
Designing Electrical Overstress Robust Integrated Circuits

Jim Vinson Sr. Engineering Manager Corporate Process Reliability jvinson@intersil.com

February 21, 2008

Outline

- The Design Process
- EOS Overview Know your enemy
- EOS Sources
- Debugging EOS Damage
- Concluding Remarks

The Design Process

Page 4 Copyright Intersil 2008

The Design Process – Circuit Design

- Marketing Identifies a need in the market
- A set of features and objective specifications developed
 - Datasheet; Customer Drawing; etc.
- Suitable process/design group selected
 - Pick a technology (wafer and packaging)
- Cost estimates made to see if profitable
- Product designed (key circuit blocks)
 - Schematic capture and simulation to meet specs
- Circuit implemented in silicon and packaged
 - Layout, packing to smallest die size, placement for package
- Test and qualify product
 - Build material and stress it (HTOL, Temp Cycle, Storage, etc.)
- Release

The Design Process – EOS Robust

- Marketing Identifies a need in the market
- A set of features and objective specifications developed
 - What environment must this part survive?
 - Can we specify its EOS exposure risks?
 - Where do we draw the line (what risks are acceptable)?
- Suitable process/design group selected
 - Pick a technology (wafer and packaging) based on its EOS exposure
 - Do I need higher breakdowns? Special Structure for EOS?
 - Supply external components? Co-package EOS protection with a die?
- Cost estimates made to see if profitable
- Product designed (key circuit blocks)
 - Schematic capture and simulation to meet specs
 - Develop special EOS robust element in selected process
- Circuit implemented in silicon and packaged
 - Layout, packing to smallest die size, placement for package
- Test and qualify product
 - Build material and stress it (HTOL, Temp Cycle, Storage, etc.)
 - How do I quantify the EOS robustness?
- Release

Basic EOS Events

- All Circuits must meet these
- Electrostatic Discharge
 - Human Body Model (HBM, JEDEC JESD22-A114D)
 - 2000v ~ 1.3 amps peak current; 750ns duration
 - Machine Model (MM, JEDEC JESD22-A115-A)
 - 200v ~ 3.2 amps peak current; decaying sine wave
 - Charge Device Model (CDM, JEDEC JESD22-C101C)
 - 1000v ~11.5 amps peak current; 2-3ns duration
- Latchup Testing (JEDEC JESD78A)
 - 1.5x supply voltage (i.e. 5v supply stress at 7.5v)
 - 100mA current pulse into and out of each pin
 - Up to 1 second duration

Other EOS Environments

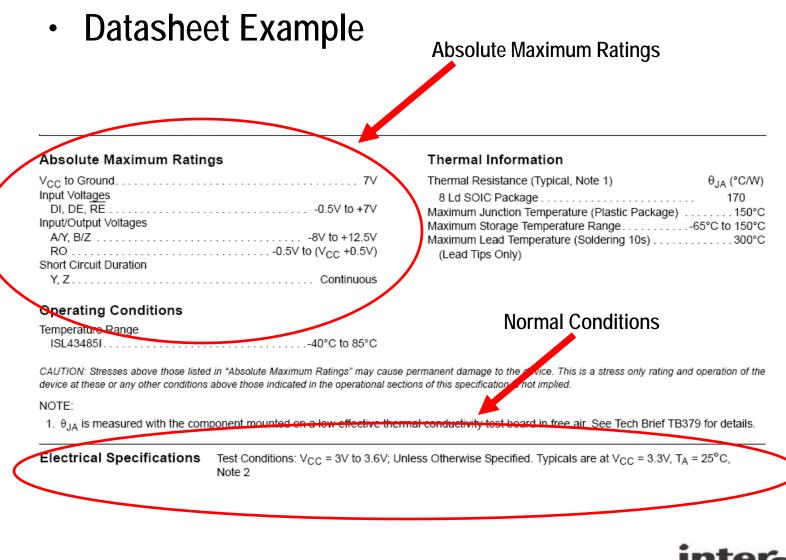
- Communications
 - Subject to Power surges on power lines
 - Lightning hits power or signal lines
 - Fault condition induces voltage spike
- Electrostatic Discharge
 - Cable discharge
 - High Level ESD (15KV)
- Battery Operated Electronics
 - Batter reverse insertion
- Automobile Industry
 - DC power provided by battery/charging system
 - Fault could induce voltage/current spikes in electrical system
- Careless consumer or technician
 - Uses wrong power adapter (12v instead of 5v)
 - Accidentally drops conductive material shorting two nodes together
 - Installs wrong component (driver-driver instead of driver-receiver)

EOS Environments

- Numerous ways parts can be damaged by EOS
- Cost prohibitive to protect against all forms of EOS
- Keys to EOS Robust Designs
 - Know the EOS environment
 - Identify major threats
 - Protect against these threats

EOS Overview

Page 10 Copyright Intersil 2008


- Electrical Overstress Definition
 - Any electrical stimulus (voltage or current) that exceeds a part's rated operating conditions
 - Very broad category of stress
 - Nanoseconds to milliseconds (sometimes days) in duration
 - pJ to KJ in energy
 - Failure modes are dependent on the magnitude and duration of the stress; Voltage developed can initiate current paths that cause failure

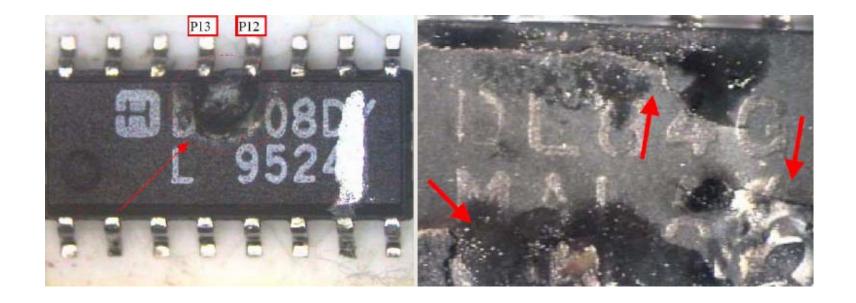
Operating Conditions

- Defined on the datasheet
- Absolute Maximum Ratings list upper range of voltages/currents allowed

IGH PERFORMANCE ANALO

Page 12 Copyright Intersil 2008

- Types of EOS Damage
 - Melted Package
 - Blown or fused bond wire
 - Fused/melted interconnect
 - Shorted transistor
 - Open Resistor

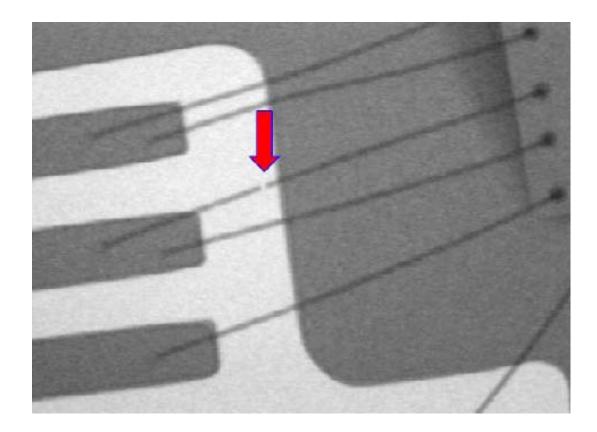


E NUMBER ONE SOURCE FOR HIGH PERFORM

EOS Overview – Know your enemy

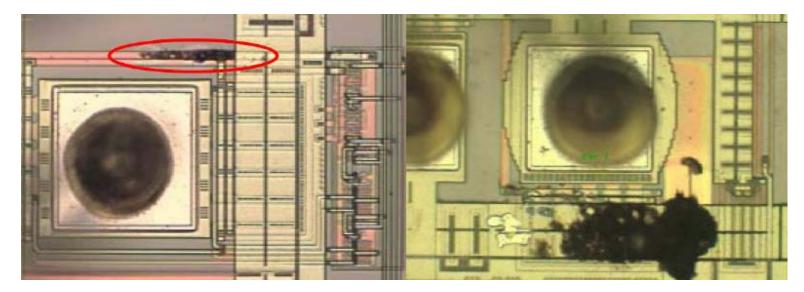
• Extreme EOS – Melted package

- Temperature exceeded 200°C

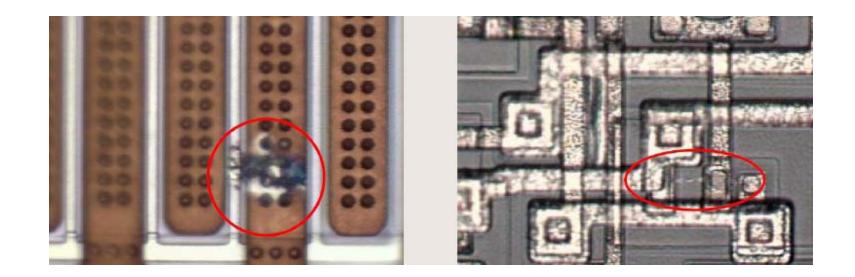


Page 14 Copyright Intersil 2008

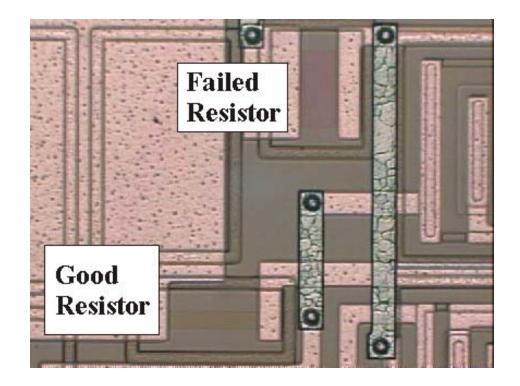
- Blown Bond Wire
 - Takes about 1 to 1.5 amps of current and a few ms to seconds
 - Gold wire melts at about 1060°C; Aluminum wire at about 660°C



Page 15 Copyright Intersil 2008


- On chip metallization damage
 - Aluminum metal melts at ~660°C

- Transistor Damage
 - The amount of damage is related to the pulse magnitude and its duration; larger and longer produce more damage
 - Silicon melts at ~1400°C



Page 17 Copyright Intersil 2008

- Some damage can be very difficult to see
- Only difference between these two thin film resistors is a color difference
- The failed resistor is electrically open

MBER ONE SOURCE FOR HIGH PERFORM

EOS Overview – Know your enemy

- Why is EOS important?
 - Safety
 - EOS damage to a part can start a fire
 - Heat generated can cause burns
 - Collateral damage to surrounding equipment
 - Cost
 - EOS is the largest cause of failure (~25-50% of all failures)
 - Loss of customer confidence in your products
 - Loss of customer business

• How Does EOS Occur?

- Nature/Environmental
 - Lightning
 - Power Distribution
 - Machines, Relays, and Coils (inductive elements)
- Accident or Component Failure
 - Plug a part in wrong
 - Use wrong power adapter
 - Place a conductive object across power bus
 - Voltage regular fails (5v goes to 20v)
 - HV element fails shorting two power domains

How Does EOS Occur?

- Design Issues
 - Process doesn't match application
 - Voltage ratings too low
 - · Layout of circuit board too inductive/resistive
 - Switching current produce high voltage transients
 - Layout of chip creates parasitic transistor/SCR
 - Latchup threat; noise triggers parasitic element into failure
 - Floating nodes in CMOS; Large shoot through current
 - Select wrong ESD Protection for application;
 - sensitive to false triggers while power applied
 - Violations in Safe Operating Area for power elements
 - Current Density, J, and/or di/dt ratings
 - Power ratings
 - Voltage ratings

- What causes Failure?
 - - Melted Junctions
 - Metal Lines
 - Bond Wires
 - Packages
 - Electric Field Induced Creates an undesired path
 - Dielectric breakdown
 - Device Breakdown

Page 22 Copyright Intersil 2008

HE NUMBER ONE SOURCE FOR HIGH PERFORMANCE ANALOG

EOS Failure Models

- Wunsch and Bell, "Determination of threshold failure levels of semiconductor diodes and transistors due to pulse power voltages," *IEEE Trans. Nuclear Science*, vol. 15, pp. 244 – 259, 1968.
- Dwyer, Franklin, Campbell, "Thermal failure in semiconductor devices," Solid State electronics, vol. 33, pp. 553 – 560, May 1990.

Failure threshold related to duration of the EOS event

- Shorter events require higher power to produce failures
- Minimum power that will cause damage
 - Below this threshold no damage is seen

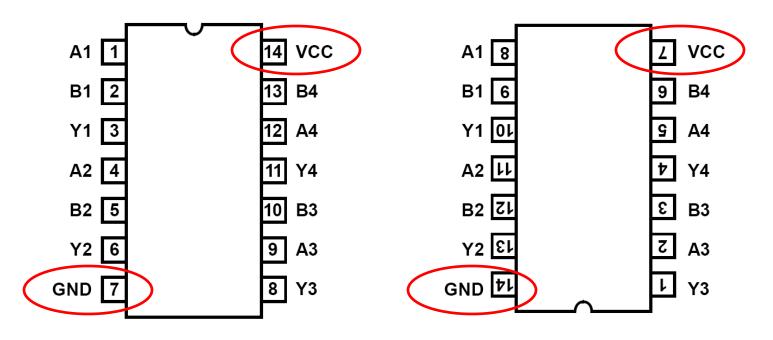
Page 24 Copyright Intersil 2008

Nature/Environment

- Lightning
 - Florida is the known as the lightning capital of the world
 - Lightning Tracker @ http://www.flamedia.com/
 - Most electronics will not have to withstand a direct strike
 - MOV Metal oxide varistor
 - TVS Transient Voltage Suppressor
 - <u>http://www.littelfuse.com/</u> (sold our TVS line)
 - These elements take the first part of the strike but may pass some energy to the board assembly or integrated circuit
 - Local protection at the board may be needed
 - Need to determine what gets to the IC and design for this
- IEC 61000-4-4 Electrical fast transient/burst immunity test
 - Repetitive electrical fast transients
- IEC 61000-4-5 Surge immunity test
 - Unidirectional surges caused by over voltages from switching an lightning transients

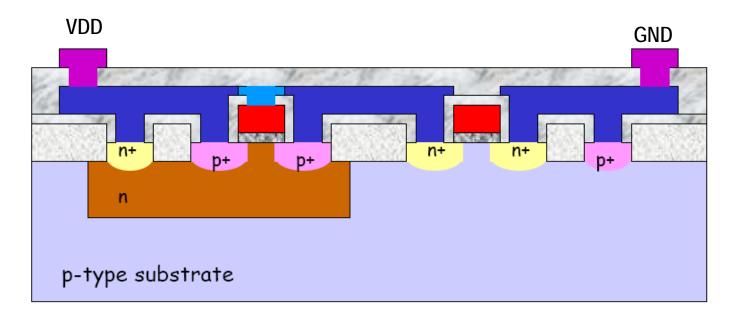
IUMBER ONE SOURCE FOR HIGH PERFORMANCE AN

Nature/Environment


- Power surges
 - Motors, relays, and other inductive loads create voltage transients that are felt on the power bus
 - Common example is turning on a vacuum cleaner while listen to the radio. A lot of noise is generated in the power line and radiated from the motor
 - A/C turns on and the lights dim/flicker
 - Newer electronics have filters built into the power support to suppress this noise but if the magnitude is high enough it could trigger undesirable current paths
- Power Grid Failure/Fault
 - Transformer failure sends a surge into your house
 - Tree falls on power lines shorting out multiple phases

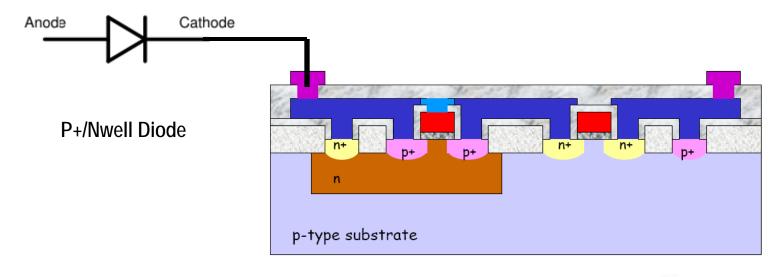
Accident or Component Failure

- Reverse Insertion of a component
 - Small size components can make it difficult to see pin 1
 - Non-automated testing may place a part in the socket rotated
 - Swapping Power and Ground forward biases isolation diodes



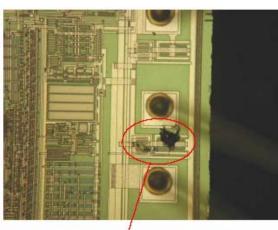
E NUMBER ONE SOURCE FOR HIGH PERFORMANCE ANALOG

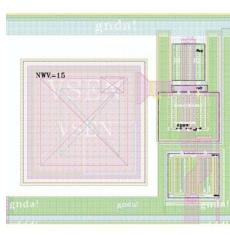
- PMOS transistors are formed in an NWELL
 - Body tie of PMOS is VDD
- NMOS transistor are formed in the P Sub
 - Body tie of NMOS is GND
- IF the VDD and GND connection are reversed a forward biased diode would exist between Psub and NWELL
- Current is limited by well/sub resistance and external connection
 - Amps of current will flow
 - Typical failure is a bond wire fused open

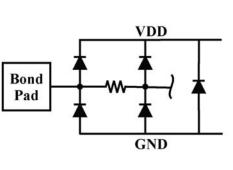


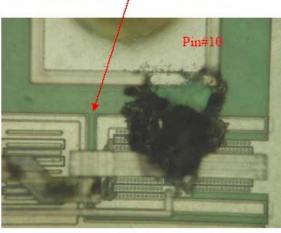
Page 28 Copyright Intersil 2008

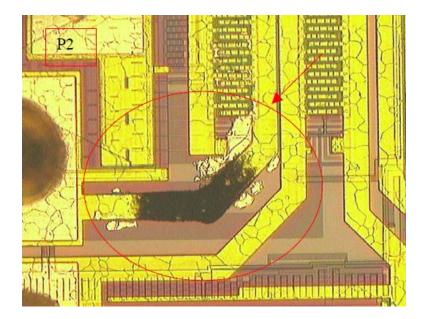
- Reverse Battery Protection
 - Could provide protection with a simple diode or PMOS (gate ground)
 - Problem is all current for chip comes through single element
 - single source of failure
 - Element size needs to accommodate the supply current
 - Creates a voltage drop (0.6v for diode; PMOS less depending on size) on the supply line
 - ESD needs to be addressed (blocking junction for reverse strike)


Page 29 Copyright Intersil 2008



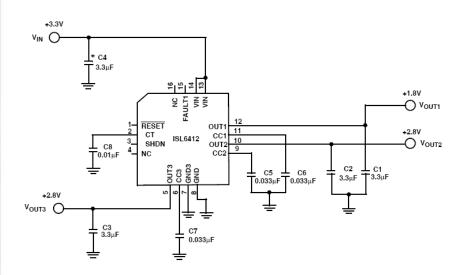

- Design/Layout Issues
 - Many of the correctable issues originate here
 - Causes can be traced to each level of the product
 - IC layout issues (feedback pin on PWM)
 - Improper design of input structure
 - ESD protection minimal; Metal connection too small
 - Failure caused by EOS of metal during an over voltage event
 - Printed Circuit Board layout and component selection
 - Noise generated on PCB triggers ESD Protection (inductive spikes)
 - Noise exceeds Absolute Maximum Ratings of part (triggers ESD elements)
 - Customer does not want to change board
 - Competitor does not blow up so you are designed out if not fixed
 - Understand the Safe Operating Area (SOA)
 - Know your application
 - » In-rush current; Voltage ratings; Power ratings
 - SOA defines your voltage, current, and power ratings for the device
 - Defined based on DC or pulsed duty cycle
 - Exceed these limits and the device could fail

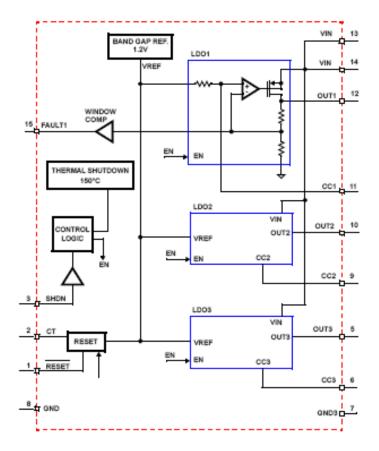



- Failure caused by narrow metal connecting pad to input protection diodes and relatively small ESD protection (~1500 volt HBM)
- Metal fused open

Page 31 Copyright Intersil 2008

- Two ESD clamps shown in photo
- Metal connecting one clamp is fused
- Clamp triggered while power applied to the device
- Fix by controlling the board layout and noise generation
- Ultimately we need to be careful what clamps are used on noisy pins so they are robust to the noise expected





THE NUMBER ONE SOURCE FOR HIGH PERFORMANCE ANAL

- Linear Regulator
- If output capacitor too large during power up a large surge current felt on the output to charge the capacitor
- If this current exceeds the PMOS SOA it could be damaged
- Proper component selection is important; follow recommendations

HE NUMBER ONE SOURCE FOR HIGH PERFORMANCE ANALOG

Page 33 Copyright Intersil 2008

Debugging EOS

Page 34 Copyright Intersil 2008

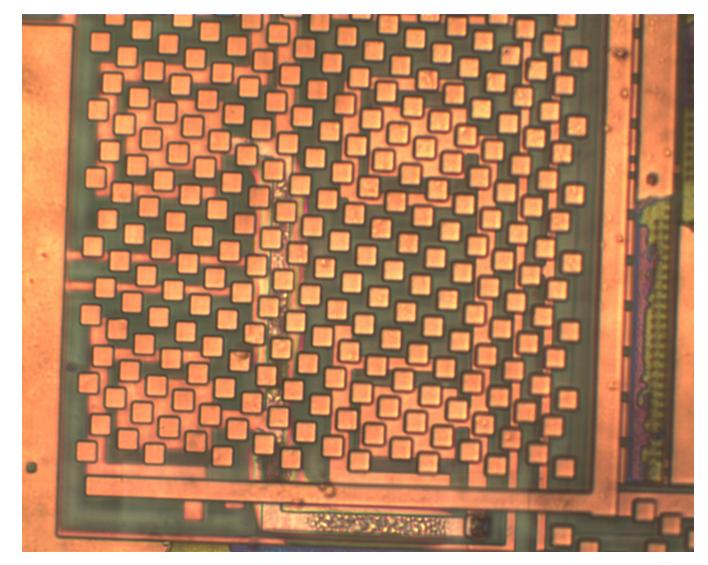
• Reference:

- Vinson, "The Search for the Elusive EOS Monster," International Symposium for Testing and Failure Analysis, 1998.
- <u>http://www.tmworld.com/article/CA254574.html</u>

Paradigm shift in thinking required for EOS

- EOS is an event that occurs at a point in time
- It is probabilistic in nature
- May require a unique set of circumstances
- May not be reproducible without a lot of testing
- Finding the damage on a die is easy; Finding the cause is difficult and resource (time, equipment, and units) consuming
- Must weigh the cost/benefit before starting the "Hunt"

Steps in the Monster Hunt


- Failure Analysis
 - Electrical Data
 - What caused the failure?: Short/Open/Leakage
 - Review ATE data and take Bench Data
 - Failure Site Identification
 - Sometimes it is easy but mild EOS may be buried
 - Use normal FA techniques to pin point the failure
 - Visual Evidence (look for patterns of damage)
 - Investigate the path
 - Determine what might have failed
 - » Breakdown Paths
 - » Look at the current path
 - Estimate Failure Cause
 - Type of event (over voltage or over current)
 - Path (pin combination
 - Size of the event (magnitude and duration)

HE NUMBER ONE SOURCE FOR HIGH PERFORMANCE ANALOG

Page 36 Copyright Intersil 2008

Page 37 Copyright Intersil 2008

- Determine the Source (Monster Hunt)
 - This area can take most of the time
 - Identification of the two failures in the paper took 6 months
 - Know your Enemy (Voltage or Current failure)
 - FA gives you clues about how the EOS occurred
 - Testing good units can help identify weaknesses in circuit
 - Gather Intelligence (failure source)
 - Investigative Reporter or CSI searching for clues
 - Try to recreate the circumstances leading up to the failure
 - The more information the better chance of finding the source of the EOS
 - Analyze Circuit/Board/System configuration
 - Form Theory
 - Experimentation
 - Amount of experimentation depends on how frequently the EOS occurs
 - If the problem is 10ppm (one in 100,000 part) it will be difficult to find
 - If it is 1000ppm (one in 1000) may be easier but still not easy
 - If we have 10% failure then we may only have to test 20 to get a failure

Page 38 Copyright Intersil 2008

Key Obstacles

- Thinking about normal operation EOS is not normal
 - EOS are events outside of the normal use of the parts
 - Think about what could breakdown or what parasitic elements could conduct if enough current/voltage was present
- Don't point fingers
 - Customer and Vendor has to work together
 - Blame game will stall or kill progress
- Looking for the wrong cause
 - Not willing to accept that fault
 - Looking at your process flow shows no issues
 - EOS is a probabilistic problem; if you have routine failures you should see it in a simple audit but if you only see 1 or two failures a month a simple audit will not detect the issue
- Lack of Information
 - Sometimes vendors and customers are unwilling to share detailed information necessary to come up with a solution
 - The information is considered proprietary and cannot be shared

Page 39 Copyright Intersil 2008

Concluding Remarks

- EOS damage is more prevalent on power components and HV circuits
- EOS occurs because of an event not a gradual degradation; Frequency of the event determines how easy it is to find the source
- Damage is proportional with event need to correlate damage to get estimate of event type
- Think in terms of excess voltage or excess current excess voltage can induce undesired current paths (breakdown)
- Secondary damage produced when EOS current interrupted (inductive voltage spike)
- Always look for patterns in the damage as it relates to the application
- Keep communication lines open between customer and supplier
- The more information you can get and share the better chance you have of determining the source of the EOS
- Finding the source may take a lot of time and resources; Determine up front if you are willing to invest it

Page 40 Copyright Intersil 2008