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Why Look at Interconnects Closely 

•Unlike transistors, interconnects 

– do not perform any computation 

– merely transfer information 

•Paying power/timing cost for wires yields nothing 

0 1 0 1 1 1 0 0 
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Motivation: Interconnect Delay & Power 

• Global interconnects known to contribute significantly to path delays 

• For local interconnects in intra-block paths, exact numbers probably 
not known, as these vary depending on the block-size, design style 

• Relatively less attention paid to interconnect power dissipation  

• Many academic studies exist: most based on small data 
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About Data 

•Delay/power data from blocks in a high performance microprocessor 
core in 45 nm technology  

•Blocks implemented using RTL-to-Layout Synthesis (RLS) design style 
• Mostly automated (using vendor/in-house tools); write RTL, partition, and run 

tools/flows 

• Design quality determined by algorithms, tools, flows, parameters; supposedly 
poor utilization, or sparse layouts 

•Local interconnects: implemented mostly in min-width M2 to M5 layers 

•Delay/power impact due to interconnects inside standard cells is 
considered as cell-delay/-power contribution in this study 



6 

Agenda 

•Introduction 

•Impact on Timing 

•Impact on Power 

•Conclusions 

 



7 

Impact of Interconnects on timing 
•For max timing, interconnects contribute in terms of 

– Wire delay 

– Slope degradation (slows down receivers) 

– Cell-delay degradation (slows down driver) 

– Cumulative effect of above 3 on path delays 

– Delays due to repeaters (inserted for timing/slope/noise) 

•Chose 3 metrics on the worst internal paths: 
– Wire delay 

– Interconnect impact (obtained by setting R=C=0) 

– Repeater delay 

•Why internal paths: should exclude the effect of timing constraints on 
primary i/os on results due to synthesis flows (RLS) 

•Why worst paths: determine operating frequency 



8 

A Close Look at One Block: Wire Delay 

•Wire delay increases as slack 
decreases 

•Timing wall due to sizing/ll-
insertion because of emphasis 
on power also 

•Interconnect delay impact 
won’t change without power 

optimization  

Mean wire delay % vs Slack
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A Close Look: Slope-/Cell-delay Degradation 

•Slope-/cell-delay degradation 
contribute as much as wire delay 

•Secondary effect not second 
order 

 

Mean wire delay & impact vs slack for worst  
internal paths between unique pair of sequentials 

Mean wire delay, interconnect delay impact vs Slack
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A Close Look: Repeater Delay 

•Repeater = inverter or buffer 

•On critical path, most 
inverters/buffers are repeaters 

– Cell library is granular 

•Repeater delay same as 
interconnect delay impact 

Mean wire delay, ic. impact, rep. delay vs Slack
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A Close Look: Adding all 3 

Overall interconnect delay impact, including 
repeater delay vs slack for worst internal paths 

•Average overall impact: 30% 

•Similar behavior for smaller 
block sizes also 

– Same quality: repeaters are 
indicators of synthesis quality 

•One had hoped for better! 

59% 
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Repeater Count in RLS blocks 

•Varies almost linearly with block-size 

•Tools/flows used in the linear region 

# of Repeaters vs. # of Cells
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Summary of Observations so far 

•Interconnect delay dominance regardless of design style 

•Secondary effects as big as primary effect, the wire delay 

•Repeater count more than 40% and linear in the size of blocks 

•Repeater delays contribute as much as wires 
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Power Dissipation in RLS blocks 

•Typical power dissipation distribution in high speed 
microprocessors: 60%/10%/30%: Dyn./S. Ckt./Lkg. 

•Leakage contained by 
– High-k metal gate transistors with strain 

– High percentage of low-leakage/high-vt devices  

– Power gates 

•High use of clock gating reduces the dynamic power in 
combinational logic 

•Synthesized logic blocks consume nearly 30%  
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Clock Interconnect Power in RLS blocks 

•Interconnects contribute to 18% 
of dynamic/glitch power in clocks 

•Clock tree (including sequentials) 
contribute to 71% of dynamic 
power 

– # of sequentials contribute roughly 
to 1/5th of cell count in RLS 

•Out of total dynamic/glitch power 
in RLS blocks 

– Clock cells contribute 16% 

– Clock interconencts contribute 13% 

– Sequentials contribute 42% of 
dynamic power in RLS 

Dynamic/Glitch Power

Clock cells

Sequentials

Clock Interconnect
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Interconnect Power in Combinational Logic in 
RLS blocks 

•32% of dynamic/glitch power 
in combinational logic; 8% of 
dynamic/glitch power in RLS 

Dynamic Power Distribution in Combinational Logic

Comb. Logic Cells

Interconnect 
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Repeater Power in RLS blocks 

•Dynamic power in combinational logic: 
27% of dynamic power in RLS  

– Inv./buf. contribute 30% to that; 
somewhat low, given 44% of cell count, 
since activity factors for combinational 
logic are lower than those in clock tree 

•SC power in combinational logic: 50% 
of SC power in RLS 

– Inv./buf. contribute 65% to that; high 
since no transistors for stacking 

•Lkg power in combinational logic: 71% 
of leakage in RLS 

– Inv./buf. contribute to 46%  to that; can 
be explained by 44% repeater count 

Dynamic Power in Combinational Logic

Inverters

Buffers 

Other Cells/interconnect

Short Circuit Power

Inverters
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Leakage Power

Inverters
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Impact of Interconnects on Timing/Power 

•Avg. impact of interconnect on timing: 30% of cycle time 

•Dynamic Power dissipated by interconnects: ~30%  

– ~21% by wires and ~8% by repeaters 

•Thus, impact on speed and power: nearly 1/3rd  

•Avg. repeater count: 44% 

– Makes layout/timing convergence difficult 

•Overall, pose severe challenges to high-speed design 
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Implications 

• [Bohr 95] “Interconnect Scaling – The Real Limiter to High 
Performance ULSI” 

•Would have been true, had we kept doubling the frequency and not 
moved to Cu 

•Pushing speed 
– Microprocessors? Cores already run at 3.2 GHz 

– Processors in netbooks/smartphones 

– Graphics processors 

•Technology scaling: 
– Transistors improve; Wire R /um increases; Wire C /um stays the same 

– RC stays the same, assuming ideal length scaling 

– Interconnect impact component likely continue to increase 
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Possible Solutions 

•From technology side: 
– 3 D? 

– Al  Cu  ? Low k? 

– Not in sight for next few years? 

•From CAD: 
– Placement, routing, physical synthesis running out of steam 

• “don’t know what the opportunities are” – ISPD 2010 

– Logic synthesis/tech. mapping doesn’t help, where it is used: serves 
the purpose of creating a netlist from RTL 

•   “The Death of Logic Synthesis” – ISPD 2005 

•How about incremental logic re-synthesis after global routing 
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Logic Re-Synthesis After Global Routing 

•Why? 
– Routing picture known after placement/CTS/global route 

– Only then we know the real impact of interconnects on delay 
• Dependence on topology, layers, vias, repeaters, detours, congestion 

– Logic synthesis/technology mapping powerful transformations, but… 

•Challenges: 
– Using placement/routing information 

– Requires more memory/computation: faster/better/multi-core CPUs 

– Polynomial time algorithms performing simultaneous optimizations 
• An example: simultaneous mapping/placement 
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Low Frequency (high 100s of MHz)/Low Power Designs 

•Processor running at 5X slower 
frequency consumes 5x lower dynamic 
power 

– Interconnect delay impact as percentage 
of cycle time reduces by same factor 

•Additional quadratic power savings due 
to supply voltage reduction 

– Slower gates, but interconnect 
component stays roughly the same 

– Overall interconnect impact on delay goes 
down further 

– Doesn’t require as many repeaters 

– Critical paths gate-delay dominated 

Interconenct impact at 5x slower frequency vs Slack
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Low Frequency (high 100s of MHz)/Low Power Designs 

•Effect of re-pipelining on delay 
– Less sequentials  Less clock 

buffers/nets  More routing 
resources for signals  Better 
routing  Lower interconnect 
impact 

•Problems for low power/high speed 
not the same! 

•1 Million cell placement for 600 MHz 
!= 200 K cell placement for 3 GHz 

•What if we want to run a processor 
in both the modes 

Interconenct impact at 5x slower frequency vs Slack
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