﬁ@geg&a '

Some Challenges

 Difficult to get requirements perfect up front
— Customers don’t know what they want but are great
critics
— Difficult to perfectly envision what we’re going to
build up front

* Many handoffs required
— Telephone game
— Difficult to have shared understanding
* Hard to know where you’re really at
— How do you verify each stage is really DONE?

© 2015 Bridge360 15

ﬁ/-l?ﬁt\:lgegm“

Some More Challenges

* Slow feedback

— Exponential cost of

d Efe cts over t| me Costs rise exponentially the later
bugs are found within a project’s
° Change happens development cycle.

— External (market

conditions, etc.)
— Internal (team ll II
changes, portfolio = I8 !l Il

REQUIREMEMTS DEVELOPMENT TESTIMG
changes, new
knowledge, etc.)

© 2015 Bridge360 16

ﬁ@geg&a '

Test Automation — Old School

* Focused on GUI automation
— Simulates a user interacting with the application
— Slow to execute (but still faster than manual
testing!)
* Expensive to develop
— Expensive tools
— Lots of labor hours
— Specialist expertise required to do it well

© 2014 Bridge360

17

ﬁ@geg&a '

Test Automation — Old School

* Expensive to maintain
— Brittle GUI tests require constant maintenance
— It’s just kind of flakey

* Doesn’t scale well
— Maintenance costs eventually get out of control

— Large test suites take too long
to execute

¥

ta(l

© 2014 Bridge360

18

lg/-lsﬁt\:lgegm“

Pass in stuff

Simple Call Tree

...to exercise
Repeat 100s or 1000s or

© 2015 Bridge360 10000s of times...

behavior here

lg/-lsﬁt\:lgegm“

So what are we

DOING

about this?

WAR PRODUCTION CO-ORDINATING COMMITTEE

© 2015 Bridge360 20

ﬁ/-lsﬁt\:lgegm“

Agile & Scrum Review

© 2015 Bridge360

21

ﬁf\ Manifesto for Agile Software
ridge360
Development (2001)

Individuals & interactions > processes and tools

Working software > comprehensive documentation

Responding to change > following a plan

Success at agile methods requires a cultural change across the entire
company. Cultural change is never easy!

http://agilemanifesto.org

© 2015 Bridge360

4 §Bridge360'”

Some Agile “Methodologies”

Extreme
Programming

4

Scrum

4

There are many ways to “be agile”.
Scrum is the most popular “agile” framework.

© 2015 Bridge360

/g/-li’z\:lgegGo '

Scrum in a Nutshell

* Rely on small (3-7 members), cross-functional,
self-organizing teams

* Break project into small pieces of work (“user
stories”) that each take a few days to
implement

* Deliver 100% complete user stories in 1-4
week “sprints”

* Do the highest value work first

© 2015 Bridge360

/g/-Bit\igegaza '

Scrum in a Nutshell (2)

* No changes while is a sprint
— Cannot add / remove features to current sprint
— Team does not change during sprint

* Change welcome between sprints!

* Hold a retrospective after each sprint to
identify opportunities to improve

“Inspect and adapt”

© 2015 Bridge360

ﬁ/-lsﬁt\:lgegm“

Scrum “Heartbeat” Example

Start Development Here

Wednesday Thursday

Backlog
Grooming (1h)

Week 2

Backlog Retro (1h)
Grooming (1h)

Code finished, application
© 2015 Bridge360 fully tested by here

ﬁ/-l?ﬁt\:lgegm“

Wait, did you just say we have to test
the whole application

every two weeks?!??

So, um, how are we supposed to do that...?

© 2015 Bridge360

ﬁ/-lsﬁt\:lgegm“

How to Do Test
Automation Right

© 2015 Bridge360

4 sBridgegGo*‘

{ Higher Level

Types of Test Automation

I [Lower Level

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Test Leaf Nodes with Unit Tests

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Benefits of Unit Tests

* Simple

* Few dependencies
* Stable

* Repeatable

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

/!

// Calculates the fee. Returns the fee calculated or -1 if invalid parameters are passed.

// Displays a popup if there is a problem.

//

public static float CalculateFee(DateTime entryTime,
DateTime exitTime,
Lot.RateTypes rateType,
float rate,
bool showMessageBoxes)

Example Code: Parking Fee Calculator

{
float fee = 0;

if (DateTime.Compare(entryTime, exitTime) > @)

{

if (showMessageBoxes)

{
string caption
string message

"Vehicle Exit"™;
String.Format("Exit time {@} must be before entry time {1}.",
exitTime.ToString(’ Mid!yyyy h mm tt"),

RS U - e N LY. [s I R PN B T L T T

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Example Unit Tests

[TestMethod]
public void ShouldRejectExitTimeBeforeEntryTime()

{
// arrange
DateTime entryTime = new DateTime(2014, 1, 1, 10, 0, 0);
DateTime exitTime = new DateTime(2014, 1, 1, 9, 59, 0);
Lot.RateTypes rateType = Lot.RateTypes.Daily;
float rate = 5;
// act

float fee = MainForm.CalculateFee(entryTime, exitTime, rateType, rate, false);

// assert
Assert.AreEqual(fee, -1f, @, "Should reject records with exit time before entry time.");

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Example Unit Tests

[TestMethod]
public void TestFeeForExitTimeSameAsEntryTime()

{

// arrange

DateTime entryTime = new DateTime(2014, 1, 1, 10, 0, @);

DateTime exitTime = new DateTime(2014, 1, 1, 10, 0, 0);

Lot.RateTypes rateType = Lot.RateTypes.Hourly;

tloat rate = 10;

/] act

float fee = MainForm.CalculateFee(entryTime, exitTime, rateType, rate, false);

// assert

Assert.AreEqual(fee, @f, @, "Fee should be zero for records with entry time the same as exit time.");
}

© 2015 Bridge360

lg/-lsizlgegm

Improvement: Data-Driven Tests

Test Mame

Simple happy paths

Entry Date/Time

Exit Date/Time

Rate Type Rate Expected

Test daily rate for 5 days 2014
Test hourly rate for 5 hours 2014
Edge cases

Fee should be zero for records with entry time the same as exit time. 2014
Test hourly rate across hour boundary 2014
Test hourly rate across day boundary 2014
Test hourly rate across month boundary 2014
Test hourly rate across year boundary 2014
Test daily rate across day boundary 2014
Test daily rate across month boundary 2014
Test daily rate across year boundary 2014
Verify 2000 is not a leap year 2000
#Verify 2004 is a leap year 2004
Invalid scenario tests

Should reject records with exit time before entry time. 2014

© 2015 Bridge360

12

31
31

31
31

10
10

10

10
23
23
23

23

23
23

10

30
30
30
30

30
30
30

2014
2014

2014

2014
2014
2014
2015

2014

2014

201>

2000

2004

2014

(SR T SUR

[(E I

O R

=P

10
15

10

11

=

0 daily
0 hourly

0 hourly

15 hourly
15 hourly
15 hourly
15 hourly

15 daily
15 daily
15 daily
30 daily
30 daily

59 daily

10

[T L B L B L

10
10
10

10
10

50
10

[T o B L B L

10
10
10

280
290

ﬁ@geg&a '

Isolating Dependencies

e Stubs

— Fake or dummy implementations that have defined
behaviors

— Code under test relies on stubs for dependencies

 Dependency Injection
— Getting code to use specific dependencies at runtime

— Many techniques
* E.g. pass in all dependencies as parameters

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Example: Removing Dependencies

Boolean HasWorkDayStarted(WorkStartTime):
if (WorkStartTime > System.GetCurrentTime()):
return True
else
return False

So, um, how do | test this at
different times of the day?

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Example: Removing Dependencies

Boolean HasWorkDayStarted(WorkStartTime, CurrentTime):
if (WorkStartTime > CurrentTime):
return True

else
Dependency
return False Injection

No external dependencies =
Super easy to test =
WIN

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Example: Using a Stub

Boolean HasWorkDayStarted(WorkStartTime):
if (WorkStartTime > ResourceManager.Get(“System”).GetCurrentTime()):
return True
else
return False

Replace the call to the built-in
System library with a stub we
control.

© 2015 Bridge360

lg/-lsﬁt\:lgegw“

Example: Using a Stub

Void Test_ HasWorkDayStarted BeforeWorkDay NotStarted():
// arrange — set System.GetCurrentTime() to always return 6 a.m.
ResourceManager.SetReturnValue(“System.GetCurrentTime()”, 6.00)

// act — call our code being tested
result = HasWorkDayStarted(8.00)

// assert — verify we got the expected result
assertSame(result,
false,

“Current time before start time does not return false”)

© 2015 Bridge360

ﬁ@geg&a '

Test Verification

 Method #1: Verify state

— Preferred method to verify results but not always easy
— General flow:

e System begins in a known state
* Run the code under test that changes the system state

* Verify system state has changed appropriately after code
under test completes

— Examples of state changes:
* Global variable changed
 Row added or deleted in a database

 Function returned a value or result code

© 2014 Bridge360 41

lg/-lsﬁt\:lgegw“

Test Verification

Simple example:

delete all rows 1in database with

add employee (name="Homer Simpson", id=100)

© 2014 Bridge360 42

lg/-lsﬁt\:lgegw“

How to Verify Results Here?

function email only john(name, address, subject, body)

T
L

(name is "John™)

emall server

Wow this John guy is super special...!

© 2014 Bridge360 43

lg/-lsﬁ:lgegm

How to Verify Results Here?

function test EmailOnlyJohn SendsEmail()
{

“John"
"testaccount@gmail.com”
subject = "You are awesome”
body "John, You are awesome!”

-_--\.'-.r
email only john(name, address, subject, body)

uhhh how to verify an emall got sent?

© 2014 Bridge360

ﬁ@geg&a '

How to Verify An Email Was Sent?

* Obvious approach
—Set up test email server

— Write a method that will log into the email
server and check if we got an email sent

© 2014 Bridge360 45

/g/-Bit\:lgegw '

How to Verify An Email Was Sent?

* Challenges
— Sloooooooow
— What if email is delayed due to the network?

— Now we have to maintain a mail server or service
just to do testing (seriously?!?!)

— What if multiple tests are running simultaneously
and generating emails to the same inbox?

Wow this is making my head hurt just thinking about it...

© 2014 Bridge360 46

ﬁ@geg&a '

Test Verification

* Method #2: Verify interactions

— Generally used when it is hard or
inconvenient to verify state directly

— General flow:
e System begins in a known state

e Run the code under test

* Verify the code under test did specific things
(e.g. called methods on other objects)

© 2014 Bridge360 47

ﬁ@geg&a '

Test Verification

 Method #2: Verify interactions (continued)

— Examples of interactions to check:

e Database (or data access object) delete row method
called

* Email sent() method called

— Tradeoffs

e Tests become harder to understand
* Enables overall easier testing in some cases
e Can reduce setup/teardown

© 2014 Bridge360 48

lg/-lsﬁt\:lgegw“

Test Verification

 Method #2: Verify interactions Example

function test EmailOnlyJohn SendsEmail()

T
L

name "John"
"testaccount@gmail.com”
"You are awesome”
"John, You are awesome!"”

subject, body)

ver.send emall called

© 2014 Bridge360

49

@gegﬁo*

Test Data

Shipping Rate Table

Must Test for:
- Different ZIP codes
- Size/weight
restrictions Shipping Cost
- Etc.

© 2015 Bridge360

/g/-Bit\:lgegw '

Test Data

 Old school

— Store test data in database, files, etc.

— Maintain shared, reusable “test fixture” data
structures in tests

* |ssues
— Gets more complex over time
— Expensive to maintain (so many edge cases!)
— Brittle

Wow it sounds like we’re in the test data maintenance business...

© 2014 Bridge360 51

ﬁ@geg&a '

Test Data

* New school

— Generate test data on the fly

* Generate generic test data

* Tweak the generic data as needed for test case
— Higher initial cost

* Harder to understand at first

* Must build data generators

* Tools exist to help
— Much cheaper to maintain

e Data structures changed? Just tweak the
generator

© 2014 Bridge360

52

@geg&“

from Generator

re - = — — M

Generic Test
Customer/Order

Test Case

Updates as
Needed

i

Test Data Generator

Test Case: Verify
Hawaii surcharge
applied.

© 20

Shipping Cost

want

Shipping Rate Table

Tell the data generator
how many items we

4 ?BridgegGo*‘

[Higher Level

Types of Test Automation

\/ [Lower Level

© 2015 Bridge360

Movin’ on Up

lg/-li’ﬁ(\:lgegm'

Movin’ on Up

lg/-li’i\:lgegm“

Movin’ on Up...?

lg/-lsﬁt\:lgegm“

Movin’ on Up...???

lg/-lsﬁt\:lgegm“

lg/-lsﬁt\:lgegm“

Movin’ on Up...still?

O
O O
OO O
O @ OO OO0
o O OO0
OO0 O O
OO OO0

© 2015 Bridge360

lg/-lsﬁt\:lgegm“

Movin’ on Up...it this thing on?!1?

© 2015 Bridge360

ﬁ@geg&a '

Bottom-Up to Top-Down

* At some point we stop testing bottom-up unit
testing and switch to top-down component
testing

— When? Well it depends...

— The better your code is structured the further up
the tree you can take unit testing techniques

— Usually difficult to do more than 1 or 2 levels up
— Still can test at multiple levels

© 2015 Bridge360

ﬁ@geg&a '

Component Testing

e Usually tests non-human interfaces
— APIs, services, etc.

— Important to build these in and expose them for
testability

— Architecting for testability

* Can be a bit blurry where unit testing ends and
component-level testing begins

* Dependencies no longer isolated
* Can use similar tools as unit testing + others

© 2015 Bridge360

4 §Bridge360'”

Component Level Testing

© 2015 Bridge360

4 $Bridge360”’

More Component Level Testing

()
OO
O @ C
’

© 2015 Bridge360

ﬁ@geg&a '

The Balance

* Bottom-up testing
— Cheaper to do
— Good at testing low-level details
— Bad at testing interactions among pieces

* Top-down testing
— More expensive to do
— Bad at testing low-level details
— Good at testing interactions among pieces

© 2015 Bridge360

ﬁ@geg&a '

Component vs. Integration Testing

* Component testing

— Usually refers to a group of related functionality but
smaller than an entire application

* Integration testing

— Usually refers to large chunks of functionality, often
testing how whole applications work together

— Basically testing large components working together

© 2015 Bridge360

4 ?BridgegGo*‘

Types of Test Automation

Higher Level

\/ [Lower Level

© 2015 Bridge360

/g/-Bit\igegaza '

Automated GUI Testing

* Not many recent fundamental changes
— Browser based apps provide standard interfaces

* Tools are getting cheaper
— Many excellent open-source options, e.g. Selenium

* Mobile testing still in infancy
— Lots of hard problems to solve!
* Patterns are emerging
— E.g. Page Objects
 Still hard to do well

Evolution, not revolution...

© 2015 Bridge360

@geg&)“

Automation Strategy: The Goal

Manual
Testing

Automated GUI
Testing

Agile Testing, Crispin & Gregory - http://amzn.to/KnE72I

© 2014 Bridge360

lg/-Bﬁt\:lgegGo '

Don’t Skimp on Integration Tests!

 |n 1999 NASA lost the Mars
Climate Orbiter

e Reason: Lack of / poor
integration testing

* Cost of program: $328 million

Just because each piece works
. separately doesn’t mean they will

Image: NASA/JPL/Corby Waste work together.

© 2014 Bridge360 70

ﬁ/-lsﬁt\:lgegm“

The Future!

© 2015 Bridge360

ﬁ@geg&a '

The Future of Testing

* So, um, what happens to all the manual testers?
— Manual testers are freed up to do higher-value work
— Some testers will write automated test scripts
— We will always have some manual testing
— Some testers will exit the field

© 2015 Bridge360 72

ﬁ@geg&a '

The Future of Testing

e More and better built-in test features

— More out-of-the-box support

 More integration with dev ops
— Still a lot of DIY required to set all this stuff up

lg/-lsit\:lgeg&“

Chris’s Prediction

In 5 - 10 years, it will be

Wﬂ//’d not to do test
automation

© 2015 Bridge360

ﬁ/-lsﬁt\:lgegm“

Additional
Resources

© 2015 Bridge360

lg/-lsizlgegm

Additional Resources

AGILE ;“ M
TESTING MORE AGILE
TESTING

A PracTicalL GUIDE FOR

[ESTERS AND AGILE TEAMS

Lisa CRISPIN B, T JANET GREGORY
JANET GREGORY Lisa CRISPIN

Forewords by Mike Cohn and Brian Marick

The go-to book for agile testing (2009) — Additional material from the same authors
http://amzn.com/0321534468 (2014) — http://amzn.com/0321967054

lg/-lsit\:lgeg&“

Recommended Reading

A dest .

ciples, Pa rns Practices

M ARTCH 22 3 201 4

Architect, Banc\ue

Excellent presentation on test automation from Keep Austin Agile 2014.
http://architester.com/blog/2014/03/25/effective-test-automation-presentation-

keep-austin-agile-2014/

© 2014 Bridge360

77

ﬁ/-l?ﬁt\:lgegm“

the art of

UNIT T

with examples in C#

SECOND EDITION WSl
\ I: e

Foamoiin i

| T ' ' ROY OSHEROVE

Great introduction to unit testing.

Examples are in C# but easy to follow.

http://amzn.com/1617290890

© 2014 Bridge360

Recommended Reading

xXUNIT TEST
PATTERNS

GERARD MESZAROS W

Deeper dive into unit testing.
http://amzn.com/0131495054

78

lg/-lsit\:lgeg&“

VZTZRANS 4 QUALITY"

http://www.bridge360.com/v4glanding.shtml

Thank you!
Questions?

© 2015 Bridge360

