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The 10000-Foot View… A Switch
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small, fast, thrifty

Scaling   Performance   Energy-Efficient
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CMOS Scaling Still Alive

Slide 3

Keating, Synopsys [1]

Intel 22nm
tri-gate finFET
in production

• Leading foundries frantically after manufacturable tri-gate
• Intel already demonstrated 14nm Broadwell
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Our Objective
• Understand how MOSFET structure has evolved
• Understand why it has evolved this way

Slide 4

L=35nm

SiGe

L=35nmL=35nm

SiGe

L=35nm

SiGe

L=35nmL=35nm

SiGe
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Words of Wisdom
People get lost
because they cannot be found.

Theodorus Loke
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Outline
Part 1

• Motivation
• MOSFET & Short-Channel Fundamentals
• 130nm Fabrication
• More MOSFET Fundamentals
• Lithography
• Partially-Depleted SOI

Part 2
• Strain Engineering (90nm & Beyond)
• High-K / Metal-Gate (45nm & Beyond)
• Migrating to Fully-Depleted (22nm & Beyond)
• Tri-Gate FinFETs
• Conclusions
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The Basis of All CMOS Digital ICs
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• Charging and discharging a capacitor… very quickly!
• Shorter delay and lower power

pull-down 
logic

pull-up 
logic 

inputs
eff

DDload

eff

load
delay I

VC
I

Qt 

fVCP DDloaddynamic
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Effective Inverter Drive Current
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• IDeff estimates effective 
inverter current drawn 
during switching 

• More realistic and way 
less optimistic than IDsat

Na et al., IBM [2]

IDlin







 







 




2
,

,
2

2

DD
DSDDGS

DDDS
DD

GS

VVVVIDIDhigh

VVVVIDIDlow

IDhighIDlowIDeff

28nm, VDD=1.0V



© Loke, IC Technology at New Nodes Made Easy

Flatband Condition (VGS=VFB)
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Onset of Surface Inversion (s=0)
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Onset of Strong Surface Inversion 
(VGS=VT)
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Lower the Surface Barrier
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VGS > VT
VDS > 0 (net source-to-drain current flow)
Carriers easily overcome source barrier
Surface is strongly inverted

VGS  VT
VDS = 0 (no net current)
Source barrier lowered
Surface is inverted

VGS = 0
VDS = 0 (no current)
Large source barrier
(back-to-back diodes)

electron
current

Sze [3]
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Quantifying Charge to Move s by 2b
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• Assume uniformly 
doped p-type body

• How much body must 
be depleted to reach 
strong inversion?
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Short-Channel Effects (SCEs)

VDD not scaling as aggressively as L
 Higher channel electric fields

– Velocity saturation
– Mobility degradation

Slide 14
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Overcoming Short-Channel Effects

Improve gate electrostatic control of 
channel charge
• Higher body doping but higher VT

• Shallower source/drain but higher Rs

• Thinner tox but higher gate leakage
• High-K dielectric to reduce tunneling
• Metal gate to overcome poly depletion
• Fully-depleted structures (e.g., fins)

Stressors for mobility enhancement

Slide 15
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Outline
Part 1

• Motivation
• MOSFET & Short-Channel Fundamentals
• 130nm Fabrication
• More MOSFET Fundamentals
• Lithography
• Partially-Depleted SOI

Part 2
• Strain Engineering (90nm & Beyond)
• High-K / Metal-Gate (45nm & Beyond)
• Migrating to Fully-Depleted (22nm & Beyond)
• Tri-Gate FinFETs
• Conclusions
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130nm MOSFET Fabrication
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Well Implantation

2 n-well p-well

Gate Oxidation &
Poly Definition

3

gate oxide

Source/Drain Extension
& Halo Implantation

4
halos

Spacer Formation &
Source/Drain Implantation

5

Salicidation

6

silicide

PMOS NMOS

Shallow Trench Isolation

1 STI
oxidep-Si substrate
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Shallow Trench Isolation
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1

2

3

4

5

Advantages over LOCOS
• Reduced active-to-active 

spacing (no bird’s beak)
• Planar surface for gate 

lithography

Deposit & pattern thin Si3N4
etch mask & polish stop

Etch silicon around active area –
profile critical to minimize stress

Grow liner SiO2, then deposit 
conformal SiO2 – void-free 
deposition is critical

CMP excess SiO2

Recess SiO2
Strip Si3N4 polish stop
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p-wellSTI
oxide

STI
oxide

Well Implant Engineering
Retrograded well dopant profile
(implants before poly deposition)

Shallow/steep surface channel implant 
• VT control
• Slow diffusers critical (In, Sb)

Very deep high-dose implant
• Latchup prevention
• Noise immunity
• Faster diffusers (B, As/P)

Sequence implant to reduce ion channeling, especially for shallow implant

Depth

Substrate
Doping

substrate
background

Deeper subsurface implant
• Extra dopants to prevent subsurface 

punchthrough under halos
• Prevent parasitic channel inversion on 

STI sidewall beneath source/drain
• Faster diffusers (B, As/P)

Slide 19
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Poly Gate Definition

Si substrate

• Process control is everything – resist & poly etch chamber 
conditioning is critical (don’t clean residues in tea cups or woks)

• Trim more for smaller CD (requires tighter control)
• Less trimming if narrower lines can be printed

poly-Si

1 2 3

anti-reflection 
layer (ARL)

gate
oxide

resist

Pattern resist Trim resist 
(oxygen ash)

Etch gate stack

poly
gate

• Gate CD way smaller than lithography capability

Slide 20
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Channel & Source/Drain Engineering

Slide 21

poly
gate

self-aligned source/drain 
extension implant (n-type)

p-well

1

dielectric spacer
formation

p-well

poly
gate3

self-aligned source/drain 
implant (n-type)

4

p-well

poly
gate

halos

self-aligned high-tilt 
halo/pocket implant (p-type)

p-well

poly
gate2



© Loke, IC Technology at New Nodes Made Easy

Benefits of Halo and Extension
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Resulting structure
• Less short-channel effect
• Shallow junction where 

needed most

poly
gate

halos

Not to be confused with LDD in I/O FET
• Same process with spacers but Iightly doped drain (LDD) is 

used for minimizing peak electric fields that cause hot 
carriers & breakdown

• Extensions must be heavily doped for low series resistance

extensions
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Self-Aligned Silicidation (Salicidation)
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• Need to reduce poly & diffusion Rs, or get severe IFET degradation

1

Deposit sicilide metal (Ti, Co, Ni)

RTA1 (low temperature)
Selective formation of metal 
silicide from metal reaction with Si

well
diffusion

2

Strip unreacted metal

3

RTA2 (high temperature)
Transforms silicide into low-
phase by consuming more Si

4

poly

STI

• TiSix  CoSix  Ni/PtSix
• Scaling requires smaller grain size to minimize Rs variation
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• More MOSFET Fundamentals
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• Partially-Depleted SOI

Part 2
• Strain Engineering (90nm & Beyond)
• High-K / Metal-Gate (45nm & Beyond)
• Migrating to Fully-Depleted (22nm & Beyond)
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Not So Fundamental After All

• Body doping has increased by 2–3 
orders of magnitude over the decades

• Surface way more conductive at strong 
inversion condition using “fundamental” 
VT definition

• What matters is how much OFF leakage 
you get for a given ON current

• IDoff vs. IDsat (or IDeff) universal plots 
have become more useful to summarize 
device performance

Slide 25

M      O       S

Energy 
Band

Diagram

fsfs

qb

qfsqVT

qs = qb

inversion
layer

ox

dep
bFBT C

Q
VV  2



© Loke, IC Technology at New Nodes Made Easy

IOFF–ION Universal Plots
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Comparison of 90nm Technology Foundry Vendors
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• High ION  high IOFF & low ION  low IOFF

• OFF leakage prevents VT from scaling with gate length
• Several VT’s enable trade-off between high speed vs. low leakage
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Subthreshold Leakage

Slide 27

• MOSFET is not perfectly OFF below VT

• VG  s  lower source-to-channel barrier
• Gradually more carriers diffuse from source to drain
• Capacitive divider between gate and undepleted body

Cox

CSibody

gate

VG

VB

source

drainVG

Siox

ox
Gs CC

CV




source drain

s
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Subthreshold Slope

Slide 28

• Planar 28nm: S = 100–110mV/dec at 25°C

• Want tight coupling of VG to s but have to overcome CSi

• Large Cox  thinner gate oxide, HKMG
• Small CSi  lower body doping, FD-SOI, finFET
• Get diode limit when Cox   & CSi 0 (η = 1)

• Reducing S enables lower VT , VDD & power for same IOFF

 
ox

SioxB

C
CC

q
TkS 

 10ln

VB

VG

s

 
ox

Siox

C
CCdecmVS 

 /60 at 25°C

• VG needed for 10 change in current

CSi

Cox
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Drain-Induced Barrier Lowering (DIBL)
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• OFF leakage gets worse at higher VD 

• E field from drain charge terminating in body, reducing gate 
charge required to reach VT 

• Characterized as VT reduction for some VD 

• Planar 28nm: 150–160mV for VD =1V
• Reducing DIBL also enables lower VDD & power for same IOFF

reduction of barrier height
at edge of source

VDD

source drain
gate

source drain

–

+
+
+++

––
–

–

–

+

++++++
+ +

–
–

–
–

–
––

–

E field
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3-Way Competition for Body Charge

Slide 30

What’s happening to surface 
potential?

p-well

gate

VB

source

drain

VD

drain

VG

VD

source

drainVG

source

drain|VB|

DIBL

body
effect

gate control
(what we want)
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The Roads to Higher Performance

Slide 31

source
drain

channel

Decrease L – steepen the hill

source
drain

channel
lithography
scaling

Increase µ – move carriers faster

source
drain

channel

strain engineering

source
drain

channel
Increase Cox – move more carriers

high-K dielectric
metal gate

Must contain parasitic 
R & C from undoing all 
the IFET gains
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The Roads to Higher Performance
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source
drain

channel

Decrease L – steepen the hill

source
drain

channel
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Increase µ – move carriers faster
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drain

channel

strain engineering
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drain

channel
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high-K dielectric
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Let There Be Light

Slide 34

Resolution = k1 

NA

• Tooling has traditionally driven resolution scaling
• Shorter : 436nm  365nm  248nm  193nm
• Higher NA lenses  capping at 1.35


/ N

A 
(n

m
) • Both  and NA have hit 

a wall
• No new litho tool for 

22/20nm nodes      
(EUV not primetime yet)

• Single patterning limited 
to ~80nm pitch

Wei, GlobalFoundries [4]
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Step-and-Scan Projection Lithography
• Slide both reticle & wafer across narrow 

slit of light

• Only need high-NA optics orthogonal to 
scan but now high-precision constant-
speed stages to move mask & wafer

• Cheaper than high-NA 2-D optics

• 6” x 6” physical reticle size (4× reduction)

• 25 x 33mm or 26 x 32mm field size 

• Weak intensity of deep-UV source 
requires sensitive chemically-amplified
resists for better throughput

• Enables dose mapping (adjust light dose 
during scan to compensate for loading)

Slit Source
Excimer Laser

KrF (248nm) or ArF (193nm)
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Immersion Lithography
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NA = n sin  = d / 2 f

Resolution =
k1 

NA

lens
water

12-inch 
wafer

light

• Remember oil immersion microscopy in biology class?
• Extend resolution of refractive optics by squirting water 

puddle on wafer surface prior to exposure
• nwater ~1.45 vs. nair ~ 1
• Tedious but EUV is not primetime yet
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Lithography Misalignment / Overlay

Slide 37

• Mask misalignment tolerance is not keeping pace with gate 
CD scaling

• ASML has near monopoly on lithography tools largely 
because of good overlay control (global zero layer patterns)

• Many layout enclosure & spacing rules not scaling with CD

• Examples:
• Poly overhang beyond active
• Contact spacing to poly
• Active enclosure around contact
• Metal enclosure around vias

• Layout for matching must be robust against overlay errors
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Resolution Enhancement Technology

Slide 38

• Reducing k1 is the remaining ticket to better resolution
• Attack problem from all fronts: mask, source & wafer
• Imposes significant restrictions on layout design rules

Resolution = k1 

NA
R

ay
le

ig
h 

k 1
Fa

ct
or

Wei, GlobalFoundries [4]
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Partially-Depleted Silicon-On-Insulator

Slide 40

• Pros
• Dynamic threshold effect (s coupling to VG edge)
• Low junction area capacitance
• No VT increase for stacked FETs
• 4 lower SRAM soft-error rate
• Body isolation from substrate noise
• Simpler isolation process, reduced well proximity effect

• Cons
• Body hysteresis effect – floating body gets kicked around

• Requires conservative margining for digital timing 
• Major pain for analog/mixed-signal design

• Substrate heating – buried oxide is good insulator
• More expensive substrate, and from a single supplier [5]

buried oxide
substrate

STI STISTI
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The Dreaded Hysteresis Effect
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• Floating body is coupled to source, gate, drain & body
• Body voltage has memory or history of other terminals, analogous to 

intersymbol interference in wireline I/O
• Floating body voltage noise  VT noise  ID noise
• Can get hysteresis in bulk if ZSUB is too high

p-well

substrate

buried 
oxide

n+ 
source

n+ 
drain

undepleted
floating body

poly 
gate

VD

VG

VSUB

ZSUB
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Body-Tied PD-SOI MOSFET (T-Gate)

Slide 42

• Enables body connection to undepleted FET well
• High Rbody and extra Cgate limits bandwidth of body connection
• NMOS example

p-well

Lateral connection to
undepleted p-well

n+n+

p+

body node

p+ diffusion

n+ diffusion

p+ body-tie

n+

source
n+

drain

SOI active 
island

Poly gate
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The Roads to Higher Performance

Slide 44

source
drain

channel

Decrease L – steepen the hill

source
drain

channel
lithography
scaling

Increase µ – move carriers faster

source
drain

channel

strain engineering

source
drain

channel
Increase Cox – move more carriers

high-K dielectric
metal gate
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Mechanical Stresses & Strains
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 
Area
ForceStress 

atomic spacing > equilibrium spacing

Tension
(positive stress)

Compression
(negative stress)

atomic spacing < equilibrium spacing

vs.

 
0


Strain

• Stretching / compressing FET channel atoms by as little as 1%
can improve electron / hole mobilities by several times

• Strain perturbs crystal structure (energy bands, density of states, 
etc.)  changes effective mass of electrons & holes

• Increase ION for the same IOFF without increasing COX
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Longitudinal Uni-Axial Strain

Slide 46

tension (stretch atoms apart)  faster NMOS

compression (squeeze atoms together)  faster PMOS

• Most practical means of incorporating strain for mobility boost
• Want 1-3GPa (high-strength steel breaks at 0.8GPa)
• How?  Deposit strained materials around channel

• Material in tension wants to relax by pulling in
• Material in compression wants to relax by pushing out
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Transferring Strain from Material A to B

Slide 47

A AB

A AB

A AB

more A

less B

limited
scalability

need short 
channel
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Ways to Incorporate Uni-Axial Strain

Slide 48

• NMOS wants tension, PMOS wants compression

• Un-Intentional (comes for free)
• Shallow Trench Isolation – NMOS  / PMOS 

• Intentional (requires extra processing)
• Stress Memorization Technique – NMOS 
• Embedded-SiGe Source/Drain – PMOS 
• Embedded-SiC Source/Drain – NMOS 
• Dual-Stress Liners – NMOS  & PMOS 
• Compressive Gate Fill – NMOS  / PMOS 

• Strain methods are additive
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Shallow Trench Isolation (STI)
NMOS  & PMOS 

• STI oxide under compression
• High-Density Plasma CVD SiO2 process (alternating deposition/etch) 

deposits intrinsically compressive oxide for good trench fill
• 10 CTE mismatch between Si & SiO2 increases compression when 

cooled from deposition temperature
• Migrated to High Aspect Ratio Process (HARP) fill in recent nodes  
 less compressive oxide

Plummer et al., Stanford [6]
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Stress Memorization Technique (SMT)
NMOS 

Slide 50

Ion (µA/µm)

I of
f
(A

/µ
m

)

600 800 1000 1200 1400
10-9

10-8

10-7

10-6

10-5

control

disposable 
tensile nitride 

stressor

tensile

Amorphize poly & diffusion 
with silicon implant

Deposit tensile nitride

Anneal to make nitride more 
tensile and transfer nitride 
tension to crystallizing 
amorphous channel

Remove nitride stressor 
(tension now frozen in diffusion)

1

2

3

4

Chan et al., IBM [7]
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Periodic Table Trends
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lattice spacing 
bandgap 

• Compound semiconductor like SixGe1-x has lattice spacing & 
bandgap between Si & Ge

• Same idea with SixC1-x
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Embedded-SiGe Source/Drain (e-SiGe)
PMOS 
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P

P

Etch source/drain recess

Grow SiGe epitaxially in 
recessed regions

2

SiGe SiGe

• SiGe constrained to Si lattice will be in 
compression

• Compressive SiGe source/drain 
transfers compression to Si channel

Ion (µA/µm)

I of
f

(A
/µ

m
)

200 300 400 500 700

10-9

10-8

10-7

600

1

L=35nm

SiGe

L=35nmL=35nm

SiGe

• e-SiC is similar but introduces tension instead
• Epitaxial SiC much tougher to do than SiGe

Chan et al., IBM [7]
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Dual-Stress Liners
NMOS  & PMOS 

• Deposit tensile/compressive PECVD SiN (PEN) liners on N/PMOS
• Liner stress is dialed in by liner deposition conditions (gas flow, 

pressure, temperature, etc.)

TPEN for NMOS CPEN for PMOS

tensile compressive

tensile compressive

Chan et al., IBM [7]
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Strain Relaxation
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When materials of different strain come together…

Material A Tensile Material B Compressive

• Both materials will relax at the interface
• Extent of relaxation is gradual, depends on distance from interface
• No relaxation far away from interface

interface
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Strain Depends on Channel Location

Slide 55

Xi et al., UC Berkeley [8]

• SA, L & SB specify where channel is 
located along active area

SA L SB

• Critical for modeling device mobility 
change due to STI, SMT, e-SiGe, etc.

• Strain at source & drain ends of channel 
may be different

• Important consideration for matching, 
e.g., current mirrors

• Concavity & stress polarity will vary with 
stressors in given technology but 
concept still applies

STI
effect
only
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Longitudinal DSL Proximity

Slide 56

• Opposite device type nearby in longitudinal direction reduces 
impact of stress liner  mutually slow each other down

• Opposite PEN liner absorbs/relieves stress introduced by PEN

h n _ s tr _ w n w p _ in fp -1 1 -1 5

0.7

0 .75

0.8

0 .85

0.9

0 .95

1

1.05

0 0.2 0 .4 0 .6 0 .8 1 1.2

W NW P L o n g . Dis tan ce  (u m )

Ie
ff

 R
at

io
Data Mode l

CPEN TPEN

PMOS NMOS

CPEN TPEN

PMOS NMOS

PMOS Longitudinal Proximity

Faricelli, AMD [9]



© Loke, IC Technology at New Nodes Made Easy

Transverse DSL Proximity
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• Both NMOS & PMOS like tension in transverse direction, unlike 
longitudinal direction

• NMOS near PMOS in width direction  helps PMOS, hurts NMOS 
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The Roads to Higher Performance

Slide 59

source
drain

channel

Decrease L – steepen the hill

source
drain

channel
lithography
scaling

Increase µ – move carriers faster

source
drain

channel

strain engineering

source
drain

channel
Increase Cox – move more carriers

high-K dielectric
metal gate
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Direct Tunneling Gate Leakage

Slide 60

• tox had to scale with channel 
length to maintain gate control

• Less SCE
• Better FET performance

• Significant direct tunneling for tox
< 2nm

EOT (Å)
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SiO2 Trendline
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McPherson, Texas Instruments [10]

EOT = Equivalent Oxide Thickness

• High-K gate dielectric achieves 
same Cox with much thicker tox

EOTt
C ox

gate

gate
ox



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• Even heavily-doped poly is a limited conductor
• Discrepancy between electrical & physical thicknesses since charge 

is not intimately in contact with oxide interface

surface charge centroid 
few Å’s away
from oxide interface

n+ poly gate

p-well

gate 
oxide

poly depletion 
(band bending)

gate charge centroid 
few Å’s away from 
oxide interface

Wong, IBM [11]

Cox

1.5nm (15Å)

poly-Si
gate

Si
substrate

gate
oxide

Poly Depletion & Charge Centroid
Dielectric Only Half the Story
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Enter High-K Dielectric + Metal-Gate

Slide 62

• High-K Dielectric (HK)
• Hf-based material with K~20–30 (Zr-based also considered)
• Need to overcome hysteretic polarization
• High deposition temperature for good film quality

• Metal-Gate (MG)
• Thin conductive film intimately in contact with high-K dielectric 

to set gate work function M  VFB  VT
• Want band-edge M, i.e., NMOS @ EC & PMOS @ EV

(just like n+ poly & p+ poly)  different MG for NMOS & PMOS
• Typically complex stack of different metal layers secret sauce
• Conductive fill metal on top of M-setting metal-gate

• Key challenges
• INTEGRATION, INTEGRATION, INTEGRATION
• M shifts when exposed to dopant activation anneals
• Getting the right VT for both NMOS & PMOS
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Atomic Layer Deposition

Slide 63

• Deposit monolayer at a time using sequential pulses of gases 
• Introduce one reactant at a time & purge before introducing next 

reactant
• Key to precise film thickness control of HKMG stack 
• e.g., SiO2 (SiCl4+H2O)  HfO2 (HfCl4+H2O)  TiN (TiCl4+NH3)

Introduce pulse of HfCl4 gas

Monolayer adsoprtion of HfCl4 Introduce pulse of H2O gas

Surface reaction to form HfO2
repeat cycle for 
desired number 
of monolayers

ICKnowledge.com [12]
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HK-First / MG-First Integration

Slide 64

• Obvious extension of poly-Si gate integration
• Seems obvious & “easy” at first but plagued with unstable work 

function when HKMG is exposed to activation anneals
• Especially problematic with PMOS VT coming out too high

Deposit HK
Deposit MG1

Pattern MG1
Deposit MG2

Pattern MG2
Deposit gate
Pattern gates / 
MGs / HK

Implant/anneal S/ D 
Form silicide
Deposit/CMP ILD0
Form contacts

321 4
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GlobalFoundries 32nm-SOI
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Horstmann et al., GlobalFoundries [13]

poly/
SiON HKMG

+35%
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NMOS PMOS

epi-cSiGe to 
set channel 
M
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HK-First / MG-Last Integration

Slide 66

• High thermal budget available for middle-of-line
• Low thermal budget for metal gate  more gate metal choices
• Enhanced strain when sacrificial poly is removed & resulting 

trench is filled with gate fill metal

Deposit HK / gate
Pattern gate / HK

Implant/anneal S / D
Form silicide
Deposit ILD0
CMP ILD0 to expose 
top of gate
Remove gate

Deposit MG1
Pattern MG1
Deposit MG2
Pattern MG2

Deposit gate-fill
CMP gate-fill / MGs
Deposit more ILD0
Form contacts

321 4
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Intel 45nm

Slide 67

NMOS PMOS

Auth et al., Intel [14]
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HK-Last / MG-Last Integration
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• Same advantages as HK-first / MG-last integration
• Overcomes EOT scaling limitations in HK-first / MG-last
• Need to postpone silicidation to after opening source/drain etch
• DSL relax & no longer useful since contacts cut through FET width 

Deposit oxide / gate
Pattern gate / oxide

Implant/anneal S / D
Deposit ILD0
CMP ILD0 to expose 
top of gate
Remove gate/oxide

Deposit HK
Deposit MG1
Pattern MG1
Deposit MG2
Pattern MG2

Deposit gate-fill
CMP gate-fill / MGs
Cut to expose active
Form silicide
Deposit / CMP ILD0
Pattern/form contacts

321 4
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Intel 32nm

Slide 69

Packan et al., Intel [15]
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What Does Fully-Depleted Really Mean?

Slide 71

• Consider what happens when SOI layer thins down

• Conservation of charge cannot be violated
• So once body is fully depleted, extra gate charge must be balanced 

by charge elsewhere, e.g., beneath buried oxide
• If substrate is insulator, then charge must come from source/drain
• No floating body in fully-depleted  no hysteresis

p-well

substrate

buried oxide

source drain

p-well

substrate

source drain

fully-depleted when turned on

depletion 
region

depletion 
region
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• VGS modulates surface charge 
density under gate dielectric
 Modulate IDS when VDS ≠0
Need band bending at 

surface
Need electric field for 

band bending
Need + & – charge 

separation between gate 
& body beneath surface

• Do we really need dopants in 
the body to create field effect?



–
–

–
–

–
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–
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Ground-Plane MOSFET

Yan et al., Bell Labs [16]

• Extremely retrograded well profile with no surface dopants
• Depletion region cannot extend beyond buried pulse of dopants
• All you fundamentally need for field-effect action is a parallel-plate 

capacitor with gate dielectric & undoped semiconductor in between 
plates  dopants are not required in the body
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p-well

substrate

source drain

depletion 
region

• Basic idea:  effectively no charge in body 
 Body cannot terminate field lines from source & drain
 Field lines from source & drain forced to move down to substrate
 Source to body surface barrier not impacted by shorter gate length

• Substrate must be close to source & drain to prevent field lines 
from drain to terminate to source

• Side benefit:  no dopants  less scattering  higher µ

Why Fully-Depleted Suppresses SCE
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Benefits of Lower DIBL & S

Slide 75

• Fully-depleted options
• Planar: FD-SOI, Bulk with retrograded well
• 3-D:  FinFET or Tri-Gate – SOI or Bulk

log (IDS)

VGSVTsat VTlin

IDoff

VDD

IDsat
IDlin

log (IDS)

VGSVDD

log (IDS)

VGSVDDVTsat VTlin

IDoff

IDsat
IDlin

Same S
Lower DIBL

Lower S
Same DIBL

Maintain 
IDsat & IDoff

VTsat VTlin

IDsat
IDlin

IDoff
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The Big Deal with Lower DIBL
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Higher performance for the same IDsat & IDoff
L. Wei et al., Stanford [17]
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Body Thickness for Fully-Depleted

Slide 77
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Fully-Depleted Planar on SOI
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K. Cheng et al., IBM [18]

• a.k.a. ET (Extremely Thin) or 
UTBB (Ultra-Thin Body & BOX) 
SOI to refer to very thin SOI 
and Buried Oxide (BOX) layers

• SOI Si layer is so thin that 
charge mirroring gate charge 
comes from beneath BOX

buried oxide

substrate

thick to reduce series 
resistance & apply stress
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Thin BOX to Suppress SCE

Slide 79

• If body is fully depleted, field lines from drain cannot terminate in the 
body since there’s no charge to terminate to  no DIBL

• Charge elsewhere must be nearby or field lines from drain will 
terminate on source charge 

• However, lateral field always present when VDS≠0

T. Skotnicki, STMicroelectronics [19]
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Performance Tuning with Backgate Bias
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Yamaoka et al., Hitachi [20]

• Like a “body effect” in planar bulk with CSi spanning SOI & BOX
• Backgate bias can modulate both NMOS and PMOS VT at 80mV/V
• Not option in finFETs but finFET subthreshold slope is better

T. Skotnicki, STMicroelectronics [21]
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Fully-Depleted Planar on Bulk
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Fujita et al., Fujitsu & SuVolta [22]

1 Low-doped layer for RDF reduction 
(fully depleted)

2 VT setting layer for multiple VT devices
3 Highly-doped screening layer to 

terminate depletion
4 Sub-surface punchthrough prevention

Reduced RDF for tighter VT
control & lower SRAM VDDmin
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Random Dopant Fluctuation (RDF)
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0
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Auth, Intel [14]

• RDF more prevalent with scaling since number of dopants is 
decreasing with each MOS generation

• Why does RDF impact magically disappear in fully-depleted?

??
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RDF in Conventional MOS
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• Back to basics
• Conservation of charge
• Electric field lines start at +ve charge & end at –ve charge

• Number of dopant atoms vary from FET to FET
• BUT dopant atoms also vary in location

• Lengths of field lines exhibit variation
• Integrated field (voltage or band bending) has VT variation

poly gate

n+

source
n+

drain
– – –

+

– – –

–

+ + ++ + + ++ + + +

–

–
– – –

  dxEV

partially depleted 



© Loke, IC Technology at New Nodes Made Easy

Why Fully-Depleted Eliminates RDF
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poly gate

n+

source
n+

drain
– – –

+

– – –

–

+ + ++ + + ++ + + +

–

–
– – –

poly gate

n+

source
n+

drain

+ + + ++ + + ++ + + +

– – – – – – – – – – – –

undoped

partially depleted fully depleted 

• In fully-depleted SOI, field lines from gate cannot terminate in 
the undoped body (no charge there)

• Mirror charges are localized beneath BOX
• Lengths of field lines have tight distribution  small VT variation
• However, VT now very sensitive to dimensional variation, e.g., 

SOI and BOX thickness
• Other sources of variation also present, e.g., MG grains
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What is Fully-Depleted Tri-Gate?
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M. Bohr, Intel [24]

32nm planar 22nm tri-gate

• Channel on 3 sides
• Fin width is quantized (SRAM & logic 

implications)
• Fin so narrow that gate mirror charge 

must come from fin baseHu, UC Berkeley [23]
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Tri-Gate FinFETs in Production

Slide 87

Truly impressive!!!
fingate

32nm planar 22nm tri-gate

M. Bohr, Intel [24]
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Conventional Wafer Surface 
Orientation & Channel Direction

Slide 88

0° notch

x (100)

y (010)

z (001)

(100)

• Wafer normal is (100), current flows in <110> direction
• Tri-Gate FinFET:  top surface (100), sidewall surfaces (110) 
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Mobility Dependence on Surface 
Orientation & Direction of Current

Slide 89

NMOS PMOS

Yang et al., IBM [25]

• Strain-induced mobility boost also depends on surface 
orientation & channel direction – not as strong for current 
along sidewalls vs. top of fin

top of fin

sidewalls of fin
top of fin

sidewalls of fin
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Fin Patterning – Sidewall Image Transfer

Slide 90

• Standard approach for 
patterning fins down to 
60nm pitch (Intel 22nm)

• In principle, pitch can go 
down to ~40nm without 
double patterning

1 Deposit & pattern sacrificial mandrel

2 Deposit & etch spacer

4 Etch target material using spacer 
as hard mask

5 Remove spacer mask

substrate to etch

mandrel

spacer

3 Remove mandrel
hard mask

for patterning
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Process Flow Summary I

Slide 91

• Example shows tri-gate on SOI but 
bulk flow is similar

• Pattern fins using SIT
• Deposit/CMP STI oxide
• Recess STI oxide by fin height
• Deposit, CMP & pattern poly

fin

buried oxide

gate oxide on top & 
both sidewalls of fin

• Deposit spacer dielectric & etch, 
leaving spacer on gate sidewalls

• Spacer must be removed on fin 
sidewall

Paul, AMD [26]
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Process Flow Summary II
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• Recess fins
• Grow Si epitaxially to merge fins

together for reduced source/drain 
resistance

• Induce uni-axial channel strain by 
growing e-SiGe or e-SiC

• Dope source/drain dopants with in 
situ doping during epi

• Deposit ILD0 & CMP to top of poly
• Do replacement-gate HKMG 

module
• Deposit & pattern contact dielectric
• Form trench contacts (note 

overlap capacitance to gate)

epi
growth

trench 
contact

metal 
gate

Paul, AMD [26]
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Some Tri-Gate Considerations
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• Field lines of from gate 
terminates at base of fins

• Fin base must be heavily 
doped for fin-to-fin isolation

• Dimensional variation of fins 
 device variation

• Current density is not uniform 
along width of device – VT & 
S varies along sidewall

• Series resistance vs. overlap 
capacitance

• “Dead” space between fins

trench 
contact

metal 
gate
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Pacifying The Multi-VT Addiction
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• 8 VT’s typical in 28nm (NMOS vs. PMOS, thick vs. thin oxide)
• Methods of achieving multiple VT

1. Bias channel length
• Exploit SCE (VT rolloff with shorter L)
• Increase L for lower ION & IOFF

2. Implant fin body with different dose
• Field lines from gate must “work through” available 

body dopants before terminating at base of fin
• Prone to RDF

3. Integrate more  metal gate M 
• Already 2 M s in standard HKMG flow
• More complex integration
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Intel 22nm TEM Cross-Sections
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Auth, Intel [27]

Single fin (along W)

Epi merge (along W)

NMOS (along L)

PMOS (along L)
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Intel 22nm Performance at 0.8V
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Conclusions
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• Digital needs will continue to drive CMOS scaling 
but at slower pace

• Expect new learning in 20nm & 14nm as we cope 
with fin design & layout

• SPICE models will lag to include new effects

• Designers with good technology knowledge are best 
positioned for silicon success

• Exciting time to be designing
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