

Optical Modulators for Transparent Analog Fiber Link

P. K. L. Yu, X.B. Xie*, G. E. Betts**, I. Shubin***, Clint Novotny, W. S. C. Chang Department of ECE University of California, San Diego

IEEE Electron Devices Society Colloquium UCF, Orlando, Feb 21-22, 2008

* Now with CREOL, Univ. of Central Florida ** With Photonic Systems Inc. Boston, Mass. USA *** Now with Sun MicroSystems, San Diego **Outline of Presentation**

- Introduction: Analog fiber link
- Electroabsorption Modulator
- Multiple Quantum Wells and Gain Saturation
- Large SFDR modulation
- E-O effect in InP nanowires
- Conclusion

Analog Fiber-Optic Link

Phased Array Antenna

Externally Modulated Link

• Avoids the relaxation oscillation and reduces the chirp of the direct modulated laser diode; good for wide bandwidth modulation.

- 1. RF Gain: Output RF power/Input RF power
- 2. Bandwidth: 3 dB RF gain cut-off frequency bandwidth
- 3. Noise Figure: Input SNR/Output SNR
- 4. Spurious Free (or Intermodulation free) Dynamic Range: RF power range above noise and intermod distortions
 SNR
 Dynamic
 Range
 UMF
 Dynamic
 Range
 Noise Floor
 Noise Floor

Electro-optic Modulator:

- (a) Lithium Niobate
- (b) Semiconductor
- (c) Polymer (large r's)

Semiconductors typically have smaller EO coefficients; one can also exploit the effects near a bandgap. We will describe those in nanowires

* Courtesy of Ed Ackerrman, PSI

Outline of Presentation

- Introduction: Analog fiber link
- Electroabsorption Modulator
- Multiple Quantum Wells and Gain Saturation
- Large SFDR modulation
- E-O effect in InP nanowires
- Conclusion

Electroabsorption Modulator

Franz-Keldysh Effect (FKE)

Quantum Confined Stark Effect (QCSE)

Outline of Presentation

- Introduction: Analog fiber link
- Electroabsorption Modulator
- Multiple Quantum Wells and Gain Saturation
- Large SFDR modulation
- E-O effect in InP nanowires
- Conclusion

$$G = P_{opt}^{2} \left[\frac{\pi^{2} t_{ff}^{2} R_{in}}{V_{\pi}^{2}} \right] \cdot L_{f}^{2} \cdot \left[\mathbb{R}_{d}^{2} R_{out} \right]$$

- To overcome the RC bandwidth limit with minimum reduction of the modulation efficiency.
- To achieve high RF link gain, high power operation with good coupling to fiber is needed.
- Low optical residual propagation loss to ensure small insertion loss.
- Large optical/microwave field interaction volume to ensure low V_{π} , hence high RF link gain.

Intra Step Quantum Well (IQW)

Peripheral Coupled Waveguide Electro-absorption Modulator

Semi-insulating InP Substrate

• Small confinement factor !!

By placing the active absorption layer in the evanescent portion of the optical mode, we can decouple the optical waveguide design & electroabsorption material design.

Typical EAM

Confinement factor Γ : the ratio of optical power within the active absorption layer.

PCW EAM

- Smaller confinement factor
- Larger optical mode
- Smaller scattering loss
- Decoupling between optical and microwave waveguide

- Large optical mode improves fiber to EAM coupling to be around 2 dB per facet;
- Submerged mode reduces scattering loss;
- Small confinement factor reduces propagation loss with best result of 0.8 dB/mm;
- Best fiber-to-fiber loss was measured to be 4 dB.

PCW EAM Waveguide Design

Peripheral Coupled Waveguide EA modulator

(length = 1.2 mm)

Fabricated PCW EAM

High Power EAM

Gain Limitation of EM modulator

Analog fiber link

Small-signal Equivalent circuit of EA Modulator: Effect of Modulator Photocurrent

For simplicity, consider low frequency modulation, the effect of C_p , C_M L's can be neglected, defining η_m as the modulator photocurrent efficiency:

The modulator photocurrent at the biasing point is given by:

$$i_P = p_{IN} \eta_M (1 - t_B) + p_{IN} \eta_M \frac{\pi}{2V_{\pi e}} v_m$$

We can define an effective small-signal ac photocurrent resistance R_P :

$$R_P = \frac{2V_{\pi e}}{p_L t_I \eta_M \pi}$$

It is seen that as power go up, R_P decrease in value, therefore the link gain saturates under high power, reaching a limit independent of power or $V_{\pi e}$:

$$G \propto \left[\left(\frac{p_L}{V_{\pi e}} \right)^2 \right] \left[\frac{1}{1 + \frac{1}{R_P} \left(R_M + \frac{R_L R_S}{R_L + R_S} \right)} \right]^2 \longrightarrow G_{Limit} = \left(\frac{t_O \eta_D}{\eta_M} \right)^2 \frac{4 \frac{R_D}{R_S}}{\left(1 + \frac{R_M}{R_S} + \frac{R_M}{R_L} \right)^2}$$

G. E. Betts et al., PTL, 2006

As photocurrent becomes large, input impedance approaches modulator series resistance R_M

Measured gain closely matches gain from model.

1. Blue shift Quantum Confined Stark Effect:

Red-shift (regular) QCSE EAM: positive equivalent resistance

Blue-shift QCSE EAM: negative equivalent resistance

$$g = \left[\left(\frac{p_L t_I t_O \eta_D \pi}{2V_{\pi e}} \right)^2 R_D R_L \right] \left[\frac{4R_L R_S}{(R_L + R_S)^2} \right] \left[\frac{1}{1 - \frac{p_L t_I \eta_M \pi}{2V_{\pi e}}} \left(R_M + \frac{R_L R_S}{R_L + R_S} \right) \right]^2$$

Pre-biased quantum well structure for blue-shift QCSE

S.K. Haywood, *et al.*, "Demonstration of a blueshift in type II asymmetric InP/InAsP/InGaAs multiple quantum wells," *Journal of Applied Physics*, Vol. 94, No. 5, pp. 3222-3228, September, 2003.

2. By reducing the photocurrent generates inside the QWs.

This can be done via "defects", or by enhancing the probability that electrons and holes can combine through localization.

Outline of Presentation

- Introduction: Analog fiber link
- Electroabsorption Modulator
- Multiple Quantum Wells and Gain Saturation
- Large SFDR modulation
- E-O effect in InP nanowires
- Conclusion

Linearity of Analog Fiber-Optic Link: Two-tone SFDR

Negative Feedback System for Improving Linearity

EAM Link with Photocurrent Feedback

$$G = \frac{P_L t_I t_O \eta_D \pi}{V_{\pi e}} \frac{R_L}{R_L + R_S} \sqrt{R_D R_S}$$

$$f = \frac{(R_S + R_M)\eta_M}{2\eta_D R_D t_O}$$

where

$$k = 1 - P_L t_I t_P \eta_M \left(R_S + R_M \right) \frac{dT}{dV_M} = 1 + \frac{P_L t_I t_P \eta_M \left(R_S + R_M \right) \pi}{2V_\pi} = 1 + \frac{R_s + R_m}{R_P}$$

SFDR of 135 dB/Hz^{2/3} at 700 mW

PCW EAM SFDRs

At 80 mW optical input power,

• Multi-octave SFDR of 118 dB-Hz^{2/3}, sub-octave SFDR of 132 dB-Hz^{4/5}.

Outline of Presentation

- Introduction: Analog fiber link
- Electroabsorption Modulator
- Multiple Quantum Wells and Gain Saturation
- Large SFDR modulation
- E-O effect in InP nanowires
- Conclusion

• Electrooptic effect:

$$\Delta \left(\frac{1}{n^2} \right)_{ij} = r_{ijk} E_k + s_{ijkl} E_k E_l$$

- Linear electrooptic coefficient, *r*, of quantum dots:
 - − ¹CdSe (dispersed in polymer) \rightarrow 5-60 pm/V
 - − ²InAs (grown on GaAs substrate) → 243 pm/V
 - − ${}^{2}In_{0.4}Ga_{0.6}As$ (grown on GaAs substrate)→25.8 pm/V
- QD systems exhibit 1-2 orders of magnitude enhancement over bulk electrooptic coefficient, due to quantum confinement effects and surface effects
- In the same token, it would be of much interest to examine the electrooptic coefficient of nanowires

¹F. Zhang, L. Zhang, Y. X. Wang, and R. Claus, Appl. Opt. 44, 3969 (2005).

²S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, J. Vac. Sci. Technol. B 19, 1455 (2001).

- 1) Heat Sample in MOCVD reactor under PH_3 flow
- 2) Start TMIn flow

Optimized Growth

Test Structure

	Diameter (nm)	Fill Factor	r (pm/V)	n³r (pm/V)
InP NW	24 – 50	0.83 – 4.50 %	31 – 147	1010 – 4817
Bulk InP	N/A	N/A	1.53	50
Bulk LiNbO ₃	N/A	N/A	$r_{33} = 34.1$ $n_e = 2.14$ $r_{13} = 10.3$ $n_o = 2.22$	n _e ³ r ₃₃ - n _o ³ r ₁₃ = 222

- NW electrooptic coefficient exhibits an enhancement of 1-2 orders of magnitude over bulk InP
- Largest figure of merit is 20 times larger than LiNbO₃
- This fabrication technique provides a method to transfer a layer of aligned NWs to a host substrate.
- > A waveguide with embedded NWs could provide adequate phase modulation.

- Major advances in link gain has been made in links using lithium niobate MZM modulator
- The electroabsorption modulator (EAM) can be designed to have low optical loss and high power properties
- The RF link gain using EAM saturates due to the photocurrent feedback effect which may be alleviated using blue shifted QCSE; or by reducing the photocurrent generated.
- Nonetheless, electroaborption modulators can achieve high SFDR due to the same feedback effect.
- InP nanowires have great potential for effective electro-optic modulation.

We would like to acknowledge contribution of information from:

G. Betts, C. H. Cox, Ed Ackermann, and Bill Burns at Photonics System Inc. Graduate students and faculty at UCSD

The work at UCSD has been funded by USAF, DARPA, PSI, Lockheed Martin, Multiplex, and NSF.