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Analog Fiber-Optic Link
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Analog Fiber-Optic Link Applications
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Externally Modulated Link

Externally Modulated Analog Fiber Optics Link
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EIM= External Intensity Modulator

• Avoids the relaxation oscillation and reduces the chirp of the 
direct modulated laser diode; good for wide bandwidth modulation.

• Link RF gain, G ~ (Popt)2



Important Analog Link Parameters

1. RF Gain: Output RF power/Input RF power

2. Bandwidth: 3 dB RF gain cut-off frequency bandwidth

3. Noise Figure: Input SNR/Output SNR

4. Spurious Free (or Intermodulation free) Dynamic Range:

RF power range above noise and intermod distortions



RF Gain of the External Intensity Modulated link
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External Modulator Candidates

Electro-optic Modulator: 
(a)  Lithium Niobate
(b)  Semiconductor
(c)  Polymer (large r’s)

Semiconductors typically have smaller EO coefficients; one can also 
exploit the effects near a bandgap.  We will describe those in nanowires 

Electrooptic Modulator

Optical Input Optical Output

RF Input Vπ



* Courtesy of Ed Ackerrman, PSI
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Electroabsorption Modulator

Franz-Keldysh Effect (FKE) Quantum Confined Stark Effect (QCSE)
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Semiconductor Electroabsorption Waveguide Modulators 

Modulator DC photocurrent Im
is caused by electroabsorption
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Broadened optical absorption spectra of a quantum well

1350 1400 1450 1500 1550 1600 1650

5000

10000

15000

Wavelength (nm)

SQ
W

 A
bs

or
pt

io
n 

(c
m

-1
)

E=30 kV/cm
50 kV/cm

70 V/cm
90 V/cm

130 V/cm

1350 1400 1450 1500 1550 1600 1650

5000

10000

15000

Wavelength (nm)

SQ
W

 A
bs

or
pt

io
n 

(c
m

-1
)

E=30 kV/cm
50 kV/cm

70 V/cm
90 V/cm

130 V/cm



Design Strategy for achieving High Link Gain

• To overcome the RC bandwidth limit with minimum 
reduction of the modulation efficiency.

• To achieve high RF link gain, high power operation with 
good coupling to fiber is needed.

• Low optical residual propagation loss to ensure small 
insertion loss.

• Large optical/microwave field interaction volume to 
ensure low Vπ, hence high RF link gain.
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Intra Step Quantum Well (IQW) 
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By placing the active absorption layer in the evanescent portion of the optical 
mode, we can decouple the optical waveguide design & electroabsorption 
material design. 

Peripheral Coupled Waveguide Electro-absorption 
Modulator 

• Small confinement factor !!



Optical Mode and Confinement Factor in EAM

• Smaller confinement factor
• Larger optical mode
• Smaller scattering loss
• Decoupling between optical 

and microwave waveguide

Confinement factor Γ: the ratio of 
optical power within the active 
absorption layer.

Typical EAM PCW EAM



Reducing Insertion Loss

• Large optical mode improves fiber 
to EAM coupling to be around 2 dB 
per facet;

• Submerged mode reduces 
scattering loss;

• Small confinement factor reduces 
propagation loss with best result of 
0.8 dB/mm;

• Best fiber-to-fiber loss was 
measured to be 4 dB.



Absorption along EAM Waveguide

Normalized Absorption Coefficient ΓL=7



PCW EAM Waveguide Design

Microwave 
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W1=1.5μm, W2=W1+4μm W1=2μm, W2=W1+4μm W1=2μm, W2=W1+8μm

Confinement factor. = 2.64% 4.26% 3.44%
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Fabricated PCW EAM



High Power EAM

590 mW input optical power
222 mA photocurrent

Link gain higher close to 
transparency



Gain Limitation of EM modulator

Small-signal Equivalent circuit of EA Modulator: Effect of Modulator Photocurrent

Analog fiber link



The modulator photocurrent at the biasing point is given by:

We can define an effective small-signal ac photocurrent resistance RP:

It is seen that as power go up, RP decrease in value, therefore the link gain 
saturates under high power, reaching a limit independent of power or Vπe:
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Analysis of photocurrent feedback effect on Gain

For simplicity, consider low frequency modulation, the effect of Cp, CM L’s can be 
neglected, defining ηm as the modulator photocurrent efficiency:
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Gain Saturation

G. E. Betts et al., PTL, 2006



Modulator Input Impedance
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Experimental Verification of Photocurrent Effect

Measured gain closely matches gain from model.

ηM =0.8 A/W

ηD = 0.8 A/W

tI = tO = -3 dB
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Possible solutions: 

1. Blue shift Quantum Confined Stark Effect: 

Red-shift (regular) QCSE EAM: positive 
equivalent resistance

Blue-shift QCSE EAM: negative 
equivalent resistance
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S.K. Haywood, et al., “Demonstration of a blueshift 
in type II asymmetric InP/InAsP/InGaAs multiple 
quantum wells,” Journal of Applied Physics, Vol. 94, 
No. 5, pp. 3222-3228, September, 2003. 

Pre-biased quantum well 
structure for blue-shift 
QCSE
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2. By reducing the photocurrent generates inside the QWs. 

This can be done via “defects”, or by enhancing the probability 
that electrons and holes can combine through localization.

Possible Solutions (Cont’d)
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Linearity of Analog Fiber-Optic Link: Two-tone SFDR

Analog Fiber-Optic 
Linkf1 f2 f1 f2
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EAM as a Negative Feedback System at High Power
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Negative Feedback System for Improving Linearity
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High Power EAM Linearity Analysis (cont’d)

SFDR of 135 dB/Hz2/3 at 700 mW



PCW EAM SFDRs

At 80 mW optical input power,
• Multi-octave SFDR of 118 dB-Hz2/3, sub-octave SFDR of 132 dB-Hz4/5.

Multi-octave SFDR Sub-octave SFDR
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Electrooptic Coefficient

• Electrooptic effect:

• Linear electrooptic coefficient, r, of quantum dots:
– 1CdSe (dispersed in polymer) 5-60 pm/V

– 2InAs (grown on GaAs substrate) 243 pm/V 
– 2In0.4Ga0.6As (grown on GaAs substrate) 25.8 pm/V 

• QD systems exhibit 1-2 orders of magnitude enhancement over 
bulk electrooptic coefficient, due to quantum confinement effects 
and surface effects

• In the same token, it would be of much interest to examine the 
electrooptic coefficient of nanowires

( ) lkijklkijkij EEsErn +=Δ 21

1F. Zhang, L. Zhang, Y. X. Wang, and R. Claus, Appl. Opt. 44, 3969 (2005).
2S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, J. Vac. Sci. Technol. B 19, 1455 (2001).



1) Heat Sample in MOCVD reactor under PH3 flow

2) Start TMIn flow

3) Indium droplets form

4) Nanowire begins to grow

InP
Substrate

InP Nanowire Growth 



Optimized Growth 

Very uniform diameter, length

High density (~109NWs/cm2)

Tg=450 oC
V/III ~ 25



Test Structure

ProbeNWs under test
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• NW electrooptic coefficient exhibits an enhancement of 1-2 orders of magnitude over 
bulk InP

• Largest figure of merit is 20 times larger than LiNbO3

This fabrication technique provides a method to transfer a layer of aligned NWs to a 
host substrate.
A waveguide with embedded NWs could provide adequate phase modulation.

Measurement Results



Conclusion

• Major advances in link gain has been made in links using 
lithium niobate MZM modulator

• The electroabsorption modulator (EAM) can be designed to 
have low optical loss and high power properties

• The RF link gain using EAM saturates due to the photocurrent 
feedback effect which may be alleviated using blue shifted 
QCSE; or by reducing the photocurrent generated.

• Nonetheless, electroaborption modulators can  achieve high 
SFDR due to the same feedback effect. 

• InP nanowires have great potential for effective electro-optic 
modulation.
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