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DDR3 I/O
PLL Clock

Core PLL Clocks (voltage/frequency islands)
Regulators & Thermal Sensors

32nm SOI-CMOS “Orochi” server processor with Bulldozer cores

HT3+ I/Os
PLL Clocks
Regulators

AMS is Essential in Processors

Fischer et al., Ref. [1]
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Outline

• Background & Motivation
• Device-Level Characterization
• Circuit-Level Characterization
• Circuit Simulator Developments
• Conclusions
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CMOS Scaling Driven by Logic Needs
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Keating, Ref. [2]



© Loke et al., Bridging Design and Manufacture of AMS Circuits

The Roads to Higher Performance
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• Doing it all without parasitic R & C undoing all the IFET gains
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AMS Design Realities
• Difficult to co-optimize process for both AMS and 

logic and stay cost-effective
• So we generally have to live with what we get

– Voltage headroom 
– FETs:  gain , output resistance , variation , leakage 
– Passives: as cheap as possible, choices , less ideal
– Layout proximity effects 
– Circuit options 

Slide 5
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Bleeding-Edge Processor Development
• Design concurrently developed with technology to shorten 

product time-to-market

Initial
Design

Time

Updated
Design

Final
Design

• Multiple models
• Multiple iterations
• Design feedback
• Earlier start/finish

Bair, Ref. [3]
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Let The Truth Be Told About Our Models
• Speculative and inherently uncertain
• Historically tailored to logic, not analog or passives

– Go digital if it makes sense (complexity, power, area, 
etc.)… fab will take better care of you, easier to port to 
next node

• Limited to fab understanding of design usage
• Intrinsically late to capture new effects

– e.g., STI stress, well implant proximity, stress proximities

• Understand their limitations
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Analog vs. Digital Regions of Operation
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VGS

0.5V

0.7V

1.0V

0.2V

VDD=1.0V

• Analog design needs accurate modeling of slopes (gm, gds, etc.) 
as well as points (IDsat, IDoff, etc.)

IDsat

IDoff

IDlow

IDhigh

IDeff

IDeff is better metric 
than Idsat for effective 
inverter current in CV/I

typical analog biasing
VGS=VT to VT+0.2V

Na et al., Ref. [4]
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Don’t Overlook the Circuit Simulator
• HSPICE calculates FET parameters (terminal 

currents & voltages, transconductances, 
capacitances, etc.) and reports them in output 
templates

• Parameters (as basic as VT) may not be measured 
the same way on silicon

• We’ll cover examples of simulator limitations and 
co-development to overcome them
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Outline

• Background & Motivation
• Device-Level Characterization

– MOSFETs
• Current-Based gm, gds & gmb

• Drain saturation margin

– Passives

• Circuit-Level Characterization
• Circuit Simulator Developments
• Conclusions
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Analog Usage of MOSFETs
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• Transconductor in saturation, want IDS=f(only VGS)
• Fab measures gm, gds & gmb at VGS = VT+VON or VDD
• Scaled supply  VON & VDSVDSsat as low as 50mV
• Constant-current VT definition somewhat arbitrary

– Simulated VT criterion  Fab VT criterion
– Cumbersome to correlate simulation to silicon

• Analog circuits typically biased by IREF

• Examine gm, gds & gmb at realistic min/max IDS usage



© Loke et al., Bridging Design and Manufacture of AMS Circuits

D GS

D0

GS0

m

DS0

ds

DS DS0
BS BS0

GS GS0
BS BS0

BS0

mb

GS GS0
DS DS0

D BSD DS

ID-Based gm, gds & gmb

Slide 12

GS

D

V
I




DS

D

V
I




BS

D

V
I






© Loke et al., Bridging Design and Manufacture of AMS Circuits

ID-Based gm, gds & gmb Example
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Saturation Margin
• Analog folks adamant about biasing

FETs safely in saturation, i.e., 
device stays in “pinch-off”

• Need for saturation margin
– Signal swing (sometimes with gain)
– Modeling errors
– Supply droop

• Saturation margin usually VDS VDSsat

• VDSsat depends on model & is 
difficult to measure

• Tough to have ample margin with 
decreasing VDD

Slide 14
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Introducing VDmargin
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• Find VDS margin available 
before gds by X%

• VDmargin can be simulated 
& measured uniquely

• VDmargin is much smaller in 
linear vs. saturation 
region
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Outline

• Background & Motivation
• Device-Level Characterization

– MOSFETs
– Passives

• Across-Chip Variation of Poly Resistor
• Series Resistance of Accumulation-Mode Varactor
• Diode Ideality

• Circuit-Level Characterization
• Circuit Simulator Developments
• Conclusions
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Z0

Calibration of Poly Resistance Variation
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Common
Calibration

TX Lane 20

TX Lane 1

~4mm

TX Lane 2
TX Lane 3

RX Lane 20

RX Lane 1
RX Lane 2
RX Lane 3
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Across-Chip Variation of Poly Resistor

Slide 19

Scribe lane monitor has array 
of cropped I/O receiver layout 
to minimize scribe-to-die bias
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Series Resistance of Varactor n-Well
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• n-type accumulation DECAP built for VDD noise reduction
• Need accurate Q modeling for LC-VCO application
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Fischette et al., Ref. [5]
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Bandgap Voltage Reference

Slide 21

• PTAT+CTAT using voltage
• Resistors determine weighted voltage summing
• Applications: absolute voltage references, references 

for regulators delivering quieter power
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Low-Voltage Bandgap Reference
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• PTAT+CTAT using current
• Resistors determine weighted summing Banba et al., Ref. [7]
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Temperature Sensing
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• Sense PTAT ∆VD between identical diodes with ratio’ed currents
• Average/integrate with Dynamic Element Matching (DEM) to 

eliminate impact of current source mismatches
• Swap inputs to difference amp to average out offset

N+1 identical current sources 
partitioned into 1 and N

VD1 VD2

Difference
Amp
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Diode Ideality
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• Need to operate at constant η for accurate ∆VD computation
• Factor some margin to cover PVT variation
• Monitor η at forward-bias current range of interest

usable
bias range
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Outline

• Background & Motivation
• Device-Level Characterization
• Circuit-Level Characterization

– Voltage-Starved Ring Oscillators
– Transmitter Differential Output Driver
– Pseudo-Bandgap Voltage Reference

• Circuit Simulator Developments
• Conclusions
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HyperTransport™ Die-to-Die Link
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Loke et al., Ref. [8]
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DLL for Data Recovery
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align clock
to data

transitions

sample
data

• Need ability to adjust clock 
phase for optimum sampling 
of data

• Generate phases spaced by 
30° for subsequent phase 
interpolation to achieve finer 
phase resolution

• Use cascade of variable delay 
stages to generate required 
phases
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Voltage-Starved Ring Oscillator
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• Monitor FET digital behavior at low VDD (0.5-0.7V)
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HT Transmitter Architecture
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• 4-tap FIR filter to 
equalize channel 
losses

• Tunable driver 
output resistance 
to match channel 
Z0 for minimal 
reflection
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• Monitor FET Rlinear, resistors,  ratio, mismatch
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Pseudo-Bandgap Voltage Reference
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Low-Supply
Pseudo-Bandgap Reference

• Less PMOS mismatch
• More systematic PVT 

variation which can be 
removed by calibration

N

VREF

IREF

Classic Low-Supply
Bandgap Reference

• PTAT+CTAT with current
• Prone to PMOS mismatch

N

VREF

Banba et al., Ref. [7]
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Pseudo-Bandgap Measurements
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• Monitor long-L FETs, diodes, resistors, mismatch
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Outline

• Background & Motivation
• Device-Level Characterization
• Circuit-Level Characterization
• Circuit Simulator Developments

– VT Measurement
– VDmargin Measurement 
– Macromodel Output Templates

• Conclusions
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BSIM4.6.2 VT Equation – The Band-Aids

Yang et al., Ref. [9]
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• Reported in LV9 output template
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• Based on “fundamental” strong inversion criterion
• Extended to behaviorally model

– Body effect (VBS < 0 in NMOS, VBS > 0 in PMOS)
– Short-channel effect including DIBL
– Narrow-width effect
– Non-uniform lateral doping – halo implants
– Non-uniform vertical doping – retrograded well
– LOD effect from STI compressive stress
– Well proximity effect from implant mask scattering

• Model late to include new silicon VT dependencies
• Impossible to measure in silicon

Please… Physics NOT Math

Slide 36
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drawn

drawn
DS L

WIIGST VV



0

• Sweep log IDS vs. VGS at 
fixed VBS

• Choose VDS depending on 
region of operation

• Find VGS when IDS crosses 
user-specified threshold I0
normalized to W/L

VGS

log IDS
high VDS low VDS

I0×W/L

VTsat VTlin
• Typical I0 ~ 10 to 500 nA
• No physical connection to onset 

of strong inversion
• Be careful when you compare VT

across foundries  know their I0

DIBL
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Fab Measurement – Constant-Current VT
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Simulating What The Fab Measures

Slide 38

• .OPTION IVTH=val | IVTHN=val1 | IVTHP=val2
• Freeze FET node voltages at given instant
• Determine VGS for IDS = I0 × Wdrawn / Ldrawn

• Report extracted VT in LX142 output template
• VDS limited to VDSMIN (50mV default)
• Feature available since HSPICE-2009.09

VD

VS

VBVG
VGS = ? for
IDS = IVTHN×W/L

IDS
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Loke et al., Ref. [10]

LX142 Example
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• Body doping levels have increased by 
2-3 orders of magnitude over the 
decades

• Surface charge density way more 
conductive at strong inversion 
condition based on “fundamental” VT
definition

• Best to treat VT as just a reference 
point

• IOFF vs. ION plots have become 
universally more important for 
reporting device characteristics

Slide 40
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VDmargin in HSPICE

• Feature recently 
implemented in          
HSPICE-2012.06

• LX286 output template
• Usage example
.IVDMARGIN M3 DELTAGDS=0.2
.PRINT DC VDMARGIN(M3)

Slide 41
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Macromodel Output Templates
• Models late to capture new silicon observation
• Meanwhile, foundries build subckt wrappers 

around intrinsic models
• Output templates report device characteristics 

of intrinsic model BUT what really matters are 
characteristics of the subckt

• Example
– VDS-controlled voltage source in series with gate to 

degrade VT and gds for better correlation to observed 
silicon at process corners

– “DIBL wrapper” took over a year to implement into 
BSIM4.7

• Co-development with Synopsys R&D in progress 
to provide subckt output templates

Slide 42
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Extending Macromodel Concept
• Scaling of conventional planar devices continues to 

constrain analog design, e.g., poor gds

– Stronger halo implants for short-channel control
– Stricter Lmax from replacement-gate HKMG integration

• More frequent usage of source degeneration to reduce gds

Slide 43

• Really interested in output template of composite device
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Conclusion
• Scaling will continue to be more restrictive on AMS
• Co-development improves model quality and fab 

monitoring of device behavior for AMS designs
• Pay attention to details, don’t overlook CAD

Slide 44

technology design
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