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Analog Fiber-Optic Link Applications
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Externally Modulated Analog Fiber Optics Link

UCSD
Externally Modulated Link
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EIM= External Intensity Modulator

» Avoids the relaxation oscillation and reduces the chirp of the
direct modulated laser diode; good for wide bandwidth modulation.

* Link RF gain, G ~ (P,)?
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Important Analog Link Parameters UCSD

RF Gain: Output RF power/Input RF power
Bandwidth: 3 dB RF gain cut-off frequency bandwidth
Noise Figure: Input SNR/Output SNR

Spurious Free (or Intermodulation free) Dynamic Range:

RF power range above noise and intermod distortions

SMNR
Dynamic
Range




RF Gain of the External Intensity Modulated link 55
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RF Gain as a function of V, at different optical powers =5
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External Modulator Candidates | Q'
UCSD

Electro-optic Modulator:
(a) Lithium Niobate

(b) Semiconductor

(c) Polymer (large r's)

Semiconductors typically have smaller EO coefficients; one can also
exploit the effects near a bandgap. We will describe those in nanowires

MZM Optical Transfer Curve

Electrooptic Modulator
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State-of-the-Art LINbO4 Externally Modulated Link U?;SD
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Franz-Keldysh Effect (FKE)
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Electroabsorption Modulator

Bias and RF Sign
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Quantum Confined Stark Effect (QCSE)
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Semiconductor Electroabsorption Waveguide Modulators UCSD

Modulator DC photocurrent I,
is caused by electroabsorption |
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Broadened optical absorption spectra of a quantum well

>
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SQW Absorption (cm1)
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Design Strategy for achieving High Link Gain UCSD

t2R
G= I:)opt2|:7z- foz = |- I—f2 '[RgRout]
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To overcome the RC bandwidth limit with minimum
reduction of the modulation efficiency.

To achieve high RF link gain, high power operation with
good coupling to fiber is needed.

Low optical residual propagation loss to ensure small
insertion loss.

Large optical/microwave field interaction volume to
ensure low V_, hence high RF link gain.
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Intra Step Quantum Well (IQW) =

UCSD

Electric field
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Peripheral Coupled Waveguide Electro-absorption =

n-Metal

Modulator

p-Metal

/
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_»P"-InGaAs

L p-lnP

_vi-MQW
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n-ln

I-lnGaAsP

Semi-insulating InP Substrate

 Small confinement factor !!

By placing the active absorption layer in the evanescent portion of the optical
mode, we can decouple the optical waveguide design & electroabsorption

material design.
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Optical Mode and Confinement Factor in EAM  ucsD

Typical EAM PCW EAM

Confinement factor I': the ratio of
optical power within the active
absorption layer.
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Reducing Insertion Loss UCSD

 Large optical mode improves fiber
to EAM coupling to be around 2 dB
per facet;

« Submerged mode reduces
scattering loss;

 Small confinement factor reduces
propagation loss with best result of
0.8 dB/mm:;

o Best fiber-to-fiber loss was
measured to be 4 dB.




Absorption along EAM Waveguide UeSD

EAM Waveguide Absorption Profile
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PCW EAM Waveguide Design UCSD
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Modulator Current (mA)

Peripheral Coupled Waveguide EA modulator
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Reverse Bias Voltage (V)
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Fabricated PCW EAM UCSD
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High Power EAM UCSD
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Gain Limitation of EM modulator =
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Analog fiber link

Electrical Input

Laser

PL

Pin

Modulator

t

to

Pour

Detector
R%

Small-signal Equivalent circuit of EA Modulator: Effect of Modulator Photocurrent

O =

=

Source

Modulator

Term.



—
—
—

Analysis of photocurrent feedback effect on Gain 'ué[)

For simplicity, consider low frequency modulation, the effect of C,, Cy, L's can be
neglected, defining n,, as the modulator photocurrent efficiency:

The modulator photocurrent at the biasing point is given by:

; T
Ip = PiniIm A—tg) + PiNTIM oy Um
e

We can define an effective small-signal ac photocurrent resistance Rp:

N

Rois
IRYY/IVEA

It is seen that as power go up, Ry decrease in value, therefore the link gain
saturates under high power, reaching a limit independent of power or V_:

| T Rp

) 2
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Gain Saturation
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Modulator Input Impedance
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As photocurrent becomes large, input impedance
approaches modulator series resistance R,,
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Experimental Verification of Photocurrent Effect

Gain (dB)
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—O— Measured Gain

Calculated Gain

—/x— Photocurrent
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Measured gain closely matches gain from model.
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Possible solutions:

1. Blue shift Quantum Confined Stark Effect:

2 Ru

4R R

>
UCSD

Red-shift (regular) QCSE EAM: positive
equivalent resistance

Blue-shift QCSE EAM: negative
equivalent resistance

RS R




Material Structures

Pre-biased quantum well
structure for blue-shift
QCSE
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S.K. Haywood, et al., “Demonstration of a blueshift
in type Il asymmetric InP/InAsP/InGaAs multiple

guantum wells,” Journal of Applied Physics, Vol. 94,

No. 5, pp. 3222-3228, September, 2003.

Absorption Coefficient (cm-1)

Calculated Absorption
Spectrum of Blue-shift QCSE
material
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Possible Solutions (Cont’d)

2. By reducing the photocurrent generates inside the QWs.

This can be done via “defects”, or by enhancing the probability
that electrons and holes can combine through localization.

A
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Linearity of Analog Fiber-Optic Link: Two-tone SFDR
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EAM as a Negative Feedback System at High Power

Source Modulator Photodetector
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Negative Feedback System for Improving Linearity —~<_
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Electronic Negative Feedback System
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SFDR improves even as the modulator saturates
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High Power EAM Linearity Analysis (cont’d)

Link Multi-octave SFDR (dB/Hz??)
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PCW EAM SFDRs
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Electrooptic Coefficient

« Electrooptic effect:
2
A(l/n )ij = I By + S B E

« Linear electrooptic coefficient, r, of quantum dots:
— 1CdSe (dispersed in polymer) - 5-60 pm/V
— 2InAs (grown on GaAs substrate)> 243 pm/V
— 2?Iny ,Ga, sAs (grown on GaAs substrate)>25.8 pm/V

QD systems exhibit 1-2 orders of magnitude enhancement over
bulk electrooptic coefficient, due to quantum confinement effects
and surface effects

 |n the same token, it would be of much interest to examine the
electrooptic coefficient of nanowires

IF. Zhang, L. Zhang, Y. X. Wang, and R. Claus, Appl. Opt. 44, 3969 (2005).
2S. Ghosh, A. S. Lenihan, M. V. G. Dutt, O. Qasaimeh, D. G. Steel, and P. Bhattacharya, J. Vac. Sci. Technol. B 19, 1455 (2001).
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INP Nanowire Growth U
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1) Heat Sample in MOCVD reactor under PH; flow
2) Start TMIn flow

3) Indium droplets form o o

4) Nanowire begins to grow

InP
Substrate
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Optimized Growth
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Very uniform diameter, length

High density (~10°NWs/cm?)

Acc Spot Magn Det WD f—— 2 um
20000 kY 2.0 BOODx SE 17.2 SIS XLTIF



Test Structure
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Measurement Results
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Diameter
(nm) Fill Factor r (pm/V) n’r (pm/V)

InP NW 24 — 50 0.83 — 4.50 % 31 -147 1010 — 4817
Bulk InP N/A N/A 1.53 50

Bulk M35 = 34.1 Ne = 214 N 3[‘33 - h 3[‘13 =

) N/A N/A © °
LiNbO; r3=103 ny =222 222

NW electrooptic coefficient exhibits an enhancement of 1-2 orders of magnitude over

bulk InP

Largest figure of merit is 20 times larger than LINbO,

host substrate.

This fabrication technique provides a method to transfer a layer of aligned NWs to a

A waveguide with embedded NWs could provide adequate phase modulation.
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Conclusion

Major advances in link gain has been made in links using
lithium niobate MZM modulator

The electroabsorption modulator (EAM) can be designed to
have low optical loss and high power properties

The RF link gain using EAM saturates due to the photocurrent
feedback effect which may be alleviated using blue shifted
QCSE; or by reducing the photocurrent generated.
Nonetheless, electroaborption modulators can achieve high
SFDR due to the same feedback effect.

InP nanowires have great potential for effective electro-optic
modulation.
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