Physics and Performance of Ultra-High-Frequency Field-Effect Transistors

Frank Schwierz Technische Universität Ilmenau, Germany

Outline

- Introduction
- RF FET Physics and Design Rules
- Performance of RF FETs
- Options for Future RF FETs
- Conclusion

IEEE Electron Device Colloquium Orlando, Feb 21-22 2008

What Does Ultra-High Frequency Mean?

In this talk: Ultra-High-Frequency = much above 1 GHz

Synonymous: - microwave electronics

- RF (radio frequency) electronics.

In the follwing: ultra-high-frequency = RF

Traditionally: - defense related applications clearly dominated

Currently: - large consumer markets for RF products

- defense related applications

Spectrum of civil RF applications, Ref. ITRS 2005.

Currently most civil RF applications with largevolume markets operate below 10 GHz.

Future applications at higher frequencies are envisaged.

Are There Applications Beyond 94 GHz?

The THz gap: 300 GHz ... 3 THz.

Output power of RF sources Ref.: D. L. Woolard et al., Proc IEEE Oct. 2005.

Examples for applications in the THz gap:

- ultrafast information and communication technology
- security
 (detection of weapons and explosives)
- medicine
 (e.g. cancer
 diagnosis)

RF transistors providing useful gain and output power in the THz gap are highly desirable.

Power Performance of Solid-State Sources

Oscillators Amplifiers Multipliers Lasers

RF Electronics vs. Mainstream Electronics

Mainstream electronics (processors, ASICs, memories) Semiconductors Transistor Types

• Si

- MOSFETs
 - For a few applications BJTs

RF electronics

Semiconductors

- III-V compounds based on GaAs and InP
- Si and SiGe
- Wide bandgap materials (SiC and III-nitrides)

Transistor Types

- MESFET Metal Semiconductor FET
- HEMT High Electron Mobility Transistor
- MOSFET Metal Oxide Semiconductor FET
- HBT Heterojunction Bipolar Transistor
- BJT Bipolar Junction Transistor

RF FET Types

For ultra-high-frequency relevant: HEMT and MOSFET

Common feature - layer sequence in the active region:

RF FET Types

RF FET Types

		-	
FET Type	Barrier	Channel	Substrate
Conventional GaAs HEMT	AlGaAs	GaAs	GaAs
GaAs pHEMT (p = pseudomorphic)	AlGaAs	In _x Ga _{1-x} As x ~ 0.2	GaAs
GaAs mHEMT (m = metamorphic)	InAlAs	In _× Ga _{1-×} As x≥0.53	GaAs
InP HEMT	InAlAs	In _× Ga _{1-×} As x≥ 0.53	InP
GaN HEMT	AlGaN	GaN	SiC, Sapphire, Si
Si MOSFET	SiO ₂	Si	Si

Physics and Performance of Ultra-High-Frequency Field-Effect Transistors

Outline

- Introduction
- RF FET Physics and Design Rules
- Performance of RF FETs
- Options for Future RF FETs
- Conclusion

IEEE Electron Device Colloquium Orlando, Feb 21-22 2008

RF Transistor Figures of Merit

Power gain G General definition:

$$G = \frac{P_{out}}{P_{in}}$$

In RF electronics - several power gain definitions. Frequently used: unilateral power gain U.

$$U = \frac{|y_{21} - y_{12}|^2}{4 [Re(y_{11}) Re(y_{22}) - Re(y_{12}) Re(y_{21})]}$$

Current gain h₂₁ General definition:

$$h_{21} = \left| \frac{i_2}{i_1} \right| = \left| \frac{y_{21}}{y_{11}} \right|$$

Note: gains are usually given in dB

Power Gain $[dB] = 10 \log (Power Gain)$ $h_{21} [dB] = 20 \log h_{21}$

The Characteristic Frequencies f_T and f_{max}

h₂₁ and U of a GaAs RF FET After K. Onodera et al., TED 38, p. 429.

h₂₁ and U roll off at higher frequencies at a slope of approx. -20 dB/dec.

Cutoff Frequency f_T Frequency, at which the magnitude of h_{21} rolls off to 1 (0 dB).

Max. Frequency of Oscillation f_{max} Frequency, at which U rolls off to 1 (0 dB).

Rule of thumb:

- $f_{\rm T}$ should be 5 ... 10 \times the operating frequency $f_{\rm op}$ of the system in which the transistor is to be used.
- f_{max} should be around or larger than f_{T} .

All discussions in this talk will be restricted to f_T and f_{max} .

Evolution of f_{T} and f_{max}

Evolution of f_T and f_{max}

- f_T and f_{max} have been increased continuously.
- Record performance of RF FETs (Feb'08):
 - f_T 610 GHz Yeon et al. IEDM 2007
 - f_{max} 1.2 THz Lai et al. IEDM 2007

Research priority for RF transistors defined in the 2007 ENIAC SRA: Extend III/V and SiGe technologies up to 1 THz.

RF FET Physics and Design Rules

Traditional opinion:

- Si is a "slow" material, Si MOSFETs are slow.
- III-Vs are "faster" materials and III-V HEMTs are fast.
- Key to get a fast FET: make the gate as short as possible, - take the material with the highest

mobility for the channel.

We will clarify if this traditional opinion is still correct.

RF FET Physics and Design Rules - Intuitive Approach -

RF FETs have to react fast on variations of the input signal (gate-source voltage V_{GS}).

The charge distribution in the the channel has to be changed fast.

To achieve this we have to consider

- Transistor design
 - Short channel, small L
 - Fast carriers (n-channel)
 - Minimized parasitics.
- Material issues
 - Fast carriers (high mobility, high velocity).

RF FET Physics and Design Rules - More Detailed Approach -

Transconductance and Gate-Source Capacitance (1)

Source

Small C_{GS} : - small L.

Large g_m : - large dn_{sh}/dV_{GS} , large v.

- BUT: for a given gate length we need a LARGE intrinsic C_{GS} .

Carrier Transport

Carrier Transport (Low-Field)

Low-field mobility vs bandgap (undoped bulk material, 300 K) Trend: High mobility - narrow bandgap Problems of narrow bandgap materials - low breakdown field - high intrinsic carrier concentration $n_i \propto \exp{-\frac{E_G}{2k_BT}}$

Intermediate conclusion regarding μ_{o} : narrow/medium bandgap III-Vs have an edge.

Carrier Transport (High-Field)

Velocity-field characteristics

Gate Modulation Efficiency (dn_{sh}/dV_{GS})

- Gate modulation efficiency is related to the density of states DOS in the conduction band
- The DOS is related to the effective mass Material m*_{DOS} (bulk) Si 1.18
 InAs 0.031
 In_{0.53}Ga_{0.47}As 0.048
 GaAs 0.067
- Large m*_{DOS} large gate modulation efficiency

Intermediate conclusion regarding DOS: Si has an edge.

Transconductance and Gate-Source-Capacitance (2)

12.7/15 ≈ 0,85

3.9/1 ≈ 4

InP HEMT

Si MOSFET

 $In_{0.52}Al_{0.48}As$

SiO₂

21

n

Drain Conductance

Drain Conductance

Short channel effects: V_{Th} roll-off, DIBL, high drain conductance

Measure for short-channel effects: Scale length Λ (should be small). Different scale lengths have been proposed, e.g.

- Λ₁

$$0 = \varepsilon_{ch} \tan \frac{\pi t_{bar}}{\Lambda_1} + \varepsilon_{bar} \tan \frac{\pi t_{ch}}{\Lambda_1}$$

D. Frank et al., EDL 19 pp. 385-387, 1998 $L/\Lambda_1 \ge (1.5 \dots 2)$: short-channel effects are tolerable

$$\Lambda_{2} = \sqrt{\frac{\mathcal{E}_{ch}}{\mathcal{E}_{bar}}} t_{ch} t_{bar}$$

R.-H. Yan et al., TED 39 pp. 1704-1710, 1992) $L/\Lambda_2 \ge (5 \dots 10)$: short-channel effects are tolerable

ε_{ch}, t_{ch} dielectric constant and thickness of channel layer
 ε_{bar}, t_{bar} dielectric constant and thickness of barrier layer
 Note: scale lengths expressions have originally been developed for Si MOSFETs

Drain Conductance

Similar structure of the RF FET types: The scale length concept should be applicable to MOSFETs and HEMTs.

Drain Conductance - Scale Length

FET Type	^E r,ch	^E r,bar	† _{ch}	t _{bar}	Λ_1	L_1	Λ ₂	L ₂
GaAs pHEMT	13.3	12	15	30	44	78	22	112
InP HEMT GaAs mHEMT	14.1 14.1	12.7 12.7	10 10	15 15	25 25	43 43	13 13	65 65
Si MOSFET	11.9	3.9	5 10 20	1 1 1	7 13 23	13 22 40	4 6 8	20 28 39

GaAs pHEMT In_{0.2}Ga_{0.8}As channel, Al_{0.3}Ga_{0.7}As barrier GaAs mHEMT In_{0.53}Ga_{0.47}As channel, In_{0.52}Al_{0.48}As barrier

Gate lengths for tolerable sh-ch effects: $L_1 = 1.75 \times \Lambda_1$, $L_2 = 5 \times \Lambda_2$

Intermediate conclusion:

Thanks to its extremely thin barrier the Si MOSFET has an edge. More general: the MOSFET concept has an edge.

Drain Conductance - Scale Length

InP HEMTs with extremely thin barrier (del Alamo, IEDM 2006)

Exp. results for L = 60 nm t_{bar} (nm)11 nm g_{ds} (mS/mm)332.5192 f_T (GHz)268316

Drain Conductance - Scale Length

Simulated f_T of GaN HEMTs vs barrier thickness (Schippel and Schwierz 2008, unpublished)

Ratio R_{ext}/R_{channel} of different MOSFET generations. Ref. S. E. Thompson et al., IEEE Trans. Semicona Manufact. 18, pp. 26-36, 2005. R_{ext}: sum of source and drain series resistances.

"Improving external resistance appears more important than new channel materials (like carbon nanotubes) since the ratio of external to channel resistance is approaching 1 in nanoscale planar MOSFETs."

"One cannot arbitrarily reduce the gate length in hopes of dramatically improving the frequency response without also downscaling the inherent source-gate and drain-gate spacings in the proper ratio amounts along the device length."

The effect of R_D is frequently underestimated

Physics and Performance of Ultra-High-Frequency Field-Effect Transistors

Outline

- Introduction
- RF FET Physics and Design Rules
- Performance of RF FETs
- Options for Future RF FETs
- Conclusion

IEEE Electron Device Colloquium Orlando, Feb 21-22 2008

33

Is there a connection between μ_{o} and f_{T} for long-gate RF FETs?

Material	µ _o (cm²/Vs) undoped bulk	f _τ (1 <i>μ</i> m)	BUT: µ in FET channel
Si	1430	21	400
GaN	1400	21	1500
In _{o 2} Ga _{o 8} As	9150	36	6000
In _{0.53} Ga _{0.47} As	13800	56	13000

We introduce a modified mobility μ_{o}^{*}

$$E_c^* = \frac{E_0 + E_c}{2}$$
$$u_0^* = \frac{v_{\text{max}}}{E_c^*}$$

Is there a connection between the modified mobility μ_0^* and f_T for long-gate RF FETs? Seemingly yes!

At which gate lengths the f_T -vs-L curve of a certain FET type flattens, reaches its maximum, and finally declines, depends on the strength of parasitic effects: - short-channel effects (g_{ds})

- series resistances R_s, R_D
- gate resistance R_G
- parasitic capacitances
- GaAs pHEMTs suffer most from parasitic effects, followed by GaN HEMTs and InP HEMTs.
- Si MOSFETs are most resistant against parasitic effects.
- The Si MOSFET shows the best scaling potential.

!! The reason is not the properties of Si but the MOSFET concept !!

Performance of RF FETs - f_{max}

Again, the Si MOSFETs shows the best scaling potential !

Performance of RF FETs - Record f_T and f_{max}

Gate length (nm)	f⊤ (GHz)	f _{max} (GHz)	FET type	Ref.
35	520	425	InP HEMT	Watanabe, IPRM 2007
30	554	358	InP HEMT	Shinohara, IPRM 2007
25	562	330	InP HEMT	Yamashita, EDL 2002
35	385	1200	InP HEMT	Lai, IEDM 2007
16	610	305	GaAs mHEMT	Yeon, IEDM 2007
50	440	400	GaAs mHEMT	Elgaid, EDL 2005
29	485	?	Si nMOS	Lee, IEDM 2007
25	460	?	Si nMOS	Stork, VLSI Tech. 2006
29	360	420	Si nMOS	Post, IEDM 2006
31	345	?	Si pMOS	Lee, IEDM 2007
29	238	295	Si pMOS	Post, IEDM 2006
33	270	300	Si pMOS	Lee, IEDM 2005
30	180	?	GaN HEMT	Palacios, EDL 2006
60	163	157	GaN HEMT	Higashiwaki, EDL 2006
100	124	230	GaN HEMT	Palacios, EDL 2006
100	152	?	GaAs pHEMT	Nguyen, TED 1989
100	?	290	GaAs pHEMT	Tan, EDL 1990
100	151	186	GaAs pHEMT	Wada, TED 1999

Performance of RF FETs

- InP HEMTs and GaAs mHEMTs show the best RF performance (in terms of f_T and f_{max}).
- State-of-the-art Si RF MOSFETs are VERY competitive. The gap to InP HEMTs and GaAs mHEMTs becomes more and more narrow.
 - Si MOSFET technology is most matured.
 - The MOSFET concept is least vulnerable to parasitic effects.
 - In the new ITRS the Si MOSFET will be included in the Millimeter Wave (10 GHz - 100 GHz) section and tables.
- MOSFETs with higher channel mobility could show even better RF performance. Work on III-V MOSFETs has started.
- Are there further options?

Physics and Performance of Ultra-High-Frequency Field-Effect Transistors

Outline

- Introduction
- RF FET Physics and Design Rules
- Performance of RF FETs
- Options for Future RF FETs
- Conclusion

IEEE Electron Device Colloquium Orlando, Feb 21-22 2008

Options for Future RF FETs - InAs and InSb

Narrow bandgap semiconductors - very high mobility

- HEMTs with InAs channel ($\mu_o \sim 25\ 000\ \text{cm}^2/\text{Vs}$)
- HEMTs with InSb channel ($\mu_{o} \sim 30\ 000\ cm^{2}/Vs$)

 $f_{\rm T}$ vs L of experimental HEMTs with InGaAs, InAs, and InSb channels.

InAs and InSb channel HEMTs roughly follow the trend of InP HEMTs and GaAs mHEMTs

Why no advantage due to the high μ_0 of the narrow bandgaps?

- technology not mature

Options for Future RF FETs - InAs and InSb

Output characteristics of an InAs channel HEMT (L 100 nm) Ref.: Y. C. Chou et al., IEDM 2007, pp. 617-620.

What is the advantage of HEMTs with InAs and InSb channels?

High gain (i.e., high f_T and f_{max}) at very low V_{DS} .

Potential for ultra-low-power high-speed applications.

Options for Future RF FETs - Indium Nitride

Our μ_{o}^{*} model leads to an f_{T} for a 1- μ m InN FET of ~ 30 GHz (more than Si MOSFET and GaN HEMT but less than GaAs pHEMT and InP HEMT). InN shows unique carrier transport characteristics:

- Mobility far above 10 000 cm²/Vs (simulated for undoped material).
- Extraordinary high peak velocity above 5x10⁷ cm/s (simulated).
- Problems
 - Low quality of epitaxially grown InN (high dislocation density)
 - Maximum measured mobility only 3000 cm²/Vs.
 - No matured InN technology. Only a few reports on operating InN devices (and only dc) so far.

Options for Future RF FETs - Carbon

Carbon for RF FETs: Graphene and carbon nanotubes Carbon atoms arranged in a two-dimensional honeycomb lattice: graphene.

Options for Future RF FETs: CNT FETs

Depending on how the graphene is rolled (e.g., zigzag-type), the CNT may be semiconducting (small diameter - large bandgap) or metallic.

Different types of CNTs left: armchair middle: zigzag right: chiral Ref.: R. H. Baugham et al., Science 297, pp. 787-792 (2002).

Possible structure of a CNT MOSFET Refs.: P. Avouris et al., Proc. IEEE 91, pp. 1772-1784 (2003). R. Martel, Nature Mat. 1, pp. 203-204 (2002).

Options for Future RF FETs: CNT FETs

Simulated electron v-E characteristics for CNTs.

Note:

- The simulated results for identical tubes differ considerably. Refs.: A. Verma, JAP 97, 114319, 2005. V. Perebeinos, PRL 94, 086802, 2005. G. Pennington, Phys. Rev. B 68, 045456, 2003.
 CNT MOSFETs with promising DC characteristics have been reported.
 First RF results have been published.
- see, e.g.: D. Wang, IEEE Trans. Nanotechnol. 6, pp. 400-403, 2007.
- CNTs show extremely very mobilities and maximum/peak velocities.
- The promising carrier transport characteristics, combined with the MOSFET concept, make CNT FETs attractive for future RF applications.
- Note, however, that
 - the enthusiasm about CNT FETs during late 1990s and early 2000s has faded.
 - several of the most pressing problems of CNT technology could not be solved.

Options for Future RF FETs - CNT FETs

2006.

47

Options for Future RF FETs - Graphene FETs

Graphene: - very high mobilities have been measured (> 15 000 cm²/Vs at 300 K)

- no data on high-field transport
- first MOSFET has been reported (M. Lemme, AMO, Germany)
- Intel, IBM, ST, and others are also active

Gate length (µm)

An intuitive estimation of the speed potential (f_T) of graphene FETs

First experimental graphene FET with top gate.

M. Lemme et al., EDL Apr 2007, AMO Aachen, Germany

Options for Future RF FETs - Graphene FETs

Reasons for optimism regarding graphene FETs:

- Mobilities > 15 000 cm^2/Vs at RT have been measured in graphene.
- If sources of disorder (impurities, ripples) can be eliminated, RT mobilities of 200 000 cm²/Vs are predicted. Ref.: S. V. Morozov et al., PRL 100, p. 016602, 2008.
- Channel thickness 1 atomic layer superior electrostatics, extremely small scale length (e.g. Λ_1), short FETs with effectively suppressed short channel effects should be possible)
- DARPA program for RF graphene FETs: CERA Carbon Electronics for RF Applications. Goal: Graphene FETs with f_T , f_{max} > 500 GHz.

Reasons for scepticism regarding graphene FETs:

- So far, the high mobility of graphene layers could not be transferred to FET channels.
- Large area graphene behaves near-metallic (zero bandgap).
- The current hype on graphene is similar to the enthusiasm regarding CNTs a few years ago.
- No technology for large-area graphene preparation available.

Conclusion

- Currently, the fastest RF FETs are
 - InP HEMTs and GaAs mHEMTs
 - Si MOSFETs
 - GaAs pHEMTs and GaN HEMTs.
- The MOSFET concept shows considerable advantages compared to the HEMT concept.
- A high mobility is desirable but NOT sufficient for good RF performance at short gate length levels. Note: Mobility is related to stationary transport. Effects like velocity overshoot and ballistic transport have not been covered in our discussions.
- In nm-gate RF FETs, parasitic effects (short-channel effects, series resistances, etc.) become more and more important.
- Possible future options:
 - III-V MOSFETs
 - InN FETs
 - CNT FETs, Graphene FETs.
- Carbon-based RF FETs are very promising, BUT: many problems have to be solved and many questions need to be answered.