

IEEE CTS CEDA Meeting

Electromigration Study for Multi-scale Power/Ground Vias in TSV-based 3D ICs

March 10th, 2015

Jiwoo Pak, Sung Kyu Lim² and David Z. Pan¹

1Cadence Design Systems 2 Georgia Institute of Technology **3The University of Texas at Austin**

Outline

◆ Introduction

- ◆ EM Modeling for Multi-scale P/G Vias
- ◆ Study of EM of Multi-scale P/G Vias
- ◆ Electromigration of Full-chip 3D PDNs with Multi-scale Vias
- ◆ Summary

Power/Ground Network in 3D ICs

◆ With via-first/middle TSVs, multi-scale vias (MSV) are

Electromigration

- Electromigration (EM):
	- ›Atomic diffusion due to high current density
	- ›Also depends on temperature and stress
	- ›Can generate voids, hillocks

[2] D. Rittman '04 [3,4] A. Roy '11, T. Frank+ '13

EM in Multi-Scale Vias (MSV)

- ◆ Electromigration (EM) can generate voids under the local via (V1) and TSV cylinder
- Voids change the resistance of MSV structure
	- › Cause current imbalance of P/G network
- ◆ EM 'failure' criteria: 10% resistance increase

Outline

- \triangle Introduction
- ◆ EM Modeling for Multi-scale P/G Vias
- ◆ Study of EM of Multi-scale P/G Vias
- ◆ Electromigration of Full-chip 3D PDNs with Multi-scale Vias
- ◆ Summary

Algorithm for Modeling EM Failure

- ◆ Step 1: Calculate void growth for local vias and a TSV
- Step 2: Calculate resistance of local vias, TSV and MSV
- Increase time, iterate until reach the critical resistance
- ◆ Implemented with Python programming language

Step 1: Calculation of Void Growth

Vacancy flux equations for EM modeling

$$
\begin{aligned} \widehat{J_v} = -D_v \left(\nabla C_v - C_v \frac{e Z^*}{kT} \rho \vec{j} + C_v \frac{f \Omega}{kT} \nabla c \right) \\ D_v = D_o \cdot exp(\frac{-E a}{kT}) \end{aligned}
$$

Cylindrical void growth model

$$
dV = \alpha f \Omega A J_v dt = 2\pi \delta r_{void} dr
$$

$$
dr = \frac{\alpha J \Omega A J_{v} \mu t}{2 \pi \delta r_{void}}
$$

- $^{\boldsymbol{J}}$ [,] : total vacancy flux
- $c_{_{{\rm \nu}}}$: vacancy concentration
- *j* : current density vector
- σ : hydrostatic stress
- *T* : temperature

Step 2: Calculation of Resistance

- Generate look-up tables (LUTs) with FEA simulation
	- ›Input: radius of void, output: resistance of the structure
	- ›2 LUTs required: 1 for TSV, 1 for local via

Step 2: Calculation of Resistance

 Resistance of the entire MSV can be calculated with resistance model

Algorithm for Modeling EM Failure

- ◆ Step 1: Calculate void growth for local vias and a TSV
- Step 2: Calculate resistance of local vias, TSV and MSV
- Increase time, iterate until the critical resistance value

Evaluation of Our Model

 Comparison of modeled EM-induced failure time against measured data^[2] on a log-normal probability plot

Outline

- \triangle Introduction
- ◆ EM Modeling for Multi-scale P/G Vias
- ◆ Study of EM of Multi-scale P/G Vias
- ◆ Electromigration of Full-chip 3D PDNs with Multi-scale Vias
- ◆ Summary

1) Impact of Barrier Resistivity

- Barrier: prevents diffusion of Cu, enhances adhesion
- Once void is developed in Cu, barrier can be the only path that the current can flow
- Barrier resistivity can significantly attribute the change of resistance of MSV structure due to EM

1) Impact of Barrier Resistivity

 Barrier resistivity (TaN) can vary in the order of magnitude depending on the N_2 partial pressure

[6] H. Nie+ '01

→ Examine the relationship between resistivity and Tf

 \rightarrow The higher resistivity, the lower Tf we get

2) Analysis on Void-free Local Vias

- ◆ Percentage refers to void-free ratio among local vias
- \bullet If all the local vias have initial voids (column with 0%), Tf of MSV is dominated by local vias
- ◆ If more and more local vias become void-free, Tf of MSV can be dominated by TSV

3) Study on Number of Local Vias

- ◆ Assume same size of local vias (V1 in 45nm technology)
- \blacklozenge More local vias in a MSV \rightarrow Much longer Tf
- 30 samples for each case with current variation

4) Trade-offs: Via Size & Num of Vias

◆ Larger local via can be more robust to EM even with smaller number of vias

$$
j_{o,via} = \frac{I_{o,TSV}}{n \times A_{via}} = \frac{j_{o,TSV} \times A_{TSV}}{n \times A_{via}}
$$

Area = n \times A_{via}

5) Impact of Initial Void

- If the initial void of TSV is small, mostly EM of V1 can dominate the MSV lifetime
- However if TSV crack becomes significant, EM of TSV can determine the MSV lifetime

Outline

- \triangle Introduction
- ◆ EM Modeling for Multi-scale P/G Vias
- ◆ Study of EM of Multi-scale P/G Vias
- Electromigration of Full-chip 3D PDNs with Multi-scale Vias
- ◆ Summary

EM of Full-chip 3D Power Network

- ◆ Suggest full-chip EM analysis of P/G multi-scale vias
	- › Useful to have more EM-robust designs for 3D ICs

EM of Full-chip 3D Power Network

 Flow to analyze EM of 3D power distribution network (PDN)

Benchmark 3D PDNs

◆ Use 3D PDNs with stacked 2-dies [6]

IR-drop of MSVs in 3D PDNs

Average IR voltages of MSVs are increased due to EM

t = 0 t = 1.8e8 seconds

	Avg. IR-drop of MSVs [mV] (%: increase)				Avg. runtime
	$t=0$	$t = 5e7s$ (1.6 yrs)	$t = 1e8$ s (3.2 yrs)	$t = 2e8$ s (6.3 yrs)	per iter.
PDN ₁	33.96	38.33	39.93	41.45 (22.1 %)	0.82 s
PDN ₂	44.82	52.38	53.11	57.50 (28.7 %)	4.89 s
PDN ₃	45.60	53.30	54.08	59.98 (31.5 %)	7.84 s
PDN4	45.67	53.38	54.17	60.60 (32.7 %)	13.63 s
PDN ₅	26.66	28.90	31.40	39.81 (49.3 %)	26.29 s

Effect of Initial Void Condition

- If we don't have initial void $(=$ void seed), void growth will not appear at that location
- More 'perfect vias' can reduce EM and IR-drop in PDNs

Impact of Temperature

- Higher temperature, more EM we have
	- \rightarrow Higher IR-voltages on average

Impact of Current Density

- More current density, more EM we have
	- \rightarrow Higher IR-voltages on average

Outline

- \triangle Introduction
- ◆ EM Modeling for Multi-scale P/G Vias
- ◆ Study of EM of Multi-scale P/G Vias
- ◆ Electromigration of Full-chip 3D PDNs with Multi-scale Vias
- ◆ Summary

Summary: EM Study in MSV

- ◆ Proposed an efficient EM modeling flow for multi-scale vias (MSVs) in 3D PDN
- Investigated the impact of number and size of local vias, initial void condition on EM-induced failure time of MSV structure
- ◆ Studied the interplay between EM of local vias and EM of TSV, and analyzed its impact on EM of the MSV structure
- ◆ Analyzed IR-drop of full-chip level 3D PDNs with a proposed EM modeling flow

Thank you!

(jiwoo@cadence.com)