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Nature’s Inspiration ....

Leonardo da Vinci, Helicopter,

Antoni Gaudi, Casa Mila, 1906 — 1910 1452 — 1519
“Form” After wikipedia.com “Function”




Nature’s Inspiration ....
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Carver Mead, Neuromorphic Circuits, 1986 - 1990
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The Big Picture: Motivation

Developing Biomorphic Robotics
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Restoring function after limb Restoring function after severe
amputation spinal cord injury




Presentation Qutline
Making Machines See

= The biological visual system
= Silicon eyes and brains

Making Robots Walk

= The biological locomotion system
= Silicon spine and Walking robots

Restoring Function to the Impaired

= Spinal cord injury and locomotion prosthesis

= Gait controller: silicon model of spinal cord circuits
= Phase controller: controlling Behavior
Future and Conclusion

= High degree of freedom prosthetic limbs
= Sensory feedback and haptics



Learning from Nature to Make

Machines See




Visual Processing in Humans
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Visual Cortex :
Shape, Color,
Object, Motion,
Stereo Vision

After wikipedia.com



Front-End of Vision System: The Retina
Built for Perception
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Conventional CMOS Cameras:
Making Pretty Pictures

Camera phones are driving the CMOS
camera market

150 million sold in 2004, 55% annual growth rate to >1
Billion by 2009

Power consumption is relatively low ( ~10’s of mW for VGA)

2 Mega Pixels is probably the limit of usefulness

Download bandwidth is a problem (service providers would
like more people to download their pictures)

There is a fear that it will represent the next technology
bubble .... So much hype, legal problems ...

Small (~ 100 x 100 pixels) imagers, with smarts (e.g. motion,
color processing) have market in toys, sensor networks,




Conventional CMOS Cameras:
Voltage Mode Active Pixel Camera

Integration/Reset Levels

Integration Interval

Reset Interval

Correlated-Double-
S li
Simple APS: ampiing
Fossum, 1992

Integrated Signal (Reset Level Independent)

Integrative Imagers:
Voltage domain; Dense arrays; Low Noise;




Current Active Pixel Sensor
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Improved Current Mode Photodetection

Non-linearity due to mobility degradation degrades performance
under bight light

Philipp et al, 2008




Spike-Based CMOS Cameras:
Octopus

Imager Chip

Other Approaches:

- W. Yang, “Oscillator in a Pixel,” 1994

-J. Harris, “Time to First Spike,” 2002

Sample Image - A. Bermak, “Arbitrated Time to First Spike,” 2007

Culurciello, Etienne-Cummings & Boahen, 2003




APS-Based Difference Imagers

Gruev & Etienne-Cummings, 2004
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Color Processing: RGB to HSI: Why?

Desaturated Color

R,G,B) Cube
Red, Green Opponents
. Red, Blue Opponents

Green, Blue Opponent:

Additivesh\iit r=1_bias R :g=1_Dbias G ;b=1_bias
Y R+G+B R+G+B R+G+B

Sat(R,G,B) =1 _bias[1-min(r,g,b)]

0.866(G — B)
2R-G-B

#” Multiplicative shift

Hue(R,G, B) =arctan(X /Y) = arctan(

Etienne-Cummings et al., 2002



Examples: Chroma-Based Object
ldentification

Skin Identification

“Learned” templates

Etienne-Cummings et al., 2002




Coke or Pepsi?

Learned templates 450 - Template Matching Results
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Two Eyes: Stereo Vision

Single-chip stereo
(3D) vision system
For use in:

= Autonomous
systems

= Vehicle navigation
= Man-machine interfaces

Requirements
= Fully integrated
= Digital output
= Low power

Philipp et al., 2006
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Chip Architecture

* Vertical averaging

= Select multiple rows 1x15
e

* Parallel computation
SAD matching metric

* Loser-Take-All an

= Smallest SAD val
Highpass

Ax(x,y)=argminSAD(x,y,d)

deD

Philipp et al., 2006




Chip Characteristics

Technology

0.35um 4M2P

Die Size

3.5mm x 3.3mm

Pixel Size

10pum x 10pum

Fill Factor

A

Image FPN

1.2% (no CDS)

Imager Size

128 x 128 x 2

Depth Map Size

114 x 124

Frame Rate

30fps (40fps max)

Power
Consumption

33.2mW
(3.3V, 30fps)

Philipp et al., 2006




Results

* Movie: 30fps @ 33.2mW

= Right imager output texture mapped to depth results
= Color (at lower right) corresponds to depth
= Note: Plateau under the tiger is a black table




Presentation Outline
Making Machines See

= The biological visual system
= Silicon eyes and brains

Making Robots Walk

= The biological locomotion system
= Silicon spine and Walking robots

Restoring Function to the Impaired

= Spinal cord injury and locomotion prosthesis

= Gait controller: silicon model of spinal cord circuits
= Phase controller: controlling Behavior
Future and Conclusion

= High degree of freedom prosthetic limbs
= Sensory feedback and haptics



Learning from Nature to Robots

Walk




Central Pattern Generator (CPG)

In the spinal cord of vertebrates

' Generate patterned outputs to
activate muscles

Motor systems with regular,
periodic activity (breathing,
chewing, locomotion, etc.)

' Architecture is preserved across
species [Cohen et al., 1988]

' CPG is used for “periodic” not
specialized, locomotion
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CPG Architecture

First conceptual “model” in
1911 by T. G. Brown: half-
center oscillator

&_©

HCO structure preserved in
modern models

Cellular models in primitive
vertebrates

Models in higher

vertebrates are less

detailed; designed to match

behavioral data Source: Rybak et al., J Physiol, 2006




CPGs in Action

Source: Mellen et al., 1995;
Grillner & Zangger, 1984; Dimitriavic & Minassian et al., 2004




Cat Walking

IF-THEN formulation of
“rules” governing hind limb
stepping in cats:

= Stance-to-swing transitions:
IF ipsilateral hip is extended
AND ipsilateral limb is unloaded

AND contralateral limb is
bearing weight

THEN initiate flexion in the
ipsilateral limb

= Swing-to-stance transitions:
IF ipsilateral hip is flexed

THEN initiate extension in the
ipsilateral limb Ekeberg and Pearson, J Neurophys, 2005

Saigal et al., 2004; Prochazka, 1996; Guevremont et al., 2007




&

Designing the Gait Controller’s CPG
Network

Patterns in normal walking and IF-THEN
formulation provides basis for CPG
network

Incremental design process
= Extensors and flexors in counterphase

= Alternate between stance (extension)
and swing (flexion) phases ~ 70-30 duty
cycle
Stance to swing and vice-versa triggered
by two main proprioceptive inputs
* Hip angle
« Ankle load

Extensible: replace flexor and extensor
neurons with hip/knee/ankle
subpopulations

Structure similar to biology-based
models [Pearson, personal comm.]
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Source: Vogelstein et al., IEEE TBioCAS, 2008

Synaptic weights, sensory, and lateral inhibitory
inputs, adaptation, control timing between
swing/stance transitions or sensory-driven




Hardware Development:
Gait Controller

* Develop hardware system to prescribe motor output based on pre-
defined gait and current sensorimotor state

* Need to know what the biological CPG is doing at all times and
what we want it to do next in order to effectively control it

* Build a silicon model of biological CPG, i.e. a neuromorphic silicon
CPG chip (SiCPG)
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Which Neuron Model?
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Making a Robot Walk with CPG Chip

e SREsTamcDrlve Lewis et al., 2005

* Use artificial motor system to
develop on-line phase control S RIS Pl -
infrastructure LHH::;L“; P e

- Materia|51 Loft Knea Extag g 1L l. ¥ .\.\' T nghtKn“ Ext
u PartiaIIY‘SUpportEd blpEdal X f__ . ..S"/

robot (“RedBot”) or RoboCat  puiistiraeZeN N } Right Knee Flex

HN&‘ ™,

= Reconfigurable silicon CPG chip Knee Extensor  Knee Extensor

Tenic Drive Tonic Drive

- CPG controls hip movements, Knee Floxor Tonic Drive Knee Flexor Tonic Drive
knee/ankles are passive
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Hip Angle (Deg)
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Lewis et al., 2005; Russell, Orchard et al, 2007




When Coupling Goes Good & Bad

Night on Town




Presentation Outline
Making Machines See

= The biological visual system
= Silicon eyes and brains

Making Robots Walk

= The biological locomotion system
= Silicon spine and Walking robots

Restoring Function to the Impaired

= Spinal cord injury and locomotion prosthesis

= Gait controller: silicon model of spinal cord circuits

Future and Conclusion
= High degree of freedom prosthetic limbs
= Sensory feedback and haptics



Restoring Function to the Impaired




-

Spinal Cord Injury (SCl)

SCl is usually a focal injury:
vertebral body dislocation =
spinal cord contusion
= Kills spinal cord cells at lesion
site
= Severs connections

= Leaves cells above/below lesion
intact

In most cases (¥65%), lower limb
CPG is intact after SCI

Paralysis is caused by loss of
descending control of the CPG,
not by loss of CPG itself

= Tonic & phasic inputs to CPG are
disconnected

= Efferent inputs required to
activate CPG and control
locomotion

- Paralysis

32 and Bowel and Bladder

Cauda
Equina




Responsibilities of Locomotion
Controller

1. Select Gait
+ specify desired motor output :
- phase relationships £% 2. Activate CPG
- joint angles T + tonic stimulation initiates locomotion
‘ '; . - epidural spinal cord stimulation (ESCS)
. i - intraspinal microstimulation (ISMS)
4. Control Output of CPG
+ phasic stimulation '
(efferent copy required for

precisely-timed stimuli)
- convert baseline CPG activity
into functional motor output
- correct deviations
- adjust individual components
- adapt output to environment

f ’-_: 1‘ I8 Select gait ~ brain
3. Generate “Efferent Copy” 1) w7 Activate CPG ™~ brainstem (MLR)

+ monitor sensorimotor state Yy Efferent copy ~ efferent copy

- external sensors on limbs y X L Enforce/adapt output ~ phasic RS
- internal afferent recordings

Vogelstein et al., 2008




Gait Control System

Analog signal processing front-end
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Accelerometers (HA)

Source: Vogelstein et al., IEEE TBioCAS, (submitted)

* 12 pairs of IM electrodes: 3 each for left/right hip, knee, and ankle extensors/flexors
Two types of sensory data were collected for each leg

= Hip angle (HA)
= Ground reaction force (GRF) Vogelstein et al,, 2008



Results: SiCPG Chip Controls
Locomotion in a Paralyzed Cat
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Results: SiCPG Chip Controls
Locomotion in a Paralyzed Cat
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* We have also shown that turning control is possible using phasic stimulation
of biological CPG

= Use error between desired activity = “efferent copy” and measured activity to
stimulate spine

Vogelstein et al., 2008
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Control paradigm
* Acquisition of electrophysiological signals involved in
generation of movement

« Extraction of movement-related information from
biosignals

* Provide sensory information to the nervous system

JHU/APL RP2009




State-of-the-art of Prosthetic

JHU/APL RP2009 Prototype Il Hand




Repetitive movements :
Hand opening/closing

Tenore et al., 2008




Experimental protocol

* Acquisition of non-invasive surface EMG 4
signals from forearm (and upper arm) Lo

—

-
L
n

* Subjects perform finger and hand
movements on cue (audiovisual) — 18
total

* Transradial amputees perform
movements also with intact hand
simultaneously

Tenore et al., 2007




Results

* 4 subjects, 12 movements

= 32 electrodes able-bodied
subjects,

= 19 electrodes on
transradial amputee
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Intended movements

Tenore et al., 2008




Visualization on Virtual Integration
Environment

* VIE provided by JHUAPL for fast prototyping of
decoding algorithms

Tenore et al., 2008




Conclusions and Future

* Fully neurally integrated prosthetics
= Thoughts to action (decoding of intent)
= Sensors to feeling (encoding of reaction)
= Knowing where is the limb (representing joint space)

Lucas Films, 1978




Conclusions and Future
(Preliminary Results)
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