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Why Measure Time/Voltage On-Chip? 

1. Routing signals to equipment can filter and 
corrupt measurement 

 Loss, delay, discontinuities, loading, noise 
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Why Measure Time/Voltage On-Chip? 

2. Some measurements must be done w/o 
external equipment 
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Wafer Sort 

Ref: www.besi.com 

In-Situ Test 

Ref: www.intel.com 



Presentation Flow 

 We’ll discuss key metrics and the limitations of 
off-chip measurements 

 Then we’ll see how to solve these with on-die 
measurement circuits 

 My objective is that you will leave today with a 
set of simple but very useful techniques that 
you can apply to your own designs 
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Outline 

 Delay Measurement 

  

 Power Supply Characterization 

 

 I/O System Characterization 

 

5 of 63 



Outline 

 Delay Measurement 

 Delay Metrics 

 Off-chip measurement limitations 

 On-Chip Phase Detector 

 Code Density Test (CDT) 

  

 Power Supply Characterization 

 

 I/O System Characterization 

 

6 of 63 



Delay/Skew Measurements 

 Measuring the delay between two or more 
signals (often clocks) can be critical for circuit 
debug and characterization 

7 of 63 

clk skew 

refclk PLL clkout 

Lock error 

ckI 

ckQ 
ckΦ 

phase_sel 

Phase 
Interp. 

Phase 
linearity 



Off-Chip Clock Skew Measurement 

 External measurement limitations 

 Delay matching to equipment  delay error 

 Filtering for high-speed signals  delay error 

 VCM and edge rate differences cause error 

 Delay stability  poor repeatability 
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On-Chip Phase Detector 

 Mix phase difference down to DC on chip 

 Other types of phase detectors can also work 

 Measure DC component off- or on-chip 

 Shared Mixer reduces mismatch. Still has MUX mismatch. 

 Requires calibration for Voltage-to-Time constant (A) 
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Example: 10GHz Clock Skew Measurements 

 Meas. resonant clock grid skew w/ sub-ps accuracy 

 Minimize/match routing to phase detectors 

 Measure externally with voltmeter  

 Calibrate externally using adjustable delay line 
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Ref: F. O'Mahony, ISSCC 2003 
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Code Density Test (CDT) Method 

 Basic Idea: Count the # of Reference Edges that 
occur between two clock edges 

 Likelihood of “Hit” is ΔT/T 

 Asynchronous ring VCO provides uniform Edge PDF 

 Jitter and spread-spectrum improve the distribution 
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Code Density Test (CDT) Method 
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Time-Domain Circuit Operation 

 Likelihood of “Hit” is ΔT/T 

 Async. clock period must be >2∙ΔTmax 

 A simple VCO frequency calibration ensures this 

 Jitter helps by randomizing edge location 
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Delay Measurement Accuracy 
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Synchronizer 

 Synchronizer aligns samples across full 360˚ range 

 Clocks for ΔT=N∙Tck+Δt are identical. Synchronizer 

adds programmable # of cycles of delay. 
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Delay Measurement Range 

 Measure ck[1..N] relative to ck,fixed 

 ck[1..N] are all later than ck,fixed 

 Removes circuit mismatch (e.g. FF’s) except Mux 

 Use cycdel to select which edges to compare 

 Synchronizer extends range to >360° 
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Detailed Circuit Implementation 
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 Entirely digital implementation 

 Counter depth depends on required accuracy 
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Measured Phase Interpolator (PI) Linearity 

 Fully on-die measurement of quadrature PI w/ CDT 

 Phase transfer function provides INL/DNL 
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Measured Phase Error – Repeatability 

 Measurement error reduces as (1/ΣEdges)0.5 
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Outline 
   

 Delay Measurement 

  

 Power Supply Characterization 

 Power Supply metrics 

 Off-chip measurement limitations 

 Real vs. Equivalent time measurement 

 Supply noise waveform 

 Supply impedance 

 Supply noise spectrum  

 

 I/O System Characterization 
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Power Supply Metrics 

 Used to design, model 
and debug the chip 

 Examples: 
 Quantify Vcc droop  V(t) 

 Verify Grid model  Z(f) 

 Find aggressors  PSD(f) 
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External Power Supply Measurements 

 Packages commonly have 
supply probes 

 Off-chip measurement 
limitations 

 External probing loads 
the power supply 

 Probe measurements are 
not local 

 Limited # of probe 
points due to pkg routing 

 Package filters the 
supply measurements 
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On-Die High-Speed ADC 
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 Ideally embed local ADCs to digitize these metrics 

 High resolution (10+ bits) and BW (>1GHz) 
presents a significant implementation challenge 
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Real vs. Equivalent-Time Measurement 

 One-shot meas. 

 Most complete info 

 Time, spectral 

 Limited by ADC 
fsamp, resolution 
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Equivalent-Time Measurement 

 Time Base Generator (TBG) provides strobe 

 Sweeps strobe position in equivalent time 

 Sampler output is postprocessed (e.g. averaged) 
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Sampler Option #1: 1-bit Comparators 

 Programmable threshold Voltage CDF/PDF 

 Center of this PDF is the Average Voltage (μ) 

 CDF/PDF also captures Voltage Noise(e.g. σ) 

 …along with comparator noise and strobe jitter 

 Extract fit to distribution (normal, uniform, sinusoid) 
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Sampler Option #1: 1-bit Comparators 
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Waveform Capture w/ 1-bit Comp. 

 Combine 1-bit ADC 
with Equivalent-Time 
sampling to get full 
Waveform Capture 
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Waveform Capture w/ 1-bit Comp. 
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Waveform Capture w/ 1-bit Comp. 
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Example: Simple Power Supply Measurement 

 Re-used RX sampler from to sample Vcc,noise 

 AC couple Vcc,noise sets correct common mode for sampler 

 Limits measurement to freq > RC 

 Simplest TBG – strobe is the delayed noise signal 
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Ref: F. O'Mahony, VLSIC 2006 
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Sampler Option #2: VCO-based ADC 

 Idea #1: Count Async. VCO edges during fixed ΔT 

 Pro: Directly attach VCO to power supply, real- or 
equivalent-time meas. 

 Con: Quant. error trades off with fint and fNyq 

 This is a variation of the Code Density Test! 
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Sampler Option #2: VCO-based ADC 

 Idea #2: Sample-and-Hold the supply voltage 

 Pro: Quantization error is independent of fint and fNyq*  

 Con: S/H leakage, Supply voltage buffer, Equivalent-
Time measurement only (or else fNyq degrades) 
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Ref: E. Alon, VLSIC 2004 
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Sampler Option #2: VCO-based ADC 

 Idea #3: Very short aperture with averaging 

 Pro: Quantization error independent of fint and fNyq. 
Directly connect VCO to power supply. No sampling 
switch. Very short Tint, set by passive RC and calibrated. 

 Con: Not capable of real-time measurement, increased 
measurement time 
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Ref: V. Abramzon, E. Alon, ESSCIRC 2005 
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Sampler Calibration 

 Map Vcccnt with DC sweep of Vcc 

 Can be approximated as linear fit 

 Avoid operating close to VT - Variation/Linearity 
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Periodic Noise Waveform Capture 
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Power Supply Impedance Meas. 
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Impedance Measurement Example 
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Measuring PSD w/ Autocorrelation 
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Circuitry for PSD Meas. 
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 Measure R() with dual samplers 

 Digitally sweep  = ts2-ts1 

 DFT of R() = PSD (post-process off-chip) 
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PSD Measurement Example 

42 of 63 

600 620 640 660 680 700 720 740 760
-0.01

0

0.01

R
(

) 
[V

2
]

 [ns]

10
2

10
3

-50

-40

-30

-20

Frequency [MHz]

P
S

D
 [

d
B

V
]

R
(

) 
[V

2
] 

P
S
D

 [
d
B
V
] 

 [ns] 

Freq. [MHz] 

600 620 640 660 680 700 720 740 760
-0.01

0

0.01

R
(

) 
[V

2
]

 [ns]

10
2

10
3

-50

-40

-30

-20

Frequency [MHz]

P
S

D
 [

d
B

V
] -22.7dBV (200mV-pp) 



Outline 

   

 Delay Measurement 

  

 Power Supply Characterization 

 

 I/O System Characterization 

 Bit Error Rate (BER) Eye 

 Waveform capture 

 RX noise 

 Clk-data jitter 
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Transceiver Metrics 

 Link measurements 

 BER eye / Eye Margins 

 Receiver noise 

 Clock/Data jitter 

 Waveform capture 
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BER Eye and Margins 

 Probability of error in Equivalent time 

 Sweeps Voltage and Equivalent Time 

 “Margin” represents how robust the link is 

 Voltage margin (vert.), Timing margin (horiz.) 
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BER Eye and Margins 

 Probability of error in Equivalent time 

 Sweeps Voltage and Equivalent Time 

 “Margin” represents how robust the link is 

 Voltage margin (vert.), Timing margin (horiz.) 
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BER Eye Measurement 

 Phase Interpolator (PI)  Time Sweep 

 Sampler Offset  Voltage Sweep 

 Masking can be used optionally to target 
certain characteristics 

 e.g. Loop-unrolled eye, Even/Odd eyes  
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BER Eye Measurement 

 Keep in mind Nerr/Nbits is just an estimation of BER 

 Rule of Thumb: 95% Confidence Level requires 
error-free transmission for Nbits = 3xBERmin  

 e.g. No errors for 3x1012 bits indicates BER≤10-12 
with 95% certainty 

 

 

 

 

48 of 63 

Pass 

Fail 

V 

Time 

Ref: http://cp.literature.agilent.com/litweb/pdf/5989-2933EN.pdf 



BER Eye Measurement 
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Measured BER Eye Example 

 Often measure a subset of points to save time 

 Voltage or Time Margin “bathtub” plots 
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RX Sampler Characterization 

 Voltage CDF (PDF)  RX characterization 

 Reflects all RX noise as “input referred” 

 Fully in-situ if TX provides VDC 
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RX Sampler Characterization 

 Voltage CDF (PDF)  RX characterization 

 Reflects all RX noise as “input referred” 

 Fully in-situ if TX provides VDC 
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Clock-Data Jitter 

 Time CDF (PDF)  RX clk-data jitter 

 Fully in-situ if TX provides “slow clock” 

 Applicable to any clock circuit 
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Clock-Data Jitter 

 Time CDF (PDF)  RX clk-data jitter 

 Fully in-situ if TX provides “slow clock” 

 Applicable to any clock circuit 
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On-die waveform capture 
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 Mask 1:N periodic 
N-bit waveform 

 CDF mean = V(t) 

 PI sweeps time 



On-die waveform capture 
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On-die waveform capture 

57 of 63 

Equiv. Time 

 Mask 1:N periodic 
N-bit waveform 

 CDF mean = V(t) 

 PI sweeps time 

Vth 

PI 

N 

Cntr 

data 

clk 

delay 

Ref: B. Casper, JSSC 2003 



Waveform Capture Example 
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Summary 

 On-die measurement is useful when: 

 No external equipment available 

 Accuracy lost by routing out to scopes 

 A simple set of digital-friendly techniques provide 
accurate time and voltage on-chip 

 Code Density Test 

 Equivalent time/Sub-sampling/Bit Masking 

 Time/Voltage sweep with 1-bit ADC 

 Use measurement circuits that are already on chip! 

 Offset comparators, phase shifters, digital 
counters, pattern checkers 
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