Learning From Nature to Make Machines See and Robots Walk

Ralph Etienne-Cummings

Dept. of Electrical and Computer Engineering Johns Hopkins University

WHITING SCHOOL OF ENGINEERING

JOHNS HOPKINS UNIVERSITY

Johns Hopkins University | Whiting School of Engineering |
SEARCH THIS SITE Search

Computational Sensory-Motor Systems Lab

INFORMATION
PROJECTS
PEOPLE
PUBLICATIONS
LINKS
NEWS
VIDEOS AND PRESENTATIONS
SPONSORS

Nature's Inspiration

Antoni Gaudi, *Casa Mila*, 1906 – 1910 "Form"

Leonardo da Vinci, *Helicopter*, 1452 – 1519 After wikipedia.com "Function"

Nature's Inspiration

Carver Mead, Neuromorphic Circuits, 1986 - 1990

The Big Picture: Motivation

Developing Biomorphic Robotics

Restoring function after limb amputation

Adaptive
Biomorphic
Circuits &
Systems

Restoring function after severe spinal cord injury

Presentation Outline

- Making Machines See
 - The biological visual system
 - Silicon eyes and brains
- Making Robots Walk
 - The biological locomotion system
 - Silicon spine and Walking robots
- Restoring Function to the Impaired
 - Spinal cord injury and locomotion prosthesis
 - Gait controller: silicon model of spinal cord circuits
 - Phase controller: controlling Behavior
- Future and Conclusion
 - High degree of freedom prosthetic limbs
 - Sensory feedback and haptics

Visual Processing in Humans

Front-End of Vision System: The Retina Built for Perception

Rods and Cones

Conventional CMOS Cameras: Making Pretty Pictures

Camera phones are driving the CMOS camera market

150 million sold in 2004, 55% annual growth rate to >1 Billion by 2009

Power consumption is relatively low (~ 10's of mW for VGA)

2 Mega Pixels is probably the limit of usefulness

Download bandwidth is a problem (service providers would like more people to download their pictures)

There is a fear that it will represent the next technology bubble So much hype, legal problems ...

Small (~ 100 x 100 pixels) imagers, with smarts (e.g. motion, color processing) have market in toys, sensor networks, computer optical mouse ...

Conventional CMOS Cameras: Voltage Mode Active Pixel Camera

Simple APS: Fossum, 1992

Integrative Imagers:

Voltage domain; Dense arrays; Low Noise; Low dynamic range, Not ideal for computation

Current Active Pixel Sensor

Integrating
Current output

$$V_{reset} \le V_{DD} - |V_{tP}|$$

 $V_{col} \approx V_{DD} - 0.2V$

$$I_{pix} \approx \frac{W_2}{L_2} k_p (V_{DD} - |V_{tP}| - V_{pix}) (V_{DD} - V_{col})$$

$$I_{pix} \propto -V_{pix} (V_{DD} - V_{col})$$

$$I_{pix} \propto -V_{pix} \propto \text{Light} \times \text{Time}$$

Improved Current Mode Photodetection

Image quality has been improved

Non-linearity due to mobility degradation degrades performance

under bight light

Spike-Based CMOS Cameras: Octopus

Imaging Concept

Sample Image

Other Approaches:

- W. Yang, "Oscillator in a Pixel," 1994
- -J. Harris, "Time to First Spike," 2002
- A. Bermak, "Arbitrated Time to First Spike," 2007

On-Set and Off-Set Imaging

Chi et al., 2007 Delbruck et al., 2008

Color Processing: RGB to HSI: Why?

$$r = I_bias \frac{R}{R+G+B}; g = I_bias \frac{G}{R+G+B}; b = I_bias \frac{B}{R+G+B}$$

$$Sat(R,G,B) = I_bias[1-\min(r,g,b)]$$

$$Hue(R,G,B) = \arctan(X/Y) = \arctan\left(\frac{0.866(G-B)}{2R-G-B}\right)$$

Identification

Skin Identification

Fruit Identification

"Learned" templates

Coke or Pepsi?

 $SAD = \sum_{\Theta} \left| I_{i,j} - T_{i,j,k} \right| < \lambda_k$

Two Eyes: Stereo Vision

Single-chip stereo (3D) vision system

For use in:

- Autonomous systems
- Vehicle navigation
- Man-machine interfaces

Requirements

- Fully integrated
- Digital output
- Low power

Chip Architecture

- Vertical averaging
 - Select multiple rows
- Parallel computationSAD matching metric
- Loser-Take-All
 - Smallest SAD value

$$SAD(x,y,d) = \sum_{i=x}^{x+14} |r_{sum}(i,y) - I_{sum}(i+d,y)|$$

$$\Delta x(x,y) = \underset{d \in D}{\operatorname{argmin}} \operatorname{SAD}(x,y,d)$$

Chip Characteristics

Technology	0.35μm 4M2P
Die Size	3.5mm x 3.3mm
Pixel Size	10μm x 10μm
Fill Factor	26%
Image FPN	1.2% (no CDS)
Imager Size	128 x 128 x 2
Depth Map Size	114 x 124
Frame Rate	30fps (40fps max)
Power Consumption	33.2mW (3.3V, 30fps)

Results

- Movie: 30fps @ 33.2mW
 - Right imager output texture mapped to depth results
 - Color (at lower right) corresponds to depth
 - Note: Plateau under the tiger is a black table

Presentation Outline

- Making Machines See
 - The biological visual system
 - Silicon eyes and brains
- Making Robots Walk
 - The biological locomotion system
 - Silicon spine and Walking robots
- Restoring Function to the Impaired
 - Spinal cord injury and locomotion prosthesis
 - Gait controller: silicon model of spinal cord circuits
 - Phase controller: controlling Behavior
- Future and Conclusion
 - High degree of freedom prosthetic limbs
 - Sensory feedback and haptics

Central Pattern Generator (CPG)

- In the spinal cord of vertebrates
- Generate patterned outputs to activate muscles
- Motor systems with regular, periodic activity (breathing, chewing, locomotion, etc.)
- Architecture is preserved across species [Cohen et al., 1988]
- CPG is used for "periodic" not specialized, locomotion

Source: J. M. Cleese, MPFC, 1970

CPG Architecture

 First conceptual "model" in 1911 by T. G. Brown: halfcenter oscillator

- HCO structure preserved in modern models
- Cellular models in primitive vertebrates
- Models in higher vertebrates are less detailed; designed to match behavioral data

Source: Grillner, Nat Rev Neurosci, 2003

Source: Rybak et al., J Physiol, 2006

CPGs in Action

Source: Mellen et al., 1995; Grillner & Zangger, 1984; Dimitriavic & Minassian et al., 2004

Cat Walking

- IF-THEN formulation of "rules" governing hind limb stepping in cats:
 - Stance-to-swing transitions:
 IF ipsilateral hip is extended
 AND ipsilateral limb is unloaded
 AND contralateral limb is bearing weight
 THEN initiate flexion in the ipsilateral limb
 - Swing-to-stance transitions:
 IF ipsilateral hip is flexed
 THEN initiate extension in the ipsilateral limb

Ekeberg and Pearson, J Neurophys, 2005

Designing the Gait Controller's CPG Network

- Patterns in normal walking and IF-THEN formulation provides basis for CPG network
- Incremental design process
 - Extensors and flexors in counterphase
 - Alternate between stance (extension) and swing (flexion) phases ~ 70-30 duty cycle
 - Stance to swing and vice-versa triggered by two main proprioceptive inputs
 - Hip angle
 - Ankle load
- Extensible: replace flexor and extensor neurons with hip/knee/ankle subpopulations
- Structure similar to biology-based models [Pearson, personal comm.]

Source: Vogelstein et al., IEEE TBioCAS, 2008

Synaptic weights, sensory, and lateral inhibitory inputs, adaptation, control timing between swing/stance transitions or sensory-driven

Hardware Development: Gait Controller

- Develop hardware system to prescribe motor output based on predefined gait and current sensorimotor state
- Need to know what the biological CPG is doing at all times and what we want it to do next in order to effectively control it
- Build a silicon model of biological CPG, i.e. a neuromorphic silicon CPG chip (SiCPG)

CPGv2 (Tenore et al., 2004)

CPGv3 (Tenore et al., 2006)

Which Neuron Model?

Izhikevich, EM, Which model to use for cortical spiking neurons? IEEE Trans. Neural Networks, 15:5, 1063-1070 (2004)

Making a Robot Walk with CPG Chip

- Use artificial motor system to develop on-line phase control infrastructure
- Materials:
 - Partially-supported bipedal robot ("RedBot") or RoboCat
 - Reconfigurable silicon CPG chip
 - CPG controls hip movements, knee/ankles are passive

When Coupling Goes Good & Bad

Strauss

Presentation Outline

- Making Machines See
 - The biological visual system
 - Silicon eyes and brains
- Making Robots Walk
 - The biological locomotion system
 - Silicon spine and Walking robots
- Restoring Function to the Impaired
 - Spinal cord injury and locomotion prosthesis
 - Gait controller: silicon model of spinal cord circuits
- Future and Conclusion
 - High degree of freedom prosthetic limbs
 - Sensory feedback and haptics

Spinal Cord Injury (SCI)

- SCI is usually a focal injury:
 vertebral body dislocation ->
 spinal cord contusion
 - Kills spinal cord cells at lesion site
 - Severs connections
 - Leaves cells above/below lesion intact
- In most cases (~65%), lower limb CPG is intact after SCI
- Paralysis is caused by loss of descending control of the CPG, not by loss of CPG itself
 - Tonic & phasic inputs to CPG are disconnected
 - Efferent inputs required to activate CPG and control locomotion
 - → Paralysis

Responsibilities of Locomotion Controller

1. Select Gait

- + specify desired motor output
 - phase relationships
 - joint angles

4. Control Output of CPG

- + phasic stimulation (efferent copy required for precisely-timed stimuli)
 - convert baseline CPG activity into functional motor output
 - correct deviations
 - adjust individual components
 - adapt output to environment

3. Generate "Efferent Copy"

- + monitor sensorimotor state
 - external sensors on limbs
 - internal afferent recordings

2. Activate CPG

- + tonic stimulation initiates locomotion
 - epidural spinal cord stimulation (ESCS)
 - intraspinal microstimulation (ISMS)

Select gait ~ brain
Activate CPG ~ brainstem (MLR)
Efferent copy ~ efferent copy
Enforce/adapt output ~ phasic RS

Gait Control System

- 12 pairs of IM electrodes: 3 each for left/right hip, knee, and ankle extensors/flexors
- Two types of sensory data were collected for each leg
 - Hip angle (HA)
 - Ground reaction force (GRF)

Results: SiCPG Chip Controls Locomotion in a Paralyzed Cat

Results: SiCPG Chip Controls Locomotion in a Paralyzed Cat

- We have also shown that turning control is possible using phasic stimulation of biological CPG
 - Use error between desired activity = "efferent copy" and measured activity to stimulate spine

Presentation Outline

- Making Machines See
 - The biological visual system
 - Silicon eyes and brains
- Making Robots Walk
 - The biological locomotion system
 - Silicon spine and Walking robots
- Restoring Function to the Impaired
 - Spinal cord injury and locomotion prosthesis
 - Gait controller: silicon model of spinal cord circuits
- Future and Conclusion
 - High degree of freedom prosthetic limbs
 - Sensory feedback and haptics

Control paradigm

- Acquisition of electrophysiological signals involved in generation of movement
- Extraction of movement-related information from biosignals
- Provide sensory information to the nervous system

State-of-the-art of Prosthetic Hands

JHU/APL RP2009 Prototype II Hand

Repetitive movements: Hand opening/closing

Experimental protocol

- Acquisition of non-invasive surface EMG signals from forearm (and upper arm)
- Subjects perform finger and hand movements on cue (audiovisual) – 18 total
- Transradial amputees perform movements also with <u>intact hand</u> <u>simultaneously</u>

Results

- 4 subjects, 12 movements
 - 32 electrodes able-bodied subjects,
 - 19 electrodes on transradial amputee
- Confusion matrices: allow identification of misclassified movements
- Transradial amputee is?

Visualization on Virtual Integration Environment

- VIE provided by JHUAPL for fast prototyping of decoding algorithms
- VIE in action
- Real Time Decoding

Conclusions and Future

- Fully neurally integrated prosthetics
 - Thoughts to action (decoding of intent)
 - Sensors to feeling (encoding of reaction)
 - Knowing where is the limb (representing joint space)

Conclusions and Future (Preliminary Results)

Acknowledgements

- Various ONR Awards
- Various NIH Awards & Neuroengineering Training Grant
- Various individual NFS Awards
- NSF Graduate Research Fellowships
- DARPA Revolutionizing Prosthetics
- Telluride Neuromorphic Engineering Workshop
- NSF ERC CISST at JHU
- Various AFRL and ARL Awards

Mentors, Collaborators and Students

Mentors, Collaborators and Students

