
1

How Test Automation Drives
Agile Software Development

September 10, 2015
Austin, TX

Chris Durand
CTO, Bridge360

About Me

Chris Durand

CTO, Bridge360

Chris_Durand@Bridge360.com

www.Bridge360.com

www.Bridge360Blog.com

© 2015 Bridge360 2

Agenda

• Money, Money, Money!

• Traditional Testing Review

• Agile & Scrum Review

• How to Do Automated Testing Right

• The Future!

• Additional Resources

© 2015 Bridge360 3

Money, Money, Money!

© 2015 Bridge360 4

QA Spend

• QA is becoming a larger and larger % of IT and project

budgets*

– Average QA budget is 23% of IT budget

– QA budget growing 5% per year vs. 2-3% growth in overall IT budgets

� not sustainable

*World Quality Report 2013-14: http://www.slideshare.net/capgemini/world-quality-report-2013-14

© 2015 Bridge360 5

2013 2046

QA

QA

Other IT

Other

IT

Why is QA spend so high?

© 2015 Bridge360 6

Increasing Application Complexity

• Ever larger and complicated applications

– More complicated ecosystem for applications / more

interconnections

• More environments

– Mobile platforms (iOS, Android, Windows Phone)

– Browsers (Chrome, Firefox, IE, Safari, Opera, etc.) and versions

• More features

– Multi-language support, accessibility, etc.

• More users of software

© 2015 Bridge360 7

Android Fragmentation (July 2013) –

11,868 distinct variants seen in past year

© 2015 Bridge360 8

http://opensignal.com/reports/fragmentation-2013/

More Efficient Development

© 2015 Bridge360 9

x86 Assembly Language

Python

http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples

• Object oriented

development,

dynamic typing,

higher levels of

abstraction,

frameworks, etc.

What does all

this mean?

© 2015 Bridge360 10

We need to figure out how to

Do QA Better.

© 2015 Bridge360 11

Traditional Traditional Traditional Traditional

TestingTestingTestingTesting

© 2015 Bridge360 12

Waterfall Project Phases

© 2015 Bridge360 13

Requirements Design Development Testing Deployment

Waterfall Testing Steps

© 2015 Bridge360 14

Review
Requirements

Create Test
Plan

Write Test
Cases

Execute Test
Cases

Automate Test
Cases

Report Results

Some Challenges

• Difficult to get requirements perfect up front

– Customers don’t know what they want but are great
critics

– Difficult to perfectly envision what we’re going to
build up front

• Many handoffs required

– Telephone game

– Difficult to have shared understanding

• Hard to know where you’re really at

– How do you verify each stage is really DONE?
© 2015 Bridge360 15

Some More Challenges

• Slow feedback

– Exponential cost of

defects over time

• Change happens

– External (market

conditions, etc.)

– Internal (team

changes, portfolio

changes, new

knowledge, etc.)

© 2015 Bridge360 16

Test Automation – Old School

• Focused on GUI automation

– Simulates a user interacting with the application

– Slow to execute (but still faster than manual

testing!)

• Expensive to develop

– Expensive tools

– Lots of labor hours

– Specialist expertise required to do it well

© 2014 Bridge360 17

Test Automation – Old School

• Expensive to maintain

– Brittle GUI tests require constant maintenance

– It’s just kind of flakey

• Doesn’t scale well

– Maintenance costs eventually get out of control

– Large test suites take too long

to execute

© 2014 Bridge360 18

Simple Call Tree

© 2015 Bridge360

Pass in stuff

here…

…to exercise

behavior here
Repeat 100s or 1000s or

10000s of times…

So what are we

DOING
about this?

© 2015 Bridge360 20

Agile & Scrum Review

© 2015 Bridge360 21

Manifesto for Agile Software

Development (2001)

http://www.agilemanifesto.org/

Success at agile methods requires a cultural change across the entire

company. Cultural change is never easy!

Individuals & interactions > processes and tools

Working software > comprehensive documentation

Customer collaboration > contract negotiation

Responding to change > following a plan

© 2015 Bridge360

http://agilemanifesto.org

Some Agile “Methodologies”

There are many ways to “be agile”.

Scrum is the most popular “agile” framework.

Scrum
Extreme

Programming

Kanban Crystal Clear

© 2015 Bridge360

Scrum in a Nutshell

• Rely on small (3-7 members), cross-functional,

self-organizing teams

• Break project into small pieces of work (“user

stories”) that each take a few days to

implement

• Deliver 100% complete user stories in 1-4

week “sprints”

• Do the highest value work first

© 2015 Bridge360

Scrum in a Nutshell (2)

• No changes while is a sprint

– Cannot add / remove features to current sprint

– Team does not change during sprint

• Change welcome between sprints!

• Hold a retrospective after each sprint to

identify opportunities to improve

“Inspect and adapt”

© 2015 Bridge360

Scrum “Heartbeat” Example

© 2015 Bridge360

Start Development Here

Code finished, application

fully tested by here

Wait, did you just say we have to test

the whole application

every two weeks?!??

© 2015 Bridge360 27

So, um, how are we supposed to do that…?

How to Do Test

Automation Right

© 2015 Bridge360 28

Types of Test Automation

© 2015 Bridge360

GUI

Integration

Component

Unit

Higher Level

Lower Level

Test Leaf Nodes with Unit Tests

© 2015 Bridge360

Benefits of Unit Tests

• Simple

• Few dependencies

• Stable

• Repeatable

© 2015 Bridge360

Example Code: Parking Fee Calculator

© 2015 Bridge360

Example Unit Tests

© 2015 Bridge360

Example Unit Tests

© 2015 Bridge360

Improvement: Data-Driven Tests

© 2015 Bridge360

Isolating Dependencies

• Stubs

– Fake or dummy implementations that have defined

behaviors

– Code under test relies on stubs for dependencies

• Dependency Injection

– Getting code to use specific dependencies at runtime

– Many techniques

• E.g. pass in all dependencies as parameters

© 2015 Bridge360

Example: Removing Dependencies

Boolean HasWorkDayStarted(WorkStartTime):

if (WorkStartTime > System.GetCurrentTime()):

return True

else

return False

© 2015 Bridge360

So, um, how do I test this at

different times of the day?

Example: Removing Dependencies

Boolean HasWorkDayStarted(WorkStartTime, CurrentTime):

if (WorkStartTime > CurrentTime):

return True

else

return False

© 2015 Bridge360

No external dependencies =

Super easy to test =

WIN

Dependency

Injection

Example: Using a Stub

Boolean HasWorkDayStarted(WorkStartTime):

if (WorkStartTime > ResourceManager.Get(“System”).GetCurrentTime()):

return True

else

return False

© 2015 Bridge360

Replace the call to the built-in

System library with a stub we

control.

Example: Using a Stub

Void Test_HasWorkDayStarted_BeforeWorkDay_NotStarted():

// arrange – set System.GetCurrentTime() to always return 6 a.m.

ResourceManager.SetReturnValue(“System.GetCurrentTime()”, 6.00)

// act – call our code being tested

result = HasWorkDayStarted(8.00)

// assert – verify we got the expected result

assertSame(result,

false,

“Current time before start time does not return false”)

© 2015 Bridge360

Test Verification

• Method #1: Verify state

– Preferred method to verify results but not always easy

– General flow:

• System begins in a known state

• Run the code under test that changes the system state

• Verify system state has changed appropriately after code

under test completes

– Examples of state changes:

• Global variable changed

• Row added or deleted in a database

• Function returned a value or result code

© 2014 Bridge360 41

Test Verification

Simple example:

© 2014 Bridge360 42

How to Verify Results Here?

© 2014 Bridge360 43

Wow this John guy is super special…!

How to Verify Results Here?

© 2014 Bridge360 44

How to Verify An Email Was Sent?

© 2014 Bridge360 45

• Obvious approach

– Set up test email server

–Write a method that will log into the email

server and check if we got an email sent

How to Verify An Email Was Sent?

© 2014 Bridge360 46

• Challenges

– Sloooooooow

– What if email is delayed due to the network?

– Now we have to maintain a mail server or service

just to do testing (seriously?!?!)

– What if multiple tests are running simultaneously

and generating emails to the same inbox?

Wow this is making my head hurt just thinking about it…

Test Verification

• Method #2: Verify interactions

–Generally used when it is hard or

inconvenient to verify state directly

–General flow:

• System begins in a known state

• Run the code under test

• Verify the code under test did specific things

(e.g. called methods on other objects)

© 2014 Bridge360 47

Test Verification

• Method #2: Verify interactions (continued)

– Examples of interactions to check:

• Database (or data access object) delete row method

called

• Email sent() method called

– Tradeoffs

• Tests become harder to understand

• Enables overall easier testing in some cases

• Can reduce setup/teardown

© 2014 Bridge360 48

Test Verification

• Method #2: Verify interactions Example

© 2014 Bridge360 49

Test Data

© 2015 Bridge360

Must Test for:

- Different ZIP codes

- Size/weight

restrictions

- Etc.

Test Data

• Old school

– Store test data in database, files, etc.

–Maintain shared, reusable “test fixture” data
structures in tests

• Issues

– Gets more complex over time

– Expensive to maintain (so many edge cases!)

– Brittle

© 2014 Bridge360 51

Wow it sounds like we’re in the test data maintenance business…

Test Data

• New school
– Generate test data on the fly
• Generate generic test data

• Tweak the generic data as needed for test case

– Higher initial cost
• Harder to understand at first

• Must build data generators

• Tools exist to help

–Much cheaper to maintain
• Data structures changed? Just tweak the

generator
© 2014 Bridge360 52

Test Data Generator

© 2015 Bridge360

Test Case: Verify

Hawaii surcharge

applied.

Types of Test Automation

© 2015 Bridge360

GUI

Integration

Component

Unit

Higher Level

Lower Level

Movin’ on Up

© 2015 Bridge360

Movin’ on Up

© 2015 Bridge360

Movin’ on Up…?

© 2015 Bridge360

Movin’ on Up…???

© 2015 Bridge360

Movin’ on Up…still?

© 2015 Bridge360

Movin’ on Up…it this thing on?!?

© 2015 Bridge360

Bottom-Up to Top-Down

• At some point we stop testing bottom-up unit

testing and switch to top-down component

testing

– When? Well it depends…

– The better your code is structured the further up

the tree you can take unit testing techniques

– Usually difficult to do more than 1 or 2 levels up

– Still can test at multiple levels

© 2015 Bridge360

Component Testing

• Usually tests non-human interfaces

– APIs, services, etc.

– Important to build these in and expose them for
testability

– Architecting for testability

• Can be a bit blurry where unit testing ends and
component-level testing begins

• Dependencies no longer isolated

• Can use similar tools as unit testing + others

© 2015 Bridge360

Component Level Testing

© 2015 Bridge360

More Component Level Testing

© 2015 Bridge360

The Balance

• Bottom-up testing

– Cheaper to do

– Good at testing low-level details

– Bad at testing interactions among pieces

• Top-down testing

– More expensive to do

– Bad at testing low-level details

– Good at testing interactions among pieces

© 2015 Bridge360

Component vs. Integration Testing

• Component testing

– Usually refers to a group of related functionality but

smaller than an entire application

• Integration testing

– Usually refers to large chunks of functionality, often

testing how whole applications work together

– Basically testing large components working together

© 2015 Bridge360

Types of Test Automation

© 2015 Bridge360

GUI

Integration

Component

Unit

Higher Level

Lower Level

Automated GUI Testing

• Not many recent fundamental changes
– Browser based apps provide standard interfaces

• Tools are getting cheaper
– Many excellent open-source options, e.g. Selenium

• Mobile testing still in infancy
– Lots of hard problems to solve!

• Patterns are emerging
– E.g. Page Objects

• Still hard to do well

© 2015 Bridge360

Evolution, not revolution…

Automation Strategy: The Goal

© 2014 Bridge360 69

Agile Testing, Crispin & Gregory - http://amzn.to/KnE72I

Don’t Skimp on Integration Tests!

• In 1999 NASA lost the Mars

Climate Orbiter

• Reason: Lack of / poor

integration testing

• Cost of program: $328 million

© 2014 Bridge360 70

Image: NASA/JPL/Corby Waste

Just because each piece works

separately doesn’t mean they will

work together.

The Future!

© 2015 Bridge360 71

The Future of Testing

• So, um, what happens to all the manual testers?

– Manual testers are freed up to do higher-value work

– Some testers will write automated test scripts

– We will always have some manual testing

– Some testers will exit the field

© 2015 Bridge360 72

The Future of Testing

• More and better built-in test features

–More out-of-the-box support

• More integration with dev ops

– Still a lot of DIY required to set all this stuff up

© 2015 Bridge360 73

In 5 – 10 years, it will be

weirdweirdweirdweird not to do test

automation

© 2015 Bridge360 74

Chris’s Prediction

Additional

Resources

© 2015 Bridge360 75

Additional Resources

The go-to book for agile testing (2009) –

http://amzn.com/0321534468

Additional material from the same authors

(2014) – http://amzn.com/0321967054

Recommended Reading

© 2014 Bridge360 77

Excellent presentation on test automation from Keep Austin Agile 2014.

http://architester.com/blog/2014/03/25/effective-test-automation-presentation-

keep-austin-agile-2014/

Recommended Reading

© 2014 Bridge360 78

Deeper dive into unit testing.

http://amzn.com/0131495054

Great introduction to unit testing.

Examples are in C# but easy to follow.

http://amzn.com/1617290890

© 2015 Bridge360 79

http://www.bridge360.com/v4qlanding.shtml

Thank you!

Questions?

