Fundamentals on Continuous-Time Sigma-Delta Modulators

DLP Series, sponsored by the CASS

Jose Silva-Martinez

Amesp02.tamu.edu/~jsilva jsilva@ece.tamu.edu Department of ECE Texas A&M University

September 19, 2013

Outline

> Introduction

Fundamentals of Sigma-Delta Modulators

- > Stability
- Clock Jitter
- Blockers Tolerance
- > Quantizer Issues
 - Voltage Mode versus Current Mode
- > Improving blocker tolerance
 - Efficient non-invasive filtering
 - Saturation detector
- Current Research Projects
- > TAMU: Where we are?
- Conclusions

UT Austin

Introduction: Connectivity

- Increasing number of wireless standards
- Support of multiple-standards on the same chip
- Advances in Integrated RF design towards universal devices
- Software Radio: easy addition of new standards

Direct Conversion Multi-Standard Receiver

System issues in broadband systems:

High frequency filtering is especially critical in broadband applications Rejection of Blockers: ADC filtering must be complemented by LP filtering Neighbor channels are quite relevant even if heavy filtering is used

Trade-offs:

Light filtering in front demands an ADC with higher SNR and higher SDR Higher SNDR-ADC implies more power and more circuit complexity

State of the art

B. Murmann, http://www.stanford.edu/~murmann/adcsurvey.html.

Challenge 1: Jitter Tolerance

Challenge 2: Co-existence Simultaneous Usage of Radio Bands

Frequency (GHz) * Plot courtesy of Camille Chen/Intel

RF Interference: Frequency Overlap, Out-of-Band Emissions, Receiver Saturation

Sigma-Delta Modulators:

Practical Design Issues

Conventional (Nyquist) ADC

SQNR=6.02*n+1.76

Basic concepts in $\Sigma \Delta$ **Modulators**

CASS: 2013-2014 DLP Program

Fundamentals of Oversampled A/D Conversion

CASS: 2013-2014 DLP Program

Oversampled A/D Conversion

$$SQNR \cong \frac{\frac{1}{2} \left(\frac{2^{N} - 1}{2} \right) \left(\Delta V_{q} \right)^{2}}{\frac{\Delta V_{q}^{2}}{12} * \frac{2}{f_{s}}} * \left| \frac{6 * \left(\frac{f_{s}}{2 f_{b}} \right)^{3}}{\pi^{2} * f_{s}} \right|$$

$$SQNR \cong 1.5 * \left(2^{N} - 1 \right)^{2} * \left(3 * \frac{OSR^{-3}}{\pi^{2}} \right)$$

$$SQNR \approx 1.5 * (2^{N} - 1)^{2} * \left(3 * \frac{OSR^{3}}{\pi^{2}}\right)$$
$$SQNR \approx 1.76 + 6.02 * N - 5.2 + 30 * log_{10}(OSR) \ dB$$

Noise Ratio (SQNR)

- > N=number of bits
- > OSR=fs/2fb
- > SQNR improves by 30dB when
 - **OSR increases by 10**
- Or 9dB SQNR improvement

when doubling OSR

System Design Considerations

 π^{2L} $SQNR(dB) = 6.02N + 1.76 + (2L + 1)10\log_{10}OSR - 10\log_{10}\frac{10}{2L + 1}$

Design Considerations: 3rd order loop

 $SQNR(dB) = 6.02N + 1.76 + (2L+1)10\log_{10}OSR - 10\log_{10}\frac{\pi^{2L}}{2L+1}$

Oversampled A/D Conversion Feedforward Architecture

- Eq stands for the quantization noise
- Ed stands for DAC non-idealities (jitter + thermal noise)
- Filter's thermal noise is accounted in Eh

Oversampled A/D Conversion: Effects of ZOH

AM

 $Z^{-1} = e^{-j\omega T_s}$ Phase(z) = -\omega T_s

> Notice that

Stability Issues: ΣΔ **Modulators**

Effect of the blockers on loop operation

Remarks on Filter's operation: Filter's input signal

System Optimization: Tuning Filter Parameters

Master slave techniques could be used

Calibration of (standalone) building blocks:
 Does not guarantee loop stability (excess loop delay)
 Does not guarantee best NTF (Coefficient adjustments)

System Optimization: Global Tuning Scheme

 F. Silva-Rivas, et. al., "Digital Based Calibration Technique for Continuous-Time Bandpass Sigma-Delta Analog-to-Digital Converters," Analog Integrated Circuits and Signal Processing, April-09.
 C.Y. Lu, et. al., "A Sixth-Order 200MHz IF Bandpass Sigma-Delta Modulator With over 68dB SNDR in 10MHz Bandwidth," IEEE J. Solid-State Circuits, June 2010.

Global Tuning Scheme for NTF Parameters: Digital

Digitally assisted calibration scheme

A 6th-Order 200MHz IF Bandpass Sigma-Delta Modulator With over 68dB SNDR in 10MHz Bandwidth, C.Y. Lu, et.al., *IEEE J. Solid-State Circuits*, June 2010.

CASS: 2013-2014 DLP Program

ADC Calibration: Experimental results

J. Silva-Martinez

- 22 -

Design Examples

ADC Architecture Employing a TDC as Quantizer

Conventional $\Delta\Sigma$

Time domain Quantizer-DAC

- Multi-level quantizer and Digital to Analog Converter (DAC) are replaced by PWM generator and Time to Digtal Converter (TDC)
- Width of p(t) is proportional to the amplitude of the signal in a given clock period
- Output code (Dout) represents "quantized pulse" edges with a quantization step size = T_Q

ISSCC-09, JSSC-2011 (March)

Output Spectrum: -5dB Input

Second ADC: System Architecture: Injection Locking

- 5th-order 3-bit feedforward architecture
- Local feedback is to compensate the excess loop delay
- LC-VCO+CILFD are used to generate clean reference clocks

"25MHz Bandwidth (BW) Continuous-Time Lowpass ΣΔ Modulator with Time-Domain 3-bit Quantizer and DAC" Cho-Ying Lu, et.al., Sept 2010, JSSC

3-bit Algorithmic Quantizer

The output is composed by **1 MSB** + **3LSB**

The MSB is determined first

CASS: 2013-2014 DLP Program

LC-VCO + CILFD

Phase noise of VCO is -119dBc/Hz @ 1MHz
 CILFD phase noise is -136dBc/Hz @ 1MHz

Jitter among phases is highly correlated

Output Spectrum of the Modulator -2.2dBFS @ 5.08MHz

- Peak SNR= 68.5dB @25MHz BW
- Peak SNDR = 67.7dB @25MHz BW
- SFDR>70dB

***Current-mode Quantizer**

C. J. Park, **M. Onabajo, H. M. Geddada, J. Silva-Martinez, and A. I. Karsilayan

Paper under evaluation

*Partially sponsor by SRC

**** Currently with Northeastern University**

Typical Quantizer: Flash Architecture

> S/H operates at clock rate

Huge input capacitance if N>6
Kick back noise

 Requires a precise lowimpedance resistive ladder:
 Power-accuracy-Speed tradeoff

Limited by comparator
 Speed and accuracy
 Offset voltage

Hard to improve its resolution

State of the art: ~ >2.4 GS/s 6 bits resolution

Conventional ADC Architecture

A CTSD modulator with feed-forward (FF) compensation.
Summing Stage + Quantizer

Summing stage and quantizer in the conventional continuoustime sigma-delta modulator with feed-forward compensation.

- > Excess loop delay (in addition to z⁻¹) should be minimized.
- > The direct path around the quantizer should be very fast.
- > The summing amplifier must have a high unity-gain frequency.

Voltage Mode Quantizer

- Flash ADC architecture generally achieve the highest sampling rate and is used as integrated quantizers in sigma-delta modulator
- Performance summary of prior Adder-Quantizer in CT ΣΔ Modulators

	[23]	[29]		
Technology (nm)	180nm CMOS		180nm CMOS		
Supply voltage	1.8V		1.8V		
Quantizer Resolution	3 bits		4 bits		
Sampling rate	400MHz 800MHz		1Hz		
Input range	400mV _{pp}		3V _{pp}		
Power	Adder [*]	10mW	Adder [*]	8.5mW	
	Flash ADC**	24mW	Flash ADC	N/A	

* Power consumption of the summing amplifier only.

** 3-bit two-step Flash ADC.

[23] C.-Y. Lu, M. Onabajo, V. Gadde, Y.-C. Lo, H.-P. Chen, V. Periasamy, and J. Silva-Martinez, "A 25MHz bandwidth 5th-order continuous-time lowpass sigma-delta modulator with 67.7dB SNDR using time-domain quantization and feedback," IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1795-1808, Sep. 2010.

[29] V. Singh, N. Krishnapura, S. Pavan, B. Vigraham, D. Behera, and N. Nigania, "A 16MHz BW 75dB DR CT ΣΔ ADC compensated for more than one cycle excess loop delay," *IEEE J. Solid-State Circuits*, vol. 47, no. 8 pp. 1884-1895, Aug. 2012.

> Demand for low power consumption

> Make the architecture robust to process-voltage-temperature (PVT) variations

CASS: 2013-2014 DLP Program

Conventional Voltage-Mode Summing and Flash ADC

The required is usually dictated by the value of DC loop gain requirement

> The five

han

UT Austin

As an example, the case of 26dB DC loop gain with $R_{FF1}||..||R_{FFN} = 500\Omega$ demands $G_m > 40mA/V$

Conventional Voltage-Mode Flash ADC

Conventional 3-bit voltage-mode flash ADC

Thermometer code

The input signal (V_{in}) is compared to seven reference voltage levels using seven comparators followed by latches.

- To minimize the impact of PVT, large area resistors (R) and intricate layout matching techniques are required
- Larger transistor dimensions would be counterproductive with regards to the maximum achievable speed
- To minimize the effects of the kickback noise, relative small values are preferred for the resistors (R) at the expense of larger static power consumption

Proposed Current-Mode Flash ADC Architecture

- Incoming signals are added at the source of a common-gate stage
- Input signals are replicated through NMOS current mirrors and compared with reference currents at high impedance nodes
- The difference between input signal replicas and reference currents are converted to voltages at high impedance nodes
- The different voltages are processed by seven comparator-latch combinations

UT Austin

Current-Mode Adder-Quantizer

□ Minimum input impedance

Easy to interface it with loop filter and easy to implement the addition of filter coefficients

> Main design challenges:

□ Two relevant parasitic poles limit its frequency response: Still can operate at GHz

Resolution is limited by current mirror mismatches

Voltage-Mode Summing vs. Current-Mode Summing

	Voltage-Mode Summing	Current-Mode Summing
Technology (nm)	90nm CMOS	90nm CMOS
Power Consumption(mW)	$6.6 \mathrm{mW}^*$	3.1mW**
Input referred integrated noise (in 20MHz)	31.2µV	39µV
Delay (@V _{LSB/4})	0.396ns	0.35ns

Table II. Voltage-Mode Summing vs. Current-Mode Summing.

* Power consumption of the summing amplifier only.

** Power consumption includes common-gate (CG) stage, Gm-boosting block and current mirroring stages.

- > The most remarkable advantages of the Current-Mode approach:
 - > Superior performance with <50% power consumption.
 - Less silicon area
- In the Voltage-Mode case:
 - > Additional power should be added to account for the reference voltages generator

> The dual differential pair required at the input of each comparator.

Chip Microphotograph

State of the art

Performance summary of the Proposed Current-Mode Adder-Quantizer and comparison with prior Quantizer in CT ΣΔ Modulators

	[23]		[29]		This Work	
Technology (nm)	180nm CMOS		180nm CMOS		90nm CMOS	
Supply voltage	1.8V		1.8V		1.2V	
Quantizer Resolution	3 bits		4 bits		3 bits	
Sampling rate	400MHz		800MHz		up to 2GHz	
Input range	400m	υV _{pp}	3V _{pp}		$\pm 40 \mu A_{pp}$ (equivalent to $400 m V_{pp}$)	
Power	Adder [*]	10mW	Adder*	8.5mW	Adder	1.1mW
	Flash ADC**	24mW	Flash ADC	N/A	Flash ADC	3.04mW

* Power consumption of the summing amplifier only. ** 3-bit two-step Flash ADC.

[23] C.-Y. Lu, et.al., "A 25MHz bandwidth 5th-order continuous-time lowpass sigma-delta modulator with 67.7dB SNDR using time-domain quantization and feedback," IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1795-1808, Sep. 2010.

[29] V. Singh, N. Krishnapura, S. Pavan, B. Vigraham, D. Behera, and N. Nigania, "A 16MHz BW 75dB DR CT ΣΔ ADC compensated for more than one cycle excess loop delay," *IEEE J. Solid-State Circuits*, vol. 47, no. 8 pp. 1884-1895, Aug. 2012.

State of the art

	[20]*	[21] **		This Work		
Technology	CMOS 0.13µm	CMOS 0.18µm		CMOS 90nm		
Supply voltage	1.2V	Analog: 1.8V Digital: 2.1-2.5V		1.2V		
Resolution	5 bits	4 bits		3 bits		
Sampling rate	up to 3.2GS/s	up to 4GS/s		up to 2GS/s		
Input range	$400 \mathrm{mV}_{\mathrm{pp}}$	± 460mV _{pp}		$\pm 40 \mu A_{pp}$		
		Analog	78mW	Analog	3.34mW	
Power	120mW	Digital (Including Clock Buffer)	530mW	Digital (Including Clock Buffer)	8.94mW	
 PNLO Power consumption if extrapolated to 5 bits is less than 16mW for current-mode realization 						
	4.54 bits (3.2GS/s)	3.47 bits (3.4GS/s, 800MHz input)		2.54 bits (1.48GS/s, 118.41	MHz input)	
Area	0.18mm ²	0.88mm ² (excluding resistor ladder)		ADC: 0.0276mm ² (excluding encoder)		

* Power consumption of output buffer was not included.

** Includes power consumptions for analog circuitry and digital encoder. For the FoM calculation, the digital power consumption for 4GS/s.

[20] Y.-Z. Lin, et. al, "A 5-bit 3.2-GS/s flash ADC with a digital offset calibration scheme," IEEE Trans. Very Large Scale Integration Systems, vol. 18, no. 3, pp. 509-513, March 2010.

[21] S. Park, et. al, "A 4-GS/s 4-bit Flash ADC in 0.18µm CMOS," IEEE J. Solid-State Circuits, vol. 42, no. 9, pp.1865-1872, Sep. 2007.

A Blocker Tolerant Continuous-Time $\Delta \Sigma$ ADC for Broadband Applications*

H. M. Geddada, C. J. Park, H.-J. Jeon**, J. Silva-Martinez, and A. I. Karsilayan

*Sponsored by SRC

Effect of the blockers on loop operation

> Remarks on Filter's operation: Filter's input signal

AM

Clock Jitter Sensitivity (SJNR)

- The main effects of clock jitter is present at the input of the quantizer and DAC.
- > Jitter induced noise at DAC output is processed according to the STF, which is a serious problem for continuous-time sigma-delta modulators

> Clock Jitter in quantizer is not very relevant: processed by NTF.

Clock jitter introduce uncertainty at the DAC output (jitter induced noise) processed by STF.

Jitter Issues: High Clock Frequency

$$E_{j}(\omega) = \left[\left(1 - Z^{-1} \right) D_{out}(\omega) \right] \otimes J_{n}(\omega) = \left[\left(2 \sin\left(\frac{\omega T_{s}}{2}\right) \right) D_{out}(\omega) \right] \otimes J_{n}(\omega)$$

In-band signal is shaped by $1-Z^{-1}$, then it is not very critical Out-of-Band quantization noise and blockers convolve with the clock jitter

J. Silva-Martinez

Blocker Sensitivity: Feedforward $\Delta \Sigma$ **ADC**

- Loop filter, ADC, DAC
- Inherent antialiasing
- STF=FF/(1+LG)≅1(in-band); NTF=1/(1+LG)(Noise shaping)
- Quantizer can have relaxed specifications
- > FF architecture is power and area efficient
 - > Dynamically more stable
 - > OOB peaking in STF

UT Austin

Blocker Tolerance

A Continuous-Time $\Sigma \Delta$ ADC With Increased Immunity to Interferers

Kathleen Philips, *Member, IEEE*, Peter A. C. M. Nuijten, Raf L. J. Roovers, *Member, IEEE*, Arthur H. M. van Roermund, *Senior Member, IEEE*, Fernando Muñoz Chavero, Macarena Tejero Pallarés, and Antonio Torralba, *Senior Member, IEEE*

Blocker and Jitter Tolerant Wideband $\Sigma\Delta$ **Modulators**

UT Austin

Proposed minimally invasive LPF

Measurement results

Summary: Blocker Tolerance

- LPF provides blocker rejection especially at the critical frequencies.
- Overload detector and PGA prevents the ADC saturation during transients.
- Blocker reduction techniques
 - Power overhead < 6%</p>
 - Area overhead < 20 %</p>

Advantages

Less power

Loop parameters are not disturbed so fast settling times

- Protects the ADC from instantaneous/temporary blockers
- Moderate SNR is better than no communication or no SNR

Performance Summary of the ADC

	[9]	[10]	[11]	This work
Fs [Mhz]	250	64	160	500
BW [MHz]	10	1	5	20
SNDR/SNR [dB]	65/68	NA/75.5	69.5	64/66
Dynamic Range [dB]	71	65#	76	69
Blocker reduction [dB]	8/15	9.5/20+	10	15/18
adjacent/alternate channels				
Settling time (µsec)*	51	-	-	< 0.3
Power consumption [mW]	18	4.1	6	17.1
Area(mm ²)	1.35	0.14	0.56	0.43
Technology (nm)	130	180	130	90

fixed input resistor * switching input resistors

* * Blocker adaptation time

+ Extracted from a plot comparing measured and simulated performance, no in-band signal

Fundamentals on MASH architectures

Target: SNDR Improvement by 3 bits

Conclusions

- Minimization of filtering functions in the receiver chain demands innovative ADC solutions;
- SNDR > 80 dB will be frequently needed in wireless applications;
- Jitter and Blocker tolerant architectures are needed;
- DAC calibration techniques for fast and highresolution applications;
- Global tuning strategies (for stability)
- Advanced LTE applications require high-resolution for signal BW as high as 200MHz

Recommended Readings

S. Norsworthy, R. Schreier and G. Temes, *Delta-Sigma Data Converters: Theory, Design and Simulation, IEEE Press*

R. Schreier and G. Temes, *Understanding Delta-Sigma Data Converters*, *IEEE Press*

J. Cherry, M. Snelgrove, *Theory, Practice, and Fundamental Performance Limits of High-Speed Data Conversion Using Continuous-Time Delta-Sigma Modulators, Kluwer Academic Press.*

J. M. de la Rosa, *Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey, TCAS-I, Jan 2011.*

Other tutorials: IECE-2012

