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“Nano” electronic devices

« Evolutionary Nano
scaled CMOS
SOl
GeMOS
Strained CMOS
FInFET

« Revolutionary Nano
CNT
Nanowires
Molecular electronics
Spintronics



Evolutionary Silicon CMOS

90 nm node
2003

65 nm node
2005

45 nm node
2007

32 nm node
2009 |

50 nm length
(IEDM 2002)

22 nm node

30 nm prototype
(IEDM 2000)

20 nm prototype
(VLSI 2001)

15 nm prototype
(IEDM 2001)

10 nm prototype
Planar Si CMOS will scale down to ~10 nm Lgate (DRC 2003)

Will performance and leakage be what we need?
Mark Bohr



What conditions made sequential
growth of IC manufacturing?

Planar technology for precise control of positions in two
dimensional plane, enabling the Moore’s Law

lon implantation for vertical control of impurity profiles
Film deposition and etching enabling vertical scaling
CD control within 10% of minimum geometry

Clean technology resulting in defect density control for
over 85% vyield for 10°devices on chip.

Every new technology node enabled 30-50% cost
reduction per bit or gate over previous node

Highly controlled environment for credible statistical data
acquisitions
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Transistor CV/I Delay and Leakage Trends
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Continued gate delay reduction, but at the expense of leakage current



MOSFET Scaling Limit: Leakage
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o Ability to control /4 will limit gate-length scaling
Thermionic emission over barrier

QM tunneling through barrier
Band-to-band tunneling from

body to drain

o To suppress D/S leakage, need to use:

Higher body doping to reduce DIBL
= lower mobility, higher junction capacitance, increased junction leakage
Thinner gate dielectric to improve gate control = higher gate leakage

Ultra-shallow S/D junctions to reduce DIBL = higher R

series

Leakage Trend
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Effects of Scaling Bulk MOSFET on Mobility
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Nchannel = Charge induced in the channel

0 Increases in substrate doping = N,

0 Gate oxide thickness decrease = N, ..o 1!

a E, increases with scaling = p |

0 Reduced gate oxide thickness increases remote charge scattering = p U

0 High k dielectrics have higher coulombic scattering due to surface states
and soft phonon scattering = p U



Key questions to evolutionary
“nano”

How far can “scaled CMOS” go?
Would the rate of increase in ldsat hold?

What can possibly allow us to break “the
curse of universal mobility™?

Is there any trick to maintain s-factor for
low loff?
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Issues With High k Dielectrics

Fixed charge

Ng,: fixed charge density

Remote phonon

Interfacial dipoles
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Poly-Si gate

N

A

A: amplitude of roughness
A: correlation length

S

ey
High-k @

K>

Phase-separation
Crystallization
K1: K for crystallized grain

K2: K for amorphous region

P

;/i Interface trap j

tine: thickness of

interfacial laver
‘ N Source

terfacial layey

Channel

N, trap density

Drain Surface 1'011ghnessJ

—

S. Saito, et al.,
IEEE IEDM 2003.

e Bulk and interface traps and charges = mobility, reliability
e Contamination of Si by metal atoms
e Compatibility with gate electrode = metal gate
e High temperature stability
e Minimum EOT achievable
e Technology integration

Extensive research is needed to understand these mechanisms and
how to minimize their impact on device performance



High Resolution TEM showing 0.03 um Channel Length
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Metal gate and high K

Avoid poly depletion/remote charge
scattering and reduce ionized impurity
scattering in channel: metal gate

Reduce gate tunneling: high K

Suppress soft phonon scattering caused
by softer metal-oxygen bond: metal gate &
high K

Need “workfunction engineering™: metal
gate



Gate Leakage (A/cm?)

Capacitance and Leakage for High-k Gate
Dielectric Films Grown Using ALCVD
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Approaches for Workfunction Tuning (INMP)

Gate structure Examples Adjustab_le Issues
workfunction
Dual metal s s Ti/Mo; Ti/Ni None Etch damage
] Non-uniform
Alloy e Ta/Ru ~0.8 eV degree of a_lloymg,
toxicity
Implanted 133333
mpran *e 22222 TiNx, Mo ~0.4eV Dielectric damage
metal I
e e g ek i i, T N Dopant
silicide — NiSi; TiSi 1eV penetration
! — Al/Ni; Ti/Pt; N .
Bilayer — AlTaN 1eV Thermal stability

*King, UC Berkeley
**Misra, NC state University
***Patrick, UC Berkeley




Electrostatic:
Double-Gate Transistor Structures

top gate

G

S IBM ‘97

source bottom gate drain

Schematic
Cross-Section

Source

T-J. King and C. Hu, UC/Berkeley
and Mark Bohr, ECS Meeting PV
2001-2, Spring, 2001

Top View

Poly Gate



Transport: Effects of Biaxial Tensile Strain on Si Energy Bands

Hoytt, 2002
Strained Si grown on Relaxed Si, Ge, [001]
+— biaxial tension A, Bulk Si  Strained Si
Conduction Band 010 Eg AE; ~067 meV/
Additional splitting:=> - - ,_10% Ge
. A — A
Band repopulation 4> 2
Single ellipsoid
- reduced intervalley 190] m, < .
scattering
- smaller in-plane effective _ T m ;i e my<m,
transport mass =9y t
Bulk Si g Strained Si g
Valence Band out-of-
_ I kK in-plane 1 plane
HH/LH degeneracy lifted at I ¥ AE,~70 " A\k
- reduced interband meV/10% Geg
scattering LH
- smaller in-plane transport Spin-O bt/\
mass due to band pIn-Lrbi
deformation /N




Sub-band Structure Engineering

Strained-Si

2-fold 4-fold

E1 / K - E’O I
/ E0 AEs.plit

Increase AE, in due
to strain-induced
band splitting

MOSFET | <=

Conventional
MOSFET

2-fold 4-fold
valleys valleys

-

Ultrathin Body
MOSFET

2-fold 4-fold

I

Increase in both AE,

and AE,, due to

quantum confinement
effect of thin SOI films

S. Takagi, May 2003 at Stanford



What about carrier transport in
ultra short channel MOSFET

“Electrons will not reach saturation velocity
before reaching the drain.”



Change In transport mechanism
As the channel length becomes in the range

of ballistic transport.

* Initial velocity is more important than the
saturation velocity: “low field mobility”
plays major role

» Carrier scattering mechanisms by surface
roughness, remote charges, surface
phonons still remain important

» Charge injection efficiency from the
source: another key for the performance



Why Germanium MOS Transistors?

More symmetric and higher
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High Mobility Ge FETs with High-k (INMP)

HR-XTEM _— 400 e —
R RS TN TRt T EA TR TR ? i —e— 25 um Ge hi-k pFET |
% —4A— 30 um Ge hi-x pFET
8 g 300+ —a— 100 ym Ge hi-x pFET -
>
% 200+ s,
Si Universal A tug,
S [ Mobilty e,
o 000 _———
5 . Sihi-cpFET "~ ~
& " 1 " 1 " 1 L
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Key Results
* Passivation of Ge with GeO,N,, ZrO, and HfO,

* n and p dopant incorporation
* 1st demo of Ge MOSFETs with metal gate and hi-x
« p-MOSFET with 3x mobility vs. Hi-k Si

 n-MOSFET demonstrated but mobility low
Chui, et. al., IEDM 2002 & IEDM 2003



Side benefit of germanium when
it is applied to VLS| for high
performance

“ It Is a narrow band gap semiconductor”
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Integration of Heterogeneous
Functionality

« SOC, driven by digital/analog/RF/power
« SIP, driven by cost
« 3D integration, the future?



System-on-a-Chip (SoC)

IP ; CPU, DSP, memories, analog, /O, logic..
HW/FW/SW



System-in-a-Package (SiP) comes into

market
System-on-a-Chip (SoC)

f



3-D integration

L]

2D Area=A

Very Long Wire
3D /A2

Al2 |
2-D System 3-D System
Shorter Wire
* Integration of heterogeneous technologies
possible, e.g., memory & logic, optical I/O
1 (Log-Log Plo) * Reduce chip footprint

Number of Interconnects

7,

v

2DIC
3-DIC * Replace long horizontal wires by short

vertical wires
« Interconnect length U and therefore R, L, C U

— Power reduction
— Delay reduction

Wire-length

Slide courtesy of K.C. Saraswat



Motivation: Integration Density

»
»
»
>

3-D
Packaging —

No. Transistors/chip //
Perf/Functionality

2-D Batch
(CMOS IC’s)

No. Transistors per cma3 in system

512-15 yearsi

| "~ End-of-Moore’s
Law!

The Best Integrators of Electronic Devices Will Own the

Heart of Every System — We have <15 Years to Figure it out
Source: D. Radack, DARPA

Time
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Silicon Based CMOS as “Dominant
design” in microelectronics due to
lowest power consumption

However, both active and passive
power consumptions becoming
the most challenging issues In
nanoelectronics era



Power breakdown at the 180nm node
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Chandra, Kapur and Saraswat, IEEE IITC, June 2002



Result: scaling of power components
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Power Consumption and
Embedded memory

As we see continuous increase in embedded
memory capacity, power consumed by memory
has become significant issue

Stand-by power for SRAM is destined to
increase with MOS loff increase

Soft error immunity also decrease

Non-volatile memory will be an important part of
possible solutions

Mushrooming of new non-volatility ideas with
nanoelectronics era coming



New Memory Hierarchy ?

CPU

—

CPU

Density-high
Capacity-high
Speed-high
Non-Volatile

2nd level cache

5 CPU

- )

Main memory ’
Density-high
Capacity-high
Hard disk drive Speed-high
A\ Non-Volatile




Comparison
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Hybrid integration of optoelectronic
devices to CMOS

Low capacitance MSM
photodetectors on CMOS

Silicon CMOS chip 1V Device arrays on CMOS
with gold bonding pads f=tarebavescqerelnintopetes ]

.............
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______________________
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......................................
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GaAs optoelectronic chip
with indium flip-chip bumps

WDM interconnect chip .
(with light beams) SOl chip (optical optical latency
clocking) test chip

D. Millar, Stanford Univ.




Monolithically Integrated Receiver

Ge Transistor + Ge Photodetector:

« Employ recrystallization techniques on a-Ge films at low temp
= Improve film crystallinity to ¥ 7, , and ¥ carrier scattering

* Integration of optical receiver in the upper active (Ge) layer
= On-chip optical clock distribution in 3D-ICs

Optical
signals Ge-TFT

S ﬂ ﬂ ﬂ Metal -

passivation

Electrical
signals

>

SiO; —__ 2nd active
ILD Ge Iayer

1st active
Si layer



Already enough for
“‘evolutionary nano”, but
what about “revolutionary
nano”???
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Revolutionary “nano”

Still charge controlled device?
Better electrostatics?
Better transport properties?

Control of every parameters which has
been “pre-requisite” of evolutionary “nano”



Why Nanowires ?
 Lithography independent (self-assembled)

* Low thermal budget process
» High mobility charge transport

 Building block for modern nanoscale devices and
structures

* Potential for exploring scaling in dimensionality

--------------------
aaaaaaaaaaaaaaaaaaaaa

Yue Wu et. al.,, NANO LETTERS 2004, Vol. 4, No. 3, pp. 433-436



Germanium Nanowire Growth Results

20 - 60 nm silicon and germanium nanowires



Alignment: In situ growth in
electric field

Patterned catalyst strip
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GeNW FETs with HfO, as gate
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Ballistic Nanotube Transistors
Growth TR S SIS

7 i R
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Key Challenge: Low thermal budget controlled growth



Integration of Nanotubes with
St MOS Technology?

Nanotube/S1 CMOS hybrid
devices: a possible approach to
future electronics?



Integrated Carbon Nanotube Devices
with MOS Circuits
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Nanotechnology Eras

0.1 100
65 nm
45 nm Generation
32 nm
LeaTE 2pm ]
micron 0.01 ¢ ! -—-~= 10 nm
n ! )
| .
| |
l |
Evolutionary Révolutionary
CMOS CMOS Exotic T
1 |
0.001 —f— 1
2000 2010 2020
Reasonably Nanotubes Really
Familiar Nanowires Different

Mark Bohr, Intel




Transistor CV? Switching Energy Trend

100
10
Switching
Energy 1
(tJ)
0.1
001 1 1 L0 1 111 1 1 [ I
0.01 0.1 1

Lgare (UM)
Significant switching energy reduction due
to feature size and supply voltage scaling



What's beyond charge control
devices??

* Spintronics?
Spin-lattice relaxation time too short?
Room temperature operations?
* Molecular devices?
Any gain?
Molecule-electrode contact?
A variety of “non-volatile memory”



Spin Based Switch

Charge Spin
AE,(e-) ~1.7x102 eV AE(spin) ~8.6x10-8 eV
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Challenges Facing a Pervasive Replacement of
“Ultimate Scaled CMOS”

 Operable at room temperature
« Cost of less than 0.5 micro-cents per logic gate
« Greater than 4x108 logic gates per cm?

* Greater than 101° “minimum-size switches” per cm? (e.g., SRAM
transistors)

« Cost of less than 50 nano-cents per bit of memory

* Greater than 30 Gbits of memory per cm?

* Intrinsic switching speed greater than 5 THz

 Power consumption of less than 6 yW per MOP/sec

« Reliability of greater than 10° hours (~ 10 years) operating lifetime

« SER of less than a few thousand FITs per Mbit in terrestrial environment
« Capable of “mass production” (e.g., > 1 million units /day)

« Ability to integrate logic, analog, RF, memory (high-speed, high-density,
nonvolatile, etc.)



Revolutionary “nano” in
evolutionary “nano” space?

Current drive capability: Except for CNT, wires are
fundamentally same as scaled CMOS

Density: Unless vertically standing, neither CNT nor wire
adds much density improvement

New semiconducting materials or band engineering
provides further current gain

Non-volatile memories can deal with chip power
consumption if endurance/imprint issues solved

3D integration of “revolutionary nano” on top of
“evolutionary nano” could assure continuation of Moore's
law, i.e. density increase with reduced cost/gate or bit



Bulk CMOS

Well doping
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Moore’s Law Increasingly Relies on

Introduction of New Materials
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Summary

Changes from microelectronics to nanoelectronics is beyond the
geometry shrink, but a combination of evolutionary and
revolutionary progress of science and technology

Nanotechnology requires broad spectrum of expertise and cross
disciplinary interactions for people and organization involved from
industry and academia

System on chip integration not only 2D but likely to be 3D with
active layer stacking beyond wafer/die bonding, accompanied by
manufacturing/testability challenges, providing new challenge to
interconnect

Revolutionary “nano” has still a long way to go before any
practical applications in integrated electronics where strong focus
from engineering are needed
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