

The World Leader in High Performance Signal Processing Solutions

"Predicting Circuit ESD Performance Through SPICE-type Simulations"

Yuanzhong (Paul) Zhou, Thorsten Weyl & Jean-Jacques (J-J) Hajjar Analog Devices Inc.

IEEE Electron Device Colloquium University of Central Florida February 21-22, 2008

Proprietary Information

MOTIVATION

- ESD high on Pareto chart of reliability product returns from customers
- Predicting ESD performance is very compelling:
 - 1) Design tool prior to manufacturing
 - 2) Design verification
 - 3) *Post-mortem* failure troubleshooting tool

- What is ESD?
- Circuit Simulation Consideration
- Compact Modeling Approaches and Modeling Verification
- ESD Circuit Simulation Examples
- Concluding Remarks

What is ESD?

- ESD: Electrostatic Discharge
- Cause: Tribo-electric charge transfer
- Characteristics
 - High energy resulting
 - Large currents
 - High voltages
 - Short in duration (typically <1 to over 100 nanoseconds)

from RTP Company, Winona, MN

 Charged machine touches IC: Machine Model (MM)

ESD DAMAGE in ICs (1) MOSFET Gate-Oxide Punch-through

- SEM micrograph depicts NMOS after deprocessing.
- Pits are 0.2 to 0.5µm in width & correspond to regions where Si flowed into gate oxide.

ESD DAMAGE in ICs (2) Junction Damage/Contact Spiking

 SEM micrograph depicts NMOS after deprocessing.

On-Chip ESD PROTECTION SCHEMES

—Analog Devices Proprietary Information—

On-Chip ESD PROTECTION SCHEMES An Example

Circuit Simulation Considerations

- Impact of ESD structure on I/O and core circuits.
- ESD current paths.
- Impact of internal circuitry on ESD protection performance.
- Optimization to reduce ESD over design.

Circuit Simulation Approach

- SPICE is a Primary Tool for Circuit Level Simulation
- ESD-capable Compact Device model
- Modeling physical phenomenon particular to ESD:
 - Breakdown
 - Snapback
 - • •

Major Challenges (1)

- Devices operate in unintended bias space:
 - high voltages
 - very large currents

MOSFET CHARACTERISTICS

VOLTAGE \rightarrow

 I_{AX}, I_{MAX}

0

Major Challenges (2)

- Device operation highly dependent on layout.
 - ESD NMOS DESIGN SPACE
 - Width
 - Gate length
 - w/ or w/o RPO in drain
 - Drain side CTP
 - Gate stripes
 - Substrate contact

-Analog Devices Proprietary Information-

ESD NMOS

Major Challenges (3)

Thermal effects important

- Parasitics (*L*, *C* & *R*) critical due to fast-transient nature of ESD:
 - Interconnect
 - Package
 - Board
 - Test fixture
 - •••

What Devices to Model?

Primary Protection Devices

- 1) MOS
- **2) SCR**
- 3) Bipolar
- 4) Diodes
- **5)** Resistors

Modeling Strategy

- 1) Modify standard Compact models
- 2) Customized Model

Snapback in ESD Devices

- Devices (MOS) operating in "snapback" mode carries more current per unit width
- Operating I-V Regions of MOS Devices
 - 1) Linear Region
 - 2) Saturation Region
 - 3) Avalanche Region
 - 4) Snapback Region
 - 5) Failure Region
- V_{t1} represents the "snapback effect" trigger voltage

-Analog Devices Proprietary Information-

Snapback in MOS Devices

Snapback Effect in MOS is due to the Parasitic BJT, triggered by the substrate current (I_{SUB}).

—Analog Devices Proprietary Information—

Critical Effects in Snapback Modeling

- Substrate current as function of V_{DS}, V_{GS} and V_{BS}
 - Due to impact ionization in Drain/Backgate depletion layer.
 - Avalanche current multiplication factor is different before and after snapback
 - Displacement current (*dV/dt*) through Drain/Backgate junction
 - Gate induced drain leakage (GIDL)

Previous Snapback Models

- Standard MOS and BJT models.
- An explicit current source which is a function of V_{GS} and V_{DS}
- (*dV/dt*) effect, GIDL and separate M for MOS and BJT are included in some models by adding equations.
- The implementation of the models includes C code and behavioral languages (Verilog-A)

Model for MOS under ESD Stress

- New approach eliminates the current source of previous models.
- Model constructed of standard BJT (Mextram) and MOS (BSIM4) devices.
- Models intrinsically includes all major physical phenomenon presented.
- Source/Backgate and Drain/Backgate Junction Diodes for completeness.

Model Verification

Transmission Line Pulse measurement:

- Quasi-static
- Transient

Transmission Line Pulse (TLP) *Measurement Setup*

Why Transmission Line Pulse?

—Analog Devices Proprietary Information—

Model Verification

- Snapback effect was simulated with transient simulation.
- Voltage Pulse Sequence (100ns) were used as the Input.
- The stabilized V_D and I_D were measured as the simulation results (~80ns).

Simulation Results vs. TLP Measurement

A ggNMOS device

MOS CHARACTERISTICS & MODEL

- Deep submicron CMOS
- Model Scalability
 - W = 300μm
 - 0.18 < L < 0.30 μm
 - Stripes = 12
 - Wrap-around backgate contact

GGNMOS

MOS CHARACTERISTICS & MODEL

27

SCR Devices

Macro Model for LVTSCR

- Similar approach to MOS
- New model consists of four components:
 - An NMOS modeled by BSIM4
 - A four terminal NPN modeled by Mextram
 - Two resistors

Key effects in New LVTSCR Macro Model

- The PNP is modeled by the parasitic BJT in the 4 terminal NPN modeled by a Mextram-like model
- Current sources for avalanche and GIDL are intrinsically built in MOS and BJT models

$$I_{GEN} = I_{AVL} + I_{SUB} + I_{GIDL}$$

- Decoupled multiplication factors for BJT and MOS are included in I_{AVL} and I_{SUB} respectively
- The *dV/dt* effect is modeled by Collector/Base junction capacitance of the BJT

SCR CHARACTERISTICS & MODEL

- CMOS: SCR-1
- 100nsec TLP Pulse
 - Different pulse rise-time

SCR CHARACTERISTICS & MODEL

—Analog Devices Proprietary Information—

CIRCUIT SIMULATION Human Body Model (HBM)

- Simulates the discharge from the finger of a standing person
- ♦ I_{PEAK} = ~0.67 A/kV, t_{RISE} ~ 5-9ns, t_{DELAY} = ~150 nsec.
- Modeled by a Lumped Element Model (LEM)

33

-Analog Devices Proprietary Information-

I/O Cell – Circuit

I/O Cell – Simulation

—Analog Devices Proprietary Information—

Block Level

Block Level – Original Design Fails 1,000V HBM

—Analog Devices Proprietary Information—

Block Level – Simulation Results – Fails 1,000V

Block Level – Revised Design Passes 1,500V HBM

Block Level – Simulation Results

System Level - A 24-bit Σ - Δ converter

-Analog Devices Proprietary Information-

System Level - HBM Stress between VDD1 and VDD2

System Level – Original Design Fails 700V HBM

System Level – Simulation Highlights Core Circuitry Failure.

System Level – Revised Design, 2,000V HBM Level Predicted

System Level – Simulation predicts failure above 2,000V HBM

SUMMARY

- ESD is an important product reliability concern.
- Compact Modeling approach for accurate modeling of MOS & SCR devices
 - Uses Industry standard Models
 - Simple Implementation
- Successful SPICE-type circuit simulation of ESD event:
 - Design ESD Protection Cells
 - Predict ESD Performance
 - Confirm and fix known ESD failures

