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________________________________CMOS Technology Trends -- Nanoscale

• CMOS has entered into nano-scale era.
• Silicon CMOS is still the mainstream IC technology in the next 

7-10 years before other nano devices play roles.
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________________________________CMOS Technology Trends -- RF CMOS
• Recent speed improvements and better noise behavior of 

CMOS transistors have made it feasible to implement RF 
circuits for wireless products, such as cell phones, Global 
Positioning System, and Bluetooth.

• CMOS is one of the best suitable technologies to ingrate 
RF circuits with analog and base-band digital circuits.

• Tremendous  research effort is dedicated to RF CMOS, 
driven by System-on-Chip (SoC), using inexpensive single 
chip transceivers, including both the base-band and the 
RF sections.

CMOS:
High integration 
density
High yield
Low power consumption
Low cost
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________________________________New Material & Novel Structures 
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________________________________Device Physics in Nano-scale MOSFETs
• Quantum-mechanical Effects

– Carrier distribution.
– Impact of the thickness of 

inversion charge layer.
– Both charge density and potential.

• Ballistic transportation
– Velocity saturation at the source.
– Electrons emitted from the 

source with sufficient energy to 
overcome the barrier in the 
channel reach the drain conserving 
energy and transversal momentum.

– Carrier scattering at the source.
• Tunneling of Carriers 

– Through very thin gate oxide.
– From source to drain, and from 

drain to the body of the MOSFET.
– Quantum tunneling (intra-band and 

inter-band).

S D
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________________________________Modeling of Quantization Effects
• Carriers are confined in the 

direction perpendicular to the 
surface and discrete energy 
levels need be treated 
quantum mechanically (2-D).

• An efficient approach to 
model the quantum effect.
– The Schrodinger equation was 

solved at the boundary 
conditions of  Etop and Ebottom.

– Models based on this approach 
could describe the behaviour of 
devices with L of 18nm. 
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________________________________Modeling of the 2-D Effects
• A 2-D modelling approach 

considering vertical current 
distribution and lateral 
carrier transport due to the 
two-dimensional (2D) sub-
band splitting and the lifting 
of the six-fold degeneracy 
of silicon conduction band is 
required. 

• A quasi-2D approach to 
introduce quantum effects in 
vertical direction and use 
semi-classical method along 
the channel has been used in 
compact modeling. 
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________________________________Modeling of the 3-D Effects

• Modern MOSFETs show 3-D 
effects
– Confinement along z-direction 

(quantization effects).
– Transport along x-direction 

(traditional short channel 
effects).

– Transverse along y-direction 
(traditional narrow width effect).

• Semi-3D approaches based on 
tolerable assumptions and 
approximations are possible 
solutions in developing compact 
models for nano-scale devices.
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________________________________Modeling of Ballistic Transport
• Ballistic Transport (BT)

– Ballistic electrons injected from the source with
energy greater than the barrier height transmit 
freely from source to drain while those below 
the barrier are reflected to the source. 

• Understanding of physics on BT
– Fundamental device physics.
– Ballistic distribution.
– Solution of the ballistic BTE (Boltzmann transport equation).

• Modeling Issues
– Models based on drift-diffusion underestimates Idsat.
– Models based on ET (Energy Transport) approach overestimates Idsat.
– Incorrect description of channel velocity overshoot.

• Modeling Efforts
– New compact model based on solutions of current and energy equations.
– Predicting ballistic peaks and imposing thermal injection limit.

S D



11 Yuhua. Cheng

________________________________Modeling of Leakages
• Leakage increases 

significantly as 
technology advances.

• Accurate modeling of 
various leakages in 
nanoscale devices is 
challenging.

• In today’s MOSFETs,  
gate leakage current 
increases by orders 
for the decrease of 
Tox.

• Modeling of gate 
tunneling at channel 
quantization 
condition.
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________________________________Modeling for RF Applications 
• Modeling of MOSFET

• Modeling of passive devices (R, C, inductor,varactors)

• Modeling of special devices (LDMOS and PNP BJTs)

• Interconnect modeling

• Substrate modeling

• Statistical modeling
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________________________________RF Modeling Challenges
• Modeling of all the physical effects in nano-scale transistors 

including those discussed previously. 

• Modeling of flicker noise, and matching behavior etc for 
analog/RF applications.

• Core model with good continuity, accuracy and scalability over 
wide biases, temperatures and geometries.

• Scalable  parasitic capacitance and resistance models.

• Non-Quasi Static (NQS) effects.

• Predict accurately the bias, frequency and temperature 
dependence of small signal AC, noise and  non-linear and distortion 
behavior of the device at HF operation.
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________________________________RF Modeling Challenges – Parasitics

trench trench trenchtrench

SB D
B

RSB RDB

RDSB

RDS

RS RD

G

RG

DSB DDB

CGSO CGDO

N+ N+ P+P+

P-SUB

N- N-

• In addition to the intrinsic core, many parasitic 
components exist.

• These parasitics play critical role at HF and need to be 
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________________________________Modeling of Capacitance Characteristics

• Gate Capacitance is not constant in strong inversion. 
• Bias dependence is caused by Poly-depletion effect.
• Both poly-depletion (PD) and channel quantization (CQ) effects 

will reduce Cgg.
• Extrinsic capacitance becomes critical, especially in 0.13 and 

below technologies.
• Csub can be ignored when f<10GHz.
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________________________________Modeling of Substrate Coupling

Signal at the drain coupling  to the nearby source diffusions and to the 
substrate terminal through the junction capacitance and substrate resistance
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• At HF, signal is coupled to substrate 
through junction capacitance.

• This effect impact mainly the output 
impedance.

• Rsub should be scalable in terms of 
channel width, length and fingers.
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________________________________Modeling of  Flicker noise

• It was reported that the channel quantization would 
impact the flicker noise behavior.

• Modeling of flicker noise in nano-scale devices becomes 
more challenging.

• Accurate prediction of corner frequency, Fcorner, is 
critical for circuit design.
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________________________________Modeling of HF Noise

• Channel noise is frequency independent and induced 
gate noise is frequency dependent.

• Induced gate noise is not negligible in devices with long 
L or devices with short L but at very high frequency.
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________________________________Modeling Challenges – Noise Sources

• Understanding  of noise sources is important.

• Modeling of channel thermal noise and induced gate 
noise is the most challenging job.
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________________________________HF Device Behavior: High “Low Frequency Limit”
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• MOSFET has much higher “low frequency limit” (LFL).
• HF distortion characteristics (<fLFL) can be described 

by its low-frequency behavior.
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________________________________Modeling Challenges - NQS Effects

• NQS will significantly impact Y11 and Y21 behavior.
• Many approaches are proposed to model this effect:

– Multi-segment approach.
– Relaxation time.
– Rg/Ri equivalent circuit approach.

• Efficient built-in NQS effect in intrinsic core model is 
preferred. 
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________________________________Subcircuit Model

• Important device physics are modeled in the core.
• All parasitic components should be scalable and 

extractable from measured data.
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________________________________fT: Measured vs. Fitted

• A standard device parameter for model validation.
• However, only fT  is not enough to describe HF behavior of

MOSFETs, especially at technology nodes such as 0.13um and 
below.
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________________________________Gmax and fmax: Measured vs. Fitted

• fmax contains the impacts from parasitics such as 
gate and substrate resistance and is a better FoM
than fT
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________________________________C-parameters: Measured vs. Fitted

• C-parameters are more sensitive to the bias 
dependence of gate resistance and capacitance.

• Useful FoMs for model validation.
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________________________________HF Noise Parameters: Measured vs. Fitted

• Careful parameter extraction is needed to predict the HF noise 
parameters. 
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________________________________Large Signal Behavior: Measured vs. Fitted

• Below certain (the “LFL”) frequency, the distortion behavior of 
MOSFETs is primarily determined by transconductance and 
capacitances.

• With careful parameter extraction at DC and HF small signal,  a 
model can well predict the large signal distortion behavior.
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________________________________Statistical Modeling
• Process variation (even within a wafer) in today’s 

advanced technologies becomes more significant.

• Need physical statistical models to predict process 
variation and local mismatch to optimize analog/RF 
circuits with high yield.

• Correlations between statistical modeling with 
considerations of both frontend and backend process 
variations and yield modeling/prediction should be 
developed.

• The model should include most important physical 
effects and the correlations based on independent 
process variables.
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________________________________Example of Passive Device Modeling
• Inductor modeling is the most 

challenging effort for passive 
modeling.

• Lumped compact model is 
widely used in circuit 
simulation.

• Strong frequency dependence 
of R and L components caused 
by skin and proximity effects 
should be modeled.

• An enhanced model with a 
resistor ladder to represent 
the distribution of current 
density and incorporate RF 
conduction loss.
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________________________________Summary
• While all the requirements for continuity, scalability, 

accuracy and computation efficiency need to be met for 
device models for circuit simulation, the new physical 
effects in nano-scale devices make compact model 
development very challenging.

• RF Modeling efforts such as HF noise and large signal 
distortion modeling, passive device modeling are also 
needed for RF circuit design. 

• Advanced device modeling is critical and helpful to RF 
SOC design in nano-scale technologies.
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