

IEEE P2800 Kick-Off Meeting

Joint Technical Committee Meeting, Jan 13-17, 2019, Hyatt Regency Orange County (Garden Grove), CA, US

Jens C. Boemer, WG Chair*

Kevin Collins, Bob Cummings, Ross Guttromson, Manish Patel, Vice-Chairs

Wes Baker, Secretary

January 14, 2019

*Also Chair of the sponsoring ED&PG Wind and Solar Plant Interconnection Working Group (Link to Website)

Agenda

Monday 1/14: 8AM	1 – 12PM	
7:45-8:00	Arrival	
8:00-8:05	Welcome, approval of minutes from ConfCall Nov 6, 2018	Chair
8:05-8:10	Facility safety and emergency procedures	Chair
8:10-8:20	IEEE SA Rules, Standards Classification & Language	Chair
8:20-8:40	Introductions (Name, Affiliation)	On-site Participants
8:40-8:45	Stakeholder polling (live poll)Stakeholder groups	On- and Off-site Participants
08:45-08:55	Overview of the Project Authorization RequestNeed, Purpose, Scope, Stakeholders	Chair
08:55-09:10	Review of WG Policies & Procedures, Introduction of WG Leadership Team, Open Positions	Chair, Vice-Chairs, Secretary
09:10-10:00	 Technical Presentations (10-min each) 1. Overview on related NERC activities 2. Overview on NERC IRPTF Guideline 3. Transmission planner perspective 4. Developer perspective 5. National lab's related research/projects 	Bob Cummings (NERC) Ryan Quint (NERC) Manish Patel (SouthernCo) Kevin Collins (FirstSolar) Ross Guttromson (SANDIA)
10:00-10:15	Break	

Agenda

Monday 1/14: 8AM	1 – 12PM			
10:15-10:25	Proposed Sub-WG Overview Chair, Vice-Chairs, Secretary			
10:25-11:10	Discussion & Scope Adjustments	All		
11:10-11:20	Stakeholder polling (live polls)Requirements that SHOULD NOT be includedSub-WG contributors	On- and Off-site Participants		
11:20-11:40	 Timeline Proposed timeline Discussion Desired timeline (live polls) 	Chair, On- and Off-site Participants		
11:40-11:50	Coordination Coordination with P2800.1 IEC coordination 	Chair Chenhui Niu (P2800.1 Chair) Murty Yalla (<i>invited</i>)		
11:50-12:00	Next Meetings	Chair		
12:00	Adjourn	Chair		

Welcome 170+ Interested Parties

AEP	DNV GL	ESC Eng. Inc.	MEPPI	PEACE®	SouthernCo	Opal-RT	GridLab
AMSC	DOE	FERC	MISO		Tesla	•	Entergy
	002			Power Grid		E ID III	Lincergy
AWEA	Dominion	First Solar	National Grid	Eng. LLC	TVA	FuelCell Energy	Shell
Beckwith Electric	Duke Energy	GE	NERC	S&C Electric Co.	University of Auburn	Xanthus Consulting	
Bernhard Ernst Energy Consulting	• ·	Hydro One	NextEra Energy	SANDIA	University of North Carolina	Seminole Electric Cooperative	
Brush Electric Machines, Ltd.	Enercon	Hydro Quebec	NREL	Sargent Lundy	WES Consulting, LLC	INL	
China State Grid	ESIG	Invenergy LLC	NV Energy	Seattle City Light	Western Energy Board	NYISO	
Cinch, Inc.	EnerNex	IREQ	Open Access Technology Intrntl.	Siemens	Wichita University	SCS Transmission Planning	
ComEd	EPRI	ISO New England Inc.	Outback Power	SMA	XcelEnergy	Avista	
ComRent	ERCOT	Leidos Engineering	Pacific Corp	Southern	XM Columbia	The University of Alabama	

4

Meeting Goals

1. Introduce Working Group Leadership and Policies & Procedures

2. Define Scope and Form Sub-Working Groups

3. Develop timeline, frequency for meetings & calls

4. Call for volunteers to fill open positions

Previous Meeting

Approval of minutes from ConfCall Nov 6, 2018

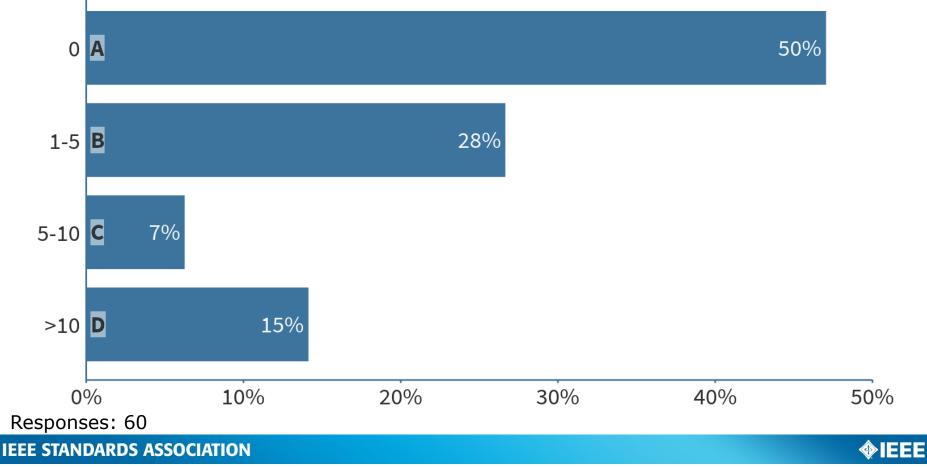


Facility safety and emergency procedures

- Emergency exits
- Assembly location
- Defibrillator location
- Dial 911 in emergency

Participate in Interactive Polls – Option A

IEEE STANDARDS ASSOCIATION



IEEE STANDARDS ASSOCIATION

How many previous IEEE Standards Working Group meetings have you attended?

Electronic Communication & Collaboration

- Sponsor Websites
 - -<u>ED&PG Wind and Solar Plant Interconnection</u> <u>Working Group</u>
 - EMC Renewable Energy Systems Subcommittee
 - Power Systems Relaying Committee

Image: Imag

IEEE SA Rules, Standards Classification & Language

Guidelines for IEEE WG meetings

- All IEEE-SA standards meetings shall be conducted in compliance with all applicable laws, including antitrust and competition laws.
 - Don't discuss the interpretation, validity, or essentiality of **patents/patent claims**.
 - Don't discuss specific license rates, terms, or conditions.
 - Relative costs of different technical approaches that include relative costs of patent licensing terms may be discussed in standards development meetings.
 - Technical considerations remain the primary focus
 - Don't discuss or engage in the fixing of product prices, allocation of customers, or division of sales markets.
 - Don't discuss the status or **substance of ongoing or threatened litigation**.
 - **Don't be silent** if inappropriate topics are discussed ... do formally object.
- For more details, see IEEE-SA Standards Board Operations Manual, clause 5.3.10 and Antitrust and Competition Policy: What You Need to Know at <u>http://standards.ieee.org/develop/policies/antitrust.pdf</u>

Participants have a duty to inform the IEEE

- Participants shall inform the IEEE (or cause the IEEE to be informed) of the identity of each holder of any potential Essential Patent Claims
 - that are potentially essential to implementation of the proposed standard(s)
 - of which they are personally aware if the claims are owned or controlled by the participant or the entity the participant is from, employed by, or otherwise represents
- Participants should inform the IEEE (or cause the IEEE to be informed) of the identity of any other holders of potential Essential Patent Claims
- Early identification of holders of potential Essential Patent Claims is encouraged

Ways to inform IEEE

Cause an LOA to be submitted to the IEEE-SA (patcom@ieee.org); or

- Provide the chair of this group with the identity of the holder(s) of any and all such claims as soon as possible; or
- **Speak up now** and respond to this Call for Potentially Essential Patents
- If anyone in this meeting is personally aware of the holder of any patent claims that are potentially essential to implementation of the proposed standard(s) under consideration by this group and that are not already the subject of an Accepted Letter of Assurance, please respond at this time by providing relevant information to the WG Chair

Patent-related information

The patent policy and the procedures used to execute that policy are documented in the:

- *IEEE-SA Standards Board Bylaws* (http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#6)
- *IEEE-SA Standards Board Operations Manual* (http://standards.ieee.org/develop/policies/opman/sect6.html#6.3)

Material about the patent policy is available at

http://standards.ieee.org/about/sasb/patcom/materials.html

If you have questions, contact the IEEE-SA Standards Board Patent Committee Administrator at <u>patcom@ieee.org</u>

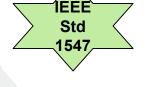
Resources

Training Videos

- How to Run an Individual Working Group
- How to Run an Entity Working Group

Bylaws and Procedures

- IEEE-SA Standards Board Bylaws


 <u>http://standards.ieee.org/develop/policies/bylaws/</u>
- IEEE-SA Standards Board Operations Manual -<u>http://standards.ieee.org/develop/policies/opman/</u>
- IEEE Baseline Operational Procedures
 <u>http://standards.ieee.org/about/sasb/audcom/bops.html</u>

IEEE Standards Classification & Language

Standards documents specifying mandatory requirements (shall)

Recommended Practices

documents in which procedures and positions preferred by the IEEE are presented (*should*)

Guides

documents that furnish information – e.g., provide alternative approaches for good practice, suggestions stated but no clear-cut recommendations are made (*may*)

IEEE SA Balloting Rules

- Consensus =
- \geq 75% Quorum ■ \geq 75% Approval
 - -WG Chair's goal is $\geq 90\%$!

Introductions

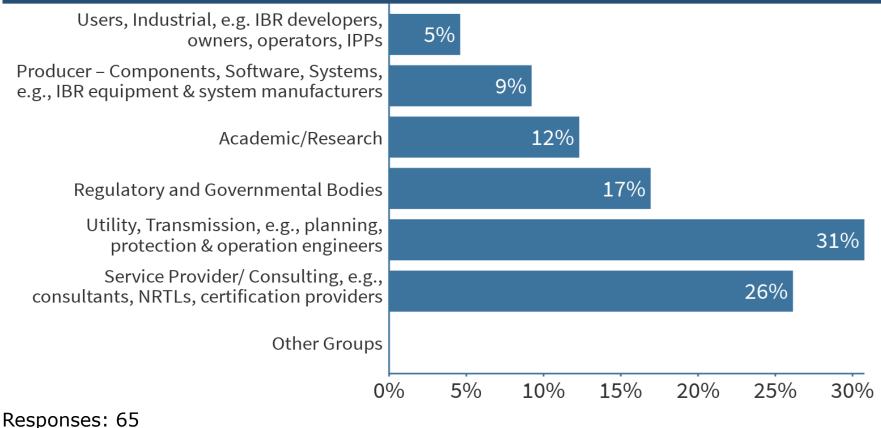
Name, Employer, Affiliation

Please keep it short!

IEEE STANDARDS ASSOCIATION

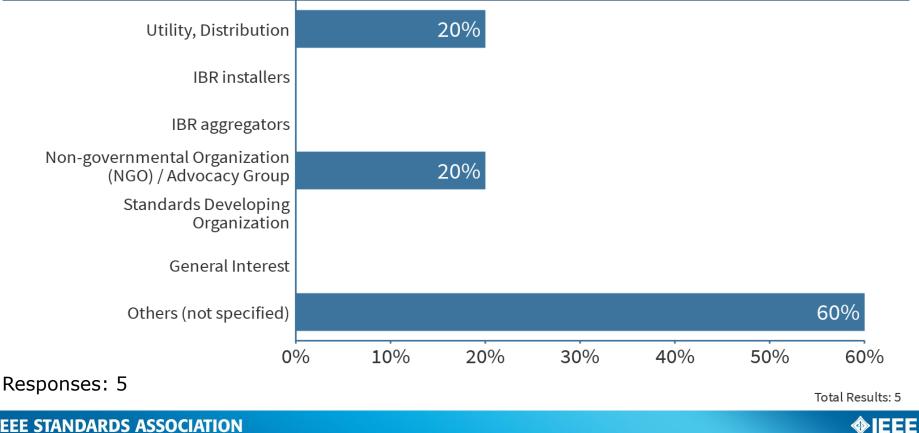
Stakeholder Groups

Applicable Groups

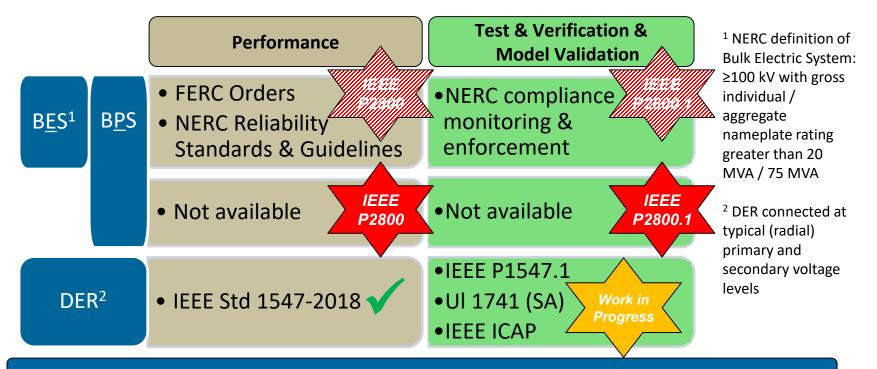

- Users, Industrial, e.g. IBR developers, owners, operators, IPPs
- Producer Components, Software, Systems, e.g., IBR equipment & system manufacturers
- Academic/Research
- Regulatory and Governmental Bodies
- Utility, Transmission, e.g., planning, protection & operation engineers
- Service Provider/ Consulting, e.g., consultants, NRTLs, certification providers

Other Groups?

- Utility, Distribution?
- IBR installers?
- IBR aggregators?
- Non-governmental Organization (NGO) / Advocacy Group?
- Standards Developing Organization?
- General Interest


Which of the following balloter classifications do you belong to?

IEEE STANDARDS ASSOCIATION


If you chose "Other Groups" in the previous question, which of the following balloter classifications do you belong to?

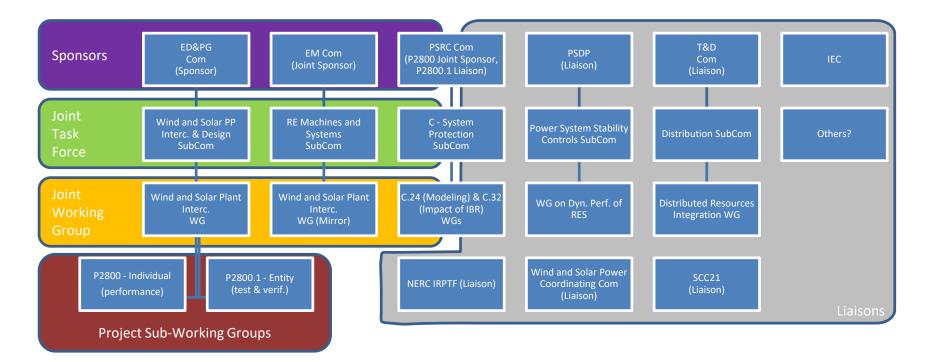
Overview of the Project Authorization Request

Existing North American Standards for Inverter-Based Generating Resources and Gaps

IEEE standards are voluntary industry standards and must be adopted by the appropriate authority to become mandatory.

Clarifications from Informal Kick-Off Call

- Voluntary standard, requires reference by responsible parties', e.g., interconnection requirements / agreements
 - Candidate parties are transmission owners, state regulators, NERC, and FERC
- Technical minimum requirements, intention is that responsible parties can specify additional requirements
 - Some participants see a risk that it may be regarded as exhaustive requirements
 - May want to consider tiered requirements by use of "performance categories"
- Only "inverter-based" resources, e.g., wind power, solar photovoltaic, energy storage
 - Some participants suggested renaming to "inverter-coupled"
 - "Type 3" wind turbines (doubly-fed induction generators) are in scope
- Applicable to transmission and meshed sub-transmission grids (broad BPS definition)
 - May need different set of requirements for transmission and sub-transmission



IEEE Project Authorization Requests

Project	Scope	Status	Lead	Joint Sponsors / Liaisons	Next Steps
P2800 - Standard for	Standard on	Approved by	Chair:	EDP&G – Sponsor	Convene WG at 2019 IEEE
Interconnection and	Performance	NESCOM/SAS	Dr. Jens Boemer	EMC – Joint Sponsor	PES JTCM in January 2019
Interoperability of Inverter-		B on 9/27/18.	+1.206.471.1180	PSRC – Joint Sponsor	
Based Resources	(Individual		j.c.boemer@ieee.org	PSDP – Liaison	Initial Sponsor Ballot:
Interconnecting with	Project)			T&D – Liaison	June 2021
Associated Transmission				Others, see the figure	
Electric Power Systems				below	Submission to RevCom: October 2022
Link on myProject Adobe Acrobat Document					
P2800.1 - Guide for Test and	Guide on	Approved by	c/o China State Grid	Same as for P2800,	Convene WG at 2019 IEEE
Verification Procedures for	Testing	NESCOM/SAS	Dr. Chenhui Niu	except that PSRC is a	PES JTCM in January 2019
Inverter-Based Resources		B on 9/27/18.	International	Liaison and not a Joint	
Interconnecting with	(<u>Entity</u>		Department	Sponsor	Initial Sponsor Ballot:
Associated Transmission	Project)		NARI Group		December 2021
Electric			Cooperation		
Power Systems			+86 13451870987		Submission to RevCom:
PDF			<u>niuchenhui@</u>		October 2022
Link on myProject Adobe Acrobat Document			sgepri.sgcc.com.cn		

Coordination Approach for BPS-Connected Inverter-Based Resources IEEE standards projects P2800 and P2800.1

IEEE STANDARDS ASSOCIATION

IEEE P2800: Standard for Interconnection and Interoperability of Inverter-Based Resources Interconnecting with Associated Transmission Electric Power Systems

Need for the Project:

The global increase in penetration levels of inverter-based resources is expected to significantly change the dynamic performance of the power grid. As the penetration levels of inverter-based resources increase and the technology of inverter-based resources evolves, specifications and standards are needed to address the performance requirements of inverter-based resources. Currently, there is no one single document of consensus performance requirements covering inverter-based resources interconnected with transmission and sub-transmission systems. Recent events in North America such as the Blue Cut Fire Disturbance as well as institutional challenges in North America that suggest the inappropriate use of IEEE Std 1547 for large-scale solar plants underscore this need. The proposed new standard fulfills this need and can help equipment manufacturers, project developers, transmission planners, and power grid operators improve the guality of the inverter and facility performance to enhance the stability of the power grid. This effort should be aimed to minimize the affected customers and to shorten the time of resynchronizing to the grid if the plant is separated from the grid. Given that IEEE standards are voluntary industry standards, enforcement of any of the requirements specified in this standard will require its adoption by the regional Authority Governing Interconnection Requirements (AGIR); an AGIR is a cognizant and responsible entity that defines, codifies, communicates, administers, and enforces the policies and procedures for allowing electrical interconnection of inverter-based resources interconnecting with associated transmission electric power systems.

IEEE P2800: Standard for Interconnection and Interoperability of Inverter-Based Resources Interconnecting with Associated Transmission Electric Power Systems

Scope:

This standard establishes the recommended **interconnection capability and performance criteria** for inverter-based resources interconnected with transmission and networked sub-transmission systems. Included in this standard are recommendations on performance for reliable integration of inverter-based resources into the bulk power system, including, but not limited to, **voltage and frequency ridethrough**, active power control, reactive power control, dynamic active power support under abnormal frequency conditions, **dynamic voltage support under abnormal voltage conditions**, power quality, **negative sequence current injection**, and system protection.

Related activities:

IEC initiative to develop a single framework for connecting and controlling renewables. Contact: Charlie Smith, <u>Charlie@esig.energy</u>, U.S. TA for SC 8A.

Review of WG Policies & Procedures, Introduction of WG Leadership Team, Open Positions

Based on IEEE Standards Association (IEEE-SA) Baseline Policies – Individual Method that are available online at <u>https://standards.ieee.org/about/sasb/audcom/bops.html</u>

3.0 Officers

- 1 Chair, 1 Secretary, 4-5 Vice Chairs, not needed: Treasurer?
- Chair and Vice Chairs shall each be IEEE members of any grade, except Student grade, or IEEE Society affiliates, <u>and</u> also be members of IEEE-SA

3.1 Election or Appointment of Officers

- Case 1 Chair appointed and Chair appoints other officers
- Case 2 Chair appointed and other officers elected (deleted)
- Case 3 All officers elected (deleted)
- The appointment of officers shall be for a term of **one year**, but an officer may serve **until a successor is appointed**.

3.3 Removal of Officers

- An officer may be removed by approval of two-thirds of the members of the Working Group
- Removal of the Chair and Vice Chair requires affirmation by the Sponsor
- Grounds for removal shall be included in any motion to remove an officer of the Working Group
- The officer suggested for removal shall be given an opportunity to make a rebuttal prior to the vote on the motion for removal

3.4 Responsibilities of Working Group Officers

- Act in the best interest of the IEEE, its members and the general public
- Act not on behalf of any individual, entity or interest group
- Comply with all applicable policies and procedures
- See that participants of the Working Group show good conduct
- Being familiar with training materials available through IEEE.

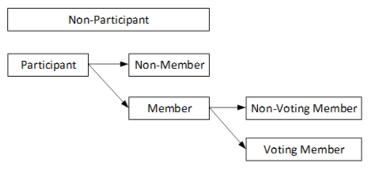
3.4.1 Chair

The responsibilities of the Chair or his or her designee shall include (among others)

- Leading the activity according to all of the relevant Policies and Procedures.
- Forming Study Groups, as necessary, and appoint their Leads
- Being objective.
- Entertaining motions, but not making motions.
- Not biasing discussions.
- Delegating necessary functions.
- Ensuring that all parties have the opportunity to express their views.
- Setting goals and deadlines and adhere to them.
- Seeking consensus as a means of resolving issues.
- Complying with the IEEE-SA Intellectual Property Policies

3.4.2 Vice Chairs

- Carrying out the Chair's duties if the Chair is temporarily unable to do so, chooses to recuse himself or herself, or chooses to delegate specific duties
- Overseeing the subgroups and preferably leading specific subgroups that he or she or another Vice-Chair oversees.
- Being knowledgeable in IEEE standards processes and parliamentary procedures
- Being familiar with training materials available through IEEE.


3.4.3 Secretary

- Scheduling meetings in coordination with the Chair and distributing meeting notices
- Recording minutes of each meeting and publishing them within 60 calendar days
- Creating and maintaining the participant roster, submitting to IEEE SA annually
- Maintaining lists of unresolved issues, action items, and assignments
- Carrying out minimal treasury responsibilities

4.0 Working Group Membership

- Working Group membership is by individual
- Membership shall be granted automatically to those attending this kick-off meeting
- Membership shall be granted after attending two consecutive meetings, at request

- Attendance credit is granted to those who attend at least 50% of a meeting's duration.
- Attendance via teleconferencing shall count towards the attendance requirements
- Voting member status is maintained through consistent participation at meetings and through Working Group votes
 - may be revoked if a Working Group member misses two consecutive meetings
 - A member who lost voting privileges shall have them reinstated by attendance at two consecutive meetings of the Working Group and upon request for member status
 - Working Group Chair can decide in cases of personal hardship
- Roster / public list includes name, email address, affiliation, and membership status

Review of WG Policies & Procedures

6.0 Meetings

- either exclusively in-person or in-person with one or more participants contributing via electronic means, or exclusively via electronic means
- shall be held, as decided by the Working Group, the Chair, or by petition of **15%** or more of the voting members
- meeting notice shall be distributed to all participants **30 calendar days** in advance
- meetings are open to anyone who has a material interest and wishes to attend
 - some meetings may occur in Executive Session

6.1 Quorum

- quorum shall be defined as *one-half* of Working Group <u>voting</u> members
- if a quorum is not present, actions may be taken subject to confirmation by letter or electronic ballot
- 6.2 Conduct: refer to <u>IEEE Code of Conduct</u> and <u>IEEE Code of Ethics</u>

Review of WG Policies & Procedures

7.1.1 Actions Requiring Approval by a Majority Vote

- Formation or modification of a subgroup, including its procedures, scope, and duties
- Disbandment of subgroups
- Approval of minutes.

7.1.2 Actions Requiring Approval by a Two-thirds Vote

- Approval of change of the Working Group scope *
- Establishment of fees, if necessary
- Approval to move the draft standards project to the Sponsor for IEEE Standards Sponsor ballot
- * This item is subject to confirmation by the responsible subcommittee and the Sponsor.

7.2 Voting Between Meetings

- discretion of the Chair by the use of a letter or electronic ballot

Call for nomination and self-nominations for P2800 WG leadership positions

🗸 1 Chair

- ✓ 4 Vice-Chairs (= Sub-WGs Leads)
 - One additional Vice-Chair position available (as needed)
- ✓ 1 Secretary
- Sub-WG Co-Leads & Facilitators (as needed)
- Sub-WG Members
- Please send your (self-)nominations to
 - Jens C Boemer, j.c.boemer@ieee.org
 - Wes Baker, wbaker@powergridmail.com

39

Selection Criteria

- Individuals that represent global stakeholders in a balanced way, including bulk system interconnection engineers and planners, vendor and developer representatives.
- Experience with IEEE and NERC standards processes and preferably previous members of NERC IRPTF and IEEE P1547.
- Representatives / Liaisons with involved IEEE PES Committees that either jointly sponsor or send liaisons
- Availability and motivation, availability for travel to 3 -4 in-person meetings (adjacent with IEEE JTCM in winter, NERC IRPTF in spring, PES GM in summer)
- Diversity, nominations of female and non-Caucasian industry leaders should be encouraged.
- Topic area leads.

Anticipated Resource Commitments

Commitments	Officers (Chair, Vice- Chairs, Secretary)	Sub-WG Leads & Facilitators	Sub-WG Members	Liaisons
Regular attendance of 3-4 in-person meetings per year (2-3 days each) over the duration of the project of 2-3 years	In person	In person	In person or remotely	In person or remotely
Regular attendance of approx. monthly P2800 leadership calls (1hr each)	Х			
Review of draft requirements	Х	Х	Х	Х
Attendance/contributions to Sub- Working Group draft requirements and calls as needed (may vary, but typically weekly calls of 1 hr)		Х	Х	as needed

Please send your (self-)nominations to

Jens C Boemer, j.c.boemer@ieee.org and Wes Baker, wbaker@powergridmail.com

Introduction of WG Leadership Team

Position	Name	Affiliation	Stakeholder Group	Liaison				
Chair	Jens C. Boemer	EPRI	Academic/Research	EDP&G, SCC21				
Secretary	Wesley Baker	Power Grid Eng.	Service Provider/ Consulting	EMC, IRPTF				
Vice-Chair	Bob Cummings	NERC	Regulatory and Governmental Bodies	IRPTF				
Vice-Chair	Kevin Collins	FirstSolar	Users, Industrial	IRPTF				
Vice-Chair	Manish Patel	Southern Company	Utility, Transmission	PSRC, IRPTF				
Vice-Chair	Ross Guttromson	SANDIA National Lab	Academic/Research	DOE				
Vice-Chair	[open position, as needed]							

Technical Presentations

IEEE STANDARDS ASSOCIATION

NERC PRC-024 Standards Action Standards Modifications Project Underway

Robert W. Cummings NERC Senior Director of Engineering and Reliability Initiatives

NERC Inverter-Based Resources Activities

- NERC/WECC Analyses of 2016 Blue Cut and Canyon 2 Fires showed inverter-based resources dropping off-line during normally-cleared BPS faults
- Two Reliability Alerts issued on IBRs: June 2017 and May 2018

September 2018 Publications

- Reliability Guideline BPS-Connected Inverter-Based Resource Performance
- Reliability Guideline Power Plant Model Verification for Inverter-Based Resources

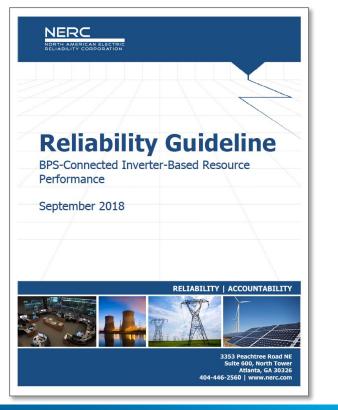
NERC Inverter-Based Resource Performance Task Force (IRPTF) Follow-up:

- PRC-024-2 Gaps Whitepaper Approved by NERC Planning and Operating Committees in November 2018
- SAR for Modifications to PRC-024-2 Jointly submitted in November 2018 to the NERC Standards Committee by the Planning and Operating Committees

NERC Inverter-Based Resources Activities

NERC Standards Committee Action on SAR for Modifications to PRC-024-2 (unanimous)

- SAR posted for formal comment period through 18 January 2019
- Nominations being sought for SAR drafting Team Members through 18 January 2019


IEEE STANDARDS ASSOCIATION

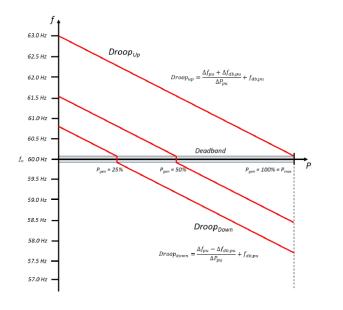
Overview of NERC IRPTF Guideline BPS-Connected Inverter-Based Resource Performance

Ryan D. Quint, PhD, PE Senior Manager, NERC

Reliability Guideline

Topics:

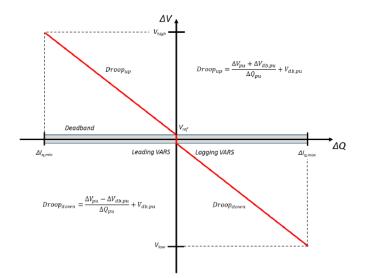
- Momentary cessation (elimination of)
- Ramp rate interactions (mitigation of)
- Active power-frequency control
- Reactive power-voltage control
- Steady-state vs. small/large disturbance
- Protection, tripping, and return to service
- Ride-through capability
- Measurement data and performance monitoring
- Dispatchability
- Modeling and model verification


Momentary Cessation

- Overall goal to eliminate momentary cessation for newly interconnecting resources use other forms of ride-through
 - Leads to system-wide instability if used (in its current default form)
- May be warranted at very low voltage (e.g., < 0.2-0.3 pu)</p>
- Recovery from any use of momentary cessation should be on the order of cycles (similar to other forms of power electronics – HVDC, STATCOMs)
- Ramp rate interactions (in inverter or plant-level controller) should not impede any dynamic response)
- Overall plant performance characteristic critical

Active Power-Frequency Control

- FERC Order No. 842 P2800 needs to align with this (possibly clarify)
- Steady-state and dynamic performance specifications critical


Table 2.1: Dynamic Active Power-Frequency Performance									
Parameter	Performance Target								
For a step change in frequency at the POM of the inverter-based resource									
Reaction Time	Reaction Time Time between the step change in frequency and the time when the resource active power output begins responding to the change ³¹								
Rise Time	Time in which the resource has reached 90 percent of the new steady-state (target) active power output command	< 4 seconds							
Settling Time	Time in which the resource has entered into, and remains within, the settling band of the new steady-state active power output command								
Overshoot	Percentage of rated active power output that the resource can exceed while reaching the settling band	< 5 percent**							
Settling Band	Percentage of rated active power output that the resource should settle to within the settling time	< 2.5 percent**							

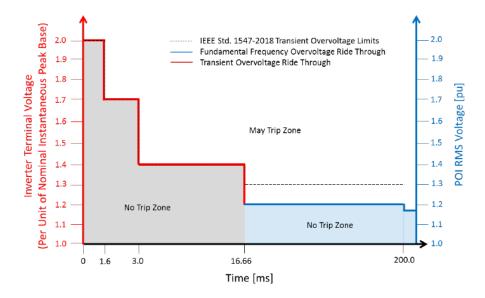
** Percentage based on final (expected) settling value

Reactive Power-Voltage Control

- Steady-state specification
- Capability and power factor
- Point of measurement
- Dynamic reactive (not static)
- Closed-loop automatic voltage control
 - Droop and deadband option

Reactive Current-Voltage Control

- Dynamic specification
- Small disturbance vs. large disturbance
- Large disturbance:
 - Stable response
 - V outside continuous operating range
 - Local control (fast)
 - Limited to inverter capability
 - Coordination capability, limits, and protection
 - During and immediately after faults
 - Negative (and zero) sequence specification
- Q at 0 P capability


Parameter	rameter Description									
For a step change in voltage at the POM of the inverter-based resource										
Reaction Time	Time between the step change in voltage and when the resource reactive power output begins responding to the change ⁴⁷	< 500 ms*								
Rise Time	< 1–30 sec**									
Overshoot	Overshoot Percentage of rated reactive power output that the resource can exceed while reaching the settling band									
Table 3.2: Large Disturbance Reactive Current-Voltage Performance										
Parameter	Description	Performance Target								
For a large distu the continuous	Description rbance step change in voltage, measured at the inverter terminals, when operating range, the positive sequence component of the inverter reacti e following performance specifications	e voltage falls outside								
For a large distu the continuous	rbance step change in voltage, measured at the inverter terminals, when operating range, the positive sequence component of the inverter reacti	e voltage falls outside								
For a large distu the continuous should meet the	rbance step change in voltage, measured at the inverter terminals, when operating range, the positive sequence component of the inverter reacti e following performance specifications Time between the step change in voltage and when the resource	e voltage falls outside ve current response								

IEEE STANDARDS ASSOCIATION

Protection and Limiters

- Many forms of inverter protection/controls that impact response of overall plant
- Capability of automatic reconnection, coordination/control by transmission side
- Coordination with NERC PRC-024-2
- High priorities:
 - Transient overvoltage
 - Phase lock loop performance
 - Overall inverter ride-through capability
 - Successive voltage dips

Measurements and Performance Monitoring

- Supervisory Control and Data Acquisition (SCADA) data
- Dynamic Disturbance Recorder (DDR) data (PMU-type data)
- Digital Fault Recorder (point-on-wave) data plant-level
- Sequence of Event Recorder (SER) data throughout plant
- Inverter-level point-on-wave data specified triggers
- Inverter fault codes
- Inverter change of status or operating mode
- Time synchronization

Poor data has hindered disturbance analyses! We (all of us) need data!

Short Circuit Strength Specification

- Low short circuit strength conditions
 - Control interactions
 - Controls instability
 - Controls cycling
- Specification of range of stable operating conditions
 - Expected impedances
 - Expected frequencies
- Mitigation of "weak grid" issues
- Grid forming inverter capability

Goal

- NERC IRPTF Reliability Guideline serves as cornerstone document for recommended inverter-based resource performance in North America
- Manufacturers heavily engaged in the development of this Reliability Guideline
- Will continue to serve as guiding document until P2800 is complete and future IEEE Std. 2800 is enforceable
- Coordination ongoing between NERC and IEEE PES and IEEE SA

NERC IRPTF Reliability Guideline should serve as the foundation for P2800

- Provides high-level recommendations regarding performance
- Vetted across wide industry stakeholder group
- May need more details on exact performance specifications
- Refer to Appendix A of the IRPTF Reliability Guideline

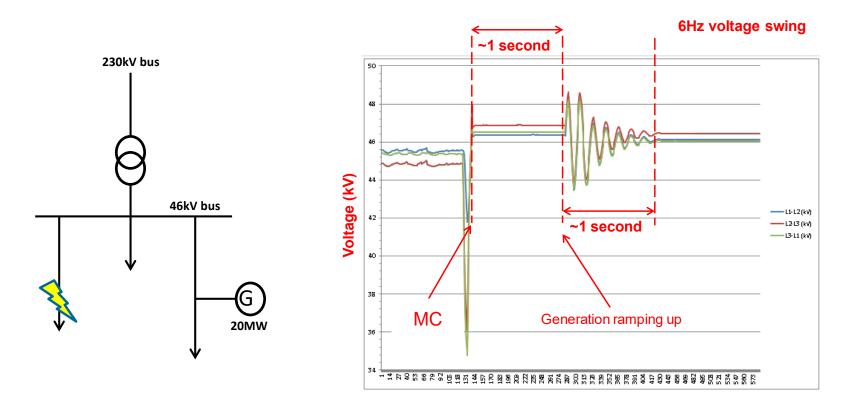
Transmission Planner's Perspective (Utility Engineer's Perspective)

Manish Patel, PhD, PE

Southern Company Transmission

Need & Expectations

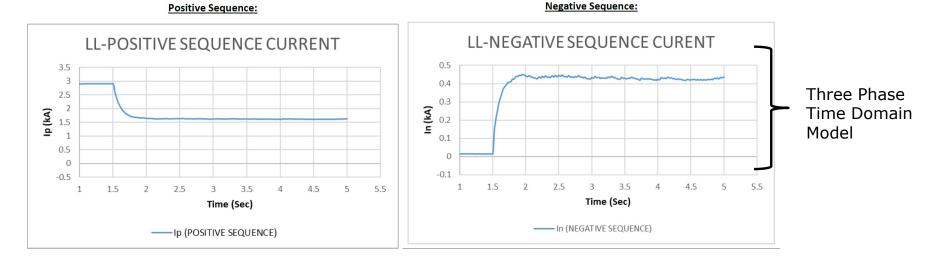
Need for the Project


- Lessons learned
- Inappropriate use of 1547 for transmission connected resources
- IBRs replacing synch. machine based generation
- Grid Supportive behavior is necessary
 - System stability
 - System protection
 - Power quality
 - Low relative system strength

Expectations

- Consistent terminology
- Standard that serves as a reference in interconnection requirements.
- Standard (agreed by stakeholders)
 - Equipment capability
 - Technical performance reqs.
 - Modelling & Validation
- Standard that serves as a reference in interconnection requirements.

Example - Ride-through & Low SCR



Fault Currents

- 8. Short Circuit Contribution of the Generating Facility at the Point of Interconnection.
 - a) Maximum Three Phase Fault Current: 227 Amps and Duration: 6 Cyles
 - b) Maximum Single Line to Ground Fault* Current: <u>335</u> Amps and Duration: <u>4 Cycles</u>
 - * Single Line to Ground Fault at the Point of Interconnection with ties to utility at the POI open.

From Interconnection - Request Facility Data

IEEE STANDARDS ASSOCIATION

IEEE STANDARDS ASSOCIATION

P2800 – Developer Priorities

There is a clear need for a standard

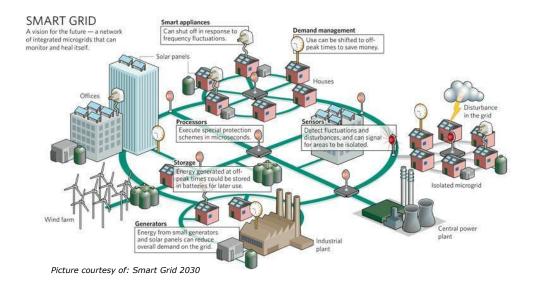
- Current inverter requirements are driven by UL1741 which applies to IBR connected to Distribution
 - Only existing safety standard for inverters
 - Listing is required to comply with project Code requirements
 - Conflicts with the intended requirements of PRC-024 (eg. May trip vs Must trip)
- Requirements specifically applicable to IBR connected to BPS:
 - Must define requirements at plant level but also sufficiently account for inverter requirements
 - Must coordinate with UL1741 so inverters can be Listed in BPS connected projects
 - Must be uniform and drive performance and capability standardization
- Operating Data requirements must be standardized plant and equipment level
 - Acquisition, retention, and access requirements

There is an urgent need for a standard

- Recommend Expediting the P2800 Schedule by at least 12 months

Leverage the NERC IRPTF Reliability Guideline as the starting point for P2800

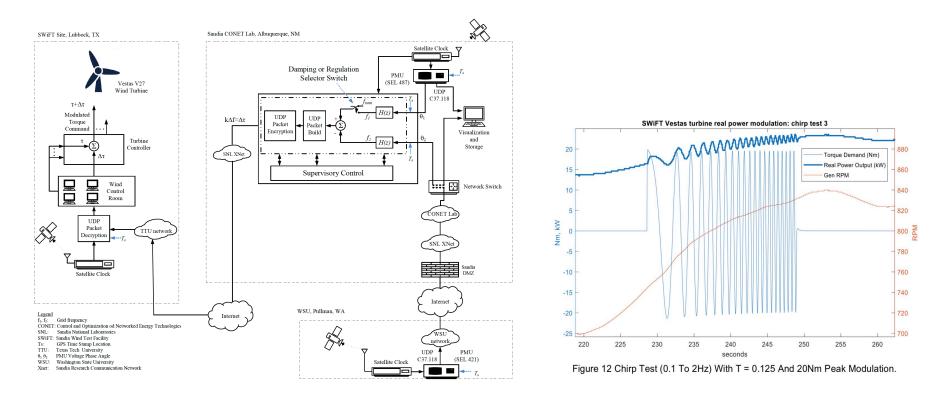
Introduction of Sandia National Laboratories Capabilities in Inverter and Transmission Systems


Ross Guttromson, PE, MS, MBA

Principal, Power Systems

Sandia National Laboratories

Sandia's Grid Modernization Vision


A world of interdependent and variable distributed systems that are optimized at multiple scales – including transmission – to maximize local resources in providing secure, resilient, and clean energy to all users at all times.

- DER and renewable energy integration
- Power electronics and controls
- Secure and scalable microgrids
- Advanced grid analytics/complex systems
- Infrastructure interdependencies
- Cyber and physical security
- Embedded sensors, information processing, and secure manufacturing
- Energy storage systems

Using Wind to Provide Grid Stability

IEEE STANDARDS ASSOCIATION

Advanced PV inverters can help...

- Deployment of Smart Inverters are an effective way to solve the challenges
 - Can help solve the challenges caused by PV installations
 - Can increase the amount of PV that can be installed without causing problems
 - Could generate financial benefits for the PV system owners
- We are updating standards and policies so that smart inverters can be required in the future

What is a Smart Inverter?

- Actively support the grid operation
 - Tolerate grid disturbances
 - Interact using communications

Energy Storage for the Future Grid

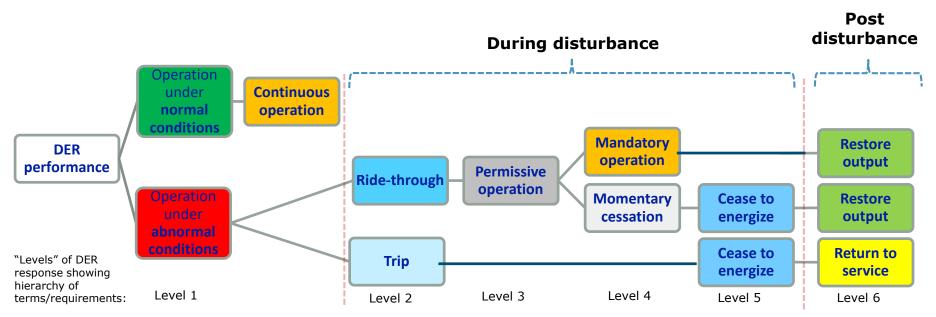
- Materials R&D for battery chemistry, alternate and component technologies
- Analytics
 - Valuation, Control Strategies, Models
- Standards Development
 - Protocols
- Safety and Reliability
 - Focus on developing a fundamental understanding of safety and reliability through R&D in four areas:
 - Materials origin of safety and reliability
 - Device level failures
 - Cascading failures
 - Software's role as a critical safety system
 - Laboratory infrastructure at Energy Storage Test Pad (ESTP) for MW class storage systems evaluation
 - Advanced mod/sim of energy storage systems

Ross Guttromson Sandia Labs <u>rguttro@sandia.gov</u> 505-284-6096

Break

Reconvene at 10:15am

Scope Considerations

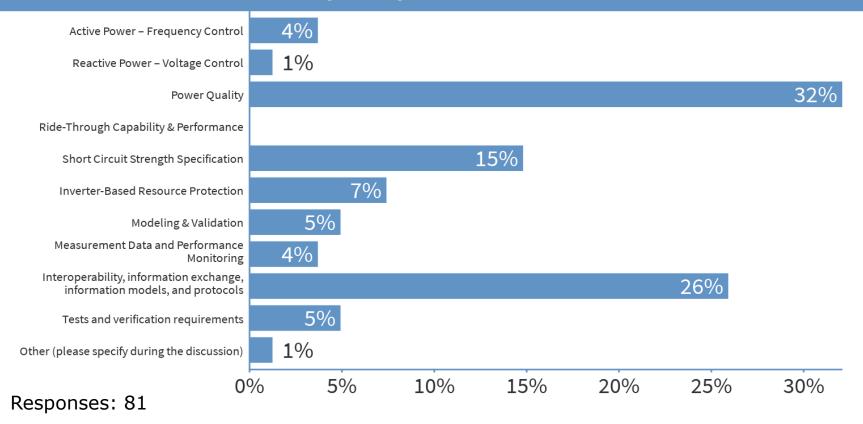

Review of project scope as approved by IEEE SA Standard Board.

List of specific items that NERC IRPTF identified in their recently published <u>guideline</u> that may provide the basis for performance requirements specified in P2800.

Analysis of requirements in <u>IEEE Std 1547-2018</u> that may or may not apply to T-connected resources

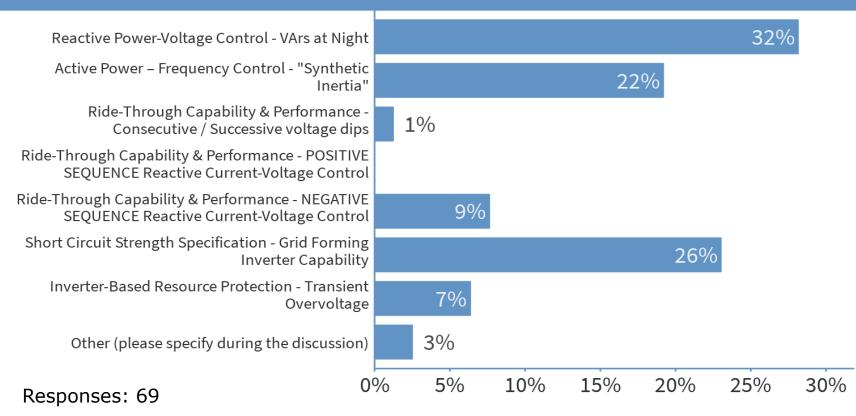
IEEE Std 1547-2018 Ride-Through Terminology

- **Ride-through** ability to withstand voltage or frequency disturbances
 - Permissive operation DER may either continue operation or may cease to energize, at its discretion
 - Mandatory operation required active and reactive current delivery
 - **Momentary cessation** cessation of energization for the duration of a disturbance with rapid recovery when voltage or frequency return to defined range
 - Restore output DER recovery to normal output following a disturbance that does not cause a trip.
- Trip cessation of output without immediate return to service; not necessarily disconnection
 - Return to service re-entry of DER to service following a trip; equivalent to start-up of DER

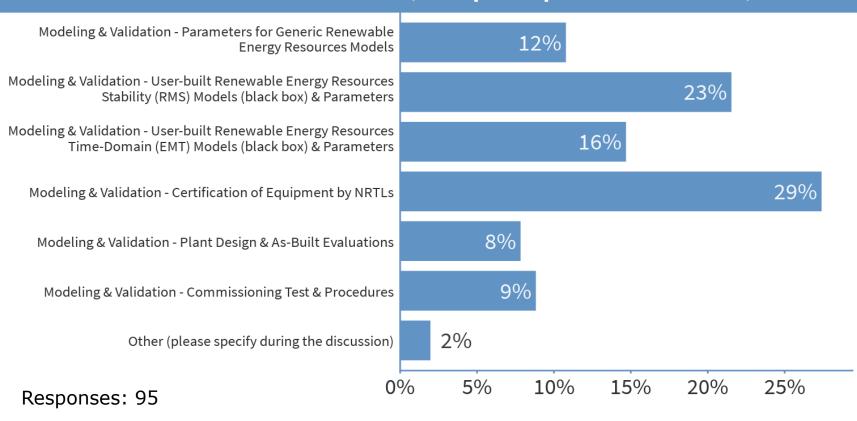


Secretary		wes baser (rower one only) (text) - consultant												
Treasurer (as need					I	r		Vacancy (if n	eeded)					
Officers who supe		Chair	Vice-Chair 1	Vice-Chair 2	Secretary		Vice-Chair 3	Vice-Chair 1	Vice-Chair 4	Vice-Chair 5	Vice-Chair 4	Vice-Chair 4	Vice-Chair 4	Vice-Chair 6
Names		Jens C. Boemer	Bob Cummings (NERC)		Wes Baker (Power Grid		Ross Guttromson	Bob Cummings (NERC) -	Manish Patel	Babak Enayati	Manish Patel (SouthernCo)	Manish Patel	Ross Guttromson	Chenhui Niu (China State Grid)
		(EPRI)	- Reliability	Developer/Operator	Eng.) [EMC] -	(SANDIA) - Researcher	(SANDIA)	Reliability Organization /	(SouthernCo) [PSRC] -	(NationalGrid) - IEEE PES	[PSRC] - Transmission	(SouthernCo)	(SANDIA) Researcher	IEEE P2800.1 Chair
			Organization /		Consultant Kevin Collins		Researcher Kevin Collins	Regulator	Transmission Planner Bob Cummings	Leadership Bob Cummings	Planner	[PSRC] - Transmission		Ross Guttromson
			Regulator Jens C. Boemer		Kevin Collins		Kevin Collins		sop cummings	Bob Cummings		Planner		
			Jens er buemer						-			XI. Measurement		
												Data and		
												Performance	XII. Interoperability.	
									VIII. Ride-Through			Monitoring -	information exchange,	
			II. General	III. Active Power -	IV. Reactive Power -	V. Low Short-Circuit		VII. Ride-Through	Performance			combine with	information models, and	XIII. Tests and verification
Subgroup		I. Overall Document	Requirements	Frequency Control	Voltage Control	Power	VI. Power Quality	Capability Requirements	Requirements	IX. IBR Protection	X. Modeling & Validation	M&V?	protocols	requirements
		1. Overview	1. General											1. Type tests
		2. Normative	interconnection			1. Control interactions								2. Production tests
		references	technical specifications	1. capability	1. capability	2. Grid-forming requirements	26 participants		1. Mandatory Operation					3. Design & As-built evaluations
		3. Definitions and	and performance	2. small disturbance	2. small disturbance		suggested to exclude	1. frequency ride-through	2. Permissive Operation	1. inverter-level				4. Commissioning
Scope / Clause		acronyms	requirements	3. large disturbance	3. large disturbance	3. "Weak Grid" issues	this from the scope	2. voltage ride-through	3. Momentary Cessation	2. plant-level 3. Relay performance and			exclude this from the scope	5. Periodic tests
										settings				
										4. Allow for must trip as				
										backup/DTT alternative for				
										unintentional islanding				
		4. Scoping for HVDC								prevention? (maybe only for				
		and FACTS								sub-transmission)				
		Study requirements								5. Translate system				
		and informative		4. Fast Frequency				voltage phase angle RT		protection impacts into				
		annex on applicable		Response ("Sythentic				4. ROCOF RT	Current injection, incl.	interconnection				
Further Details on	n Scope	study type/models.		Inertia")				5. PLL stability	neg. seq.	requirements?				6. Relationship with IEEE P1547.1
										Babak Enayati (NationalGrid)				
SG Lead (=Officer)					Wes Baker (Power Grid					(NationalGrid) Manish Patel (SouthernCo)				
SG Lead (=Officer)	,				Eng.)			Bob Cummings (NERC)		[PSRC] - Transmission				
		lens C. Boemer (FPR	Bob Cummings (NERC)	Kevin Collins (FirstSolar)			Vacancy	Jons C. Roomer (FPRI)	Manish Patel (SouthernC	Planner	Manish Patel (SouthernCo)	Vacancy	Ross Guttromson (SANDIA	Chenhui Niu (China State Grid)
		sens e. boerner (er n	bob cumings (rienc)	Revin conins (mscoolar)		Pouyan Pourbeik	Vucuncy		Manishi ater (southerne	(Turrier	manishri ater (southerneo)	V dealley	noss data on son (srator	chemia ma (enna state ona)
						(PEACE) - Consultant		Rajat Majumder						
								(Siemens Gamesa)			Rajat Majumder (Siemens			
					Mohit Singh (ComEd)			Hari Singh (Excel Energy)			Gamesa)			
SG Co-Lead / Facil	litator (≠Officer)			Ross Guttromson	Rajat Majumder		Ramesh Hariharan	Wes Baker (Power Grid			Hari Singh (Excel Energy)			
			Hari Singh (Excel	(SANDIA)	(Siemens Gamesa)		(PSC)	Eng.)		Manish Patel (SouthernCo)	David Piper (SCE)			
			Energy)	Rajat Majumder	Hari Singh (Excel		Rey Ramos	Mcpharlen Mgunda (NextEra)	Babak Enayati	[PSRC] - Transmission				
		Farrokh Rahimi (OAT	IFarrokh Rahimi (OATI)	(Siemens Gamesa)	Energy)		(SouthernCo)	(Nextera)	(NationalGrid)	Planner		Vacancy	Vacancy	Andy Hoke (NREL)
									Sophie Xu (PGE)					
									Jens C. Boemer (EPRI)					
				Wes Baker (Power Grid					Hari Singh (Excel Energy)					
SG Facilitator (as r	needed)			Eng.)					Wes Baker (Power Grid	Venkat Reddy (FirstSolar)				
									Eng.)					
								Sophie Xu (PGE)						
			Anthony Doering (ITC)		Sophie Xu (PGE)	Reigh Walling	Dave Mueller (Enerne				Andrew Isaacs (Electranix)			
Members										1				
(to be determined	d by live polling at kick-									1				
off meeting and s					Rajat Majumder					1				
	ice-Chairs by e-mail)				(Siemens Gamesa)			Andrew Isaacs	Andrew Isaacs	1	Songzhe Zhu (CAISO)			
					Mehriar Tabrizi (DNV-			(Electranix)	(Electranix)	1	Sachin Soni (First Solar)			
		-	_		GL)		l _	Rajat Majumder	Rajat Majumder	1	Rajat Majumder (Siemens			
	Dicc		on 9	Mehria (Teblyzi (2017-61) Parimal Sanaf (DIVV-61) Rich Hydzik (Avista)	Parimal Samf (DNV-GL	\dina	et ma	(Siemens Gamesa)	(Siemens Gamesa)	1	Gamesa)			
	213	u 3 3 I		Parimal Saraf (DNV-GL	Venkat Reddy	<u>auius</u>		Menriar Tabrizh (DNV-GL)	Mehriar Tabrizi (DNV-GL)		Mehriar Tabrizi (DNV-GL)			
				Rich Hydzik (Avista)	(FirstSolar)			Parimal Saraf (DNV-GL)	Parimal Saraf (DNV-GL)	1	Parimal Saraf (DNV-GL)			Sachin Soni (First Solar)
				Andy Hoke (NREL)	Steve Wurmlinger			Venkat Reddy	Andy Hoke (NREL)	1	Venkat Reddy (FirstSolar)			Mark Siira (ComRent)
		Ryan Quint (NERC)		Venkat Reddy (FirstSolar)	(SMA)			(FirstSolar)	Venkat Reddy	1	Ryan Quint (NERC)			Mehriar Tabrizi (DNV-GL)
		Pouyan Pourbeik		Steve Wurmlinger (SMA)	Ryan Quint (NERC)			Steve Wurmlinger (SMA)	(FirstSolar)		Hongtao MadNERC)	venket Reddy	MOCI	Parumai Sarat (DNV-GL)
	sian	(PEACE)	ατ Π	Ryan Quint (NEFC)	Hongtao Ma (NERC)	$\mathbf{W}\mathbf{W}_{-}$	SULL				Vites Deliver Double C-			Hand een webr Dabiar (WKEE)
	Sign	(PEACE) Reigh Walling (WES	at <u>n</u>	Steve Wurmlinger (SMA) Ryan Qoint (NERC) Hungtas Mer / ERC)	Horgtao Ma (NERU) Pouyan Pourbeik	WW .	<u>SUL</u>	Hongido Ma (NEBC)		y.coi	Wes Baker (Power Grid	Ryan Quint (NERC)	Steve Warronneer (SMA)	Mentar Peddy (FirstSolar)
	Sign	(PEACE) Reig tore ling (VES Consult)		Ryan goint (NBRC) Hanglar Mad ABC) Pouyan Pourberk (PEACE) Chester Li (Hydro One)	Horgtao ya (NARU Pouyan Pourbelt (PEACE) Chester Li (Hydro One)	<u> </u>	SULV Chester Li (Hydro One	Hongedo Ma (N EEC) Hongedo Ma (N EEC) Chester L (Hydro One) Mohamed Elkhatib (S&C)	Nyan Curren Verge Hongtan Ma (NERC) Chester II (Hydro One) Mohamed Elkhatib (S&C)	Chester Li (Hydro One)	Was Baker (Power Grid Eng.) Mohamed Elkhatib (S&C)	Ryan Quint (NERC) Mohamed Elkhatib	Steve Weinfinger SMA	Men Reddy (FirstSolar) Steve Wormlinger (SMA) Rvan Quint (NERC)

IEEE STANDARDS ASSOCIATION


Which of the following requirements SHOULD NOT be included in the standard?

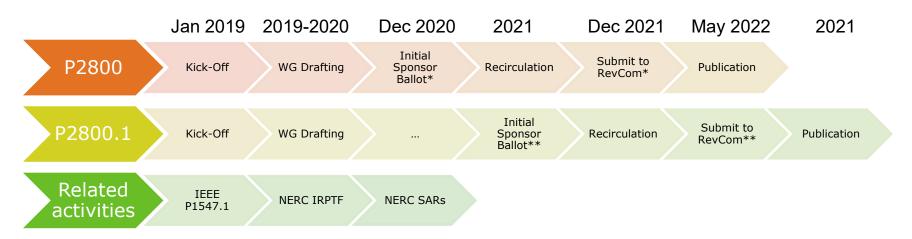
(multiple responses are allowed)



Which of the MORE SPECIFIC requirements SHOULD NOT be included in the

standard? (multiple responses are allowed)

Which of the MORE SPECIFIC Modeling & Validation requirements SHOULD NOT be included in the standard? (multiple responses are allowed)

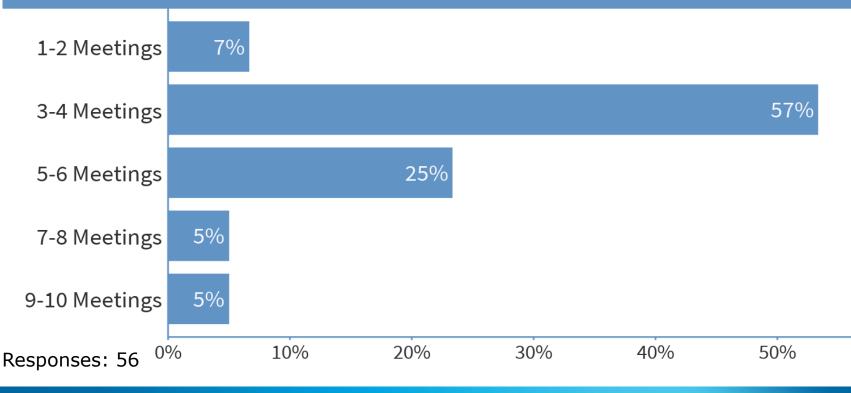

Anticipated Resource Commitments

Commitments	Officers (Chair, Vice- Chairs, Secretary)	Sub-WG Leads & Facilitators	Sub-WG Members	Liaisons
Regular attendance of 3-4 in-person meetings per year (2-3 days each) over the duration of the project of 2-3 years	In person	In person	In person or remotely	In person or remotely
Regular attendance of approx. monthly P2800 leadership calls (1hr each)	Х			
Review of draft requirements	Х	Х	Х	Х
Attendance/contributions to Sub- Working Group draft requirements and calls as needed (may vary, but typically weekly calls of 1 hr)		Х	Х	as needed

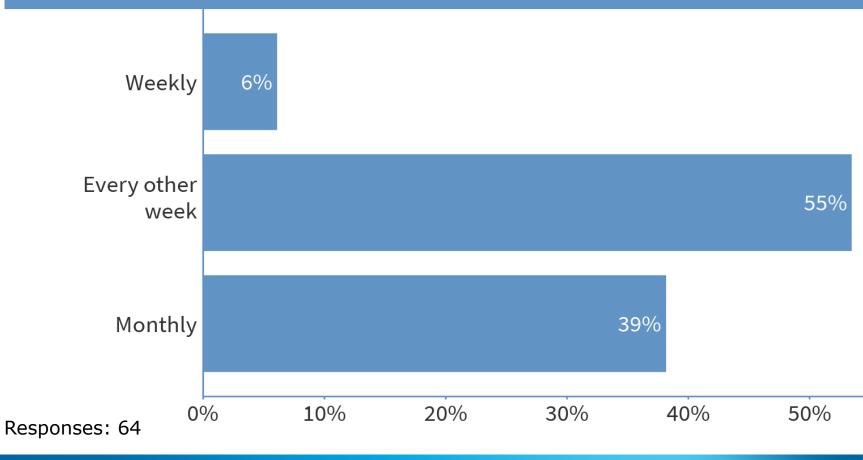
Please send your (self-)nominations to

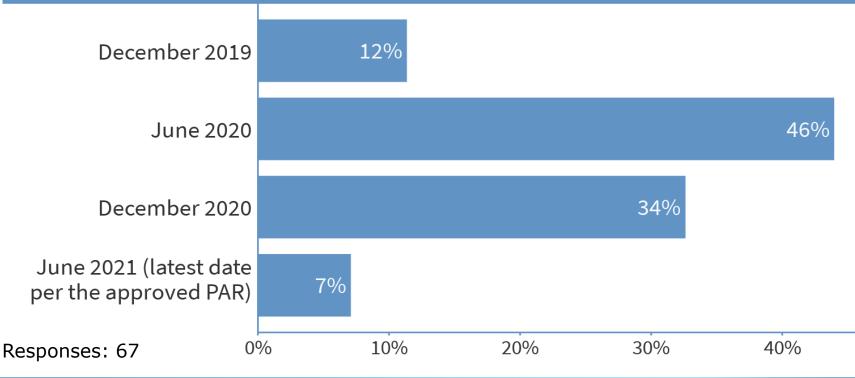
Jens C Boemer, j.c.boemer@ieee.org and Wes Baker, wbaker@powergridmail.com

Proposed Timeline



* The P2800 PAR states June 2021 for Initial Sponsor Ballot and October 2022 for submission to RevCom. ** The P2800.1 PAR states Dec 2021 for Initial Sponsor Ballot and October 2022 for submission to RevCom.


Ability to meet this accelerated timeline or an even more ambitious timeline may be subject to strong commitments (a.k.a. support/funding) of Working Group leadership team.


How many in-person Working Group meetings do you recommend prior to the Initial Sponsor Ballot of P2800? (We will try to schedule these adjacent to NERC IRPTF meetings and plan to allow remote attendance via WebEx)

What frequency for Sub-WG calls are you willing to commit to?

Based on your previous responses, what is your anticipated time horizon for entering the Initial Sponsor Ballot of P2800? (Publication of the standard may occur approx. 6-12 months later)

Coordination

Coordination with P2800.1

IEC coordination

Next Meetings

- Coordinate with NERC IRPTF Meeting Schedule
- Allow for remote participation via WebEx
- Preferably no registration fee, as long as facilities and catering is provided in-kind

NERC IRPTF	IEEE P2800 (tentative)	Location	Comment
Tue/Wed, May 21-22, 2019	Wed/Thu, May 22-23, 2019	Atlanta, GA (NERC)	Confirmed
Wed/Thu, September 4-5, 2019	Tue/Wed, September 3-4, 2019	Salt Lake City, UT (WECC)	May be moved to PSRC Meeting Sep 10 – 14, 2018, in Minneapolis, MN
Tue/Wed, December 3-4, 2019	Wed/Thu, December 4-5, 2019	, (TBD)	Not confirmed

Any Other Business

None.

Contacts

IEEE P2800

Jens C Boemer, j.c.boemer@ieee.org

Wes Baker, wbaker@powergridmail.com

IEEE P2800.1

Chenhui Niu, niuchenhui@sgepri.sgcc.com.cn

Jens C Boemer, j.c.boemer@ieee.org

Backup

Participation Rules & Procedures

Methods for Standards Development

Individual Method (e.g., IEEE P2800)

- Participants are individual technical experts, requires an <u>IEEE SA individual membership</u>
- Individuals represent themselves
- Each individual participant has 1 vote
- Ballot groups are made up of a minimum of 10 individuals
- Ballot group participants must be IEEE-SA individual members

Entity (Corporate) Method (e.g., IEEE P2800.1)

- Participants are "entities," i.e., companies, universities, government bodies, etc.
- Designated representative and alternate represent the entity, see <u>IEEE SA corporate membership</u>
- Each entity has 1 vote ("Basic members can observe" and "Advanced members can vote")
- Requires 3 entities to commit to participation at project initiation
- Entity sends representatives to meetings
- List of <u>IEEE SA corporate members</u>

How to become an Observing or Voting Working Group Member?

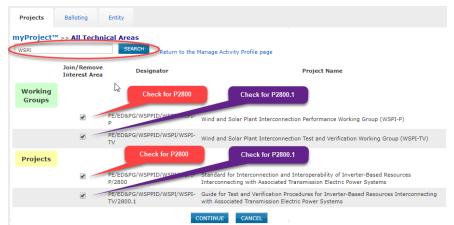
Please send an e-mail to the following contacts to be added to the Working Group rosters as an Observer:

IEEE P2800

- Jens C Boemer, j.c.boemer@ieee.org
- Wes Baker, wbaker@powergridmail.com

IEEE P2800.1

Chenhui Niu, <u>niuchenhui@sgepri.sgcc.com.cn</u>


Jens C Boemer, j.c.boemer@ieee.org

- For P2800, voting membership shall be granted automatically to those participants attending the first meeting upon their request.
- □ Attend a minimum of at least four of the last six WG meetings, ConfCalls count.
- □ Membership in the IEEE Standards Association (IEEE-SA).

How to be notified of the Initial Sponsor Ballot (2020 timeframe) and Vote on Ballot?

- Any IEEE and IEEE SA member can sign up to receive P2800 or P2800.1 Working Group updates in <u>myProject</u>
- Any individual IEEE SA member can sign up for the P2800 project but only entity members can sign up for the P2800.1 project
- Only IEEE SA members can vote on ballots.

- 1. On the **myProject**[™] Home Screen, select "Manage Activity Profile".
- On the "Manage Activity Profile" Page, enter "WSPI" into the Search line and click "Search".
- 3. Check the boxes next to the activity you are interested in (Sponsor, Working Group, Project). Check both the respective working group(s) and project(s).
- 4. Click "CONTINUE"
- 5. Confirm your interest area and enter your affiliation information.
- 6. Select from the list or type in your company/organization.
- 7. Click "CONTINUE"

IEEE STANDARDS ASSOCIATION

Scope Supporting Materials

NERC Reliability Guideline: "BPS-Connected Inverter-Based Resource Performance"

Chapter 1: Momentary Cessation

Functionally the same as tripping as it pertains to PRC-024-2

Chapter 2: Active Power – Frequency Control

Steady state and dynamic

Chapter 3: Reactive Power – Voltage Control

- Reactive capability
- Steady State and dynamic

Chapter 4: Inverter-Based Resource Protection

- Inverter level
- Plant level
- Transient overvoltage protection

Chapter 6: Measurement Data and Performance Monitoring

Measurement and monitoring data

Chapter 7: Other Topics for Consideration

- Dispatchability
- Grid Forming Inverters
- Negative sequence current injection

Conclusion:

All of the guideline topics are appropriate for P2800-can define the starting point for P2800.

Overview of Clauses in IEEE Std 1547-2018

- 1. Overview
- 2. Normative references
- 3. Definitions and acronyms
- 4. General interconnection technical specifications and performance requirements
- 5. Reactive power capability and voltage/power control requirements (*Normal Conditions*)
- 6. Response to Area EPS abnormal conditions (Abnormal Conditions)
- 7. Power quality
- 8. Islanding Unintentional islanding & intentional islanding
- 9. DER on distribution secondary grid/area/street (grid) networks and spot networks
- 10. Interoperability, information exchange, information models, and protocols
- 11. Tests and verification requirements
- + Seven new informative annexes, including
 - Annex F: Discussion of testing and verification requirements at PCC or PoC

Clauses from IEEE Std 1547-2018 that do not apply to P2800

Clause 4 (General Requirements):

- 4.2 (Reference Point of Applicability): The RPA is always the PCC
- 4.10 & 6.6 (Enter / Return to Service): Inhibition of prompt return to service is not applicable and may have adverse impacts on the BPS.
- 4.11 (Interconnect integrity): may not be applicable.
- 4.12 (Integration with Area EPS grounding): Ground fault protection is different at BPS level than at distribution level.
- 4.13 (Exemptions for emergency systems and standby DER): not applicable.

Clause 5 (Reactive Power / Voltage Ctrl):

- 5: Voltage regulation functions are unnecessarily complex for BPS.
- 5.1 (Introduction) and other mention of ANSI C84.1 are inappropriate for BPS.
- 5.2 (Reactive power capability of the DER): may prescribe inappropriate reactive power capability values for BPS.
- The 5.3.3 (Volt-Var) and 5.4.2 (Volt-Watt) functions (proportional control regulating reactive or active power) are inappropriate for the BPS where resources shall provide voltage control (PI controller regulating voltage).
- Other parts of this clause may prescribe inappropriate functional settings.

Clauses from IEEE Std 1547-2018 that do not apply to P2800

Clause 6 (Response to Abnormal Condts):

- 6.2 (Area EPS fault and open phase conditions) are not applicable to BPS because of vast differences between BPS and distribution protection schemes.
- 6.4.1 (Voltage) and 6.5.1 (frequency) shall-trip philosophy is contrary to BPS needs.
- 6.4.2: Momentary Cessation is not consistent with bulk system needs.
- 6.6 (Return to service after trip): not applicable because communication-based remote startup/shut-down preferred over automatic return to service.

Clause 7 (Power Quality):

- 7: References and power quality assessment values may be inappropriate for BPS interconnections
- 7: Power quality requirements may not be stringent enough.

Clause 8 (Islanding):

- 8.1: (Unintentional islanding): Autonomous UI detection may be inappropriate due to availability of communication-based means.
- On-board active AID function should be disabled to prevent destabilization of the grid under normal conditions.
- 8.2 (Intentional islanding) inappropriate, at least in the short- to mid-term.

Clauses from IEEE Std 1547-2018 that do not apply to P2800

Clause 9 (Secondary Networks):

 9: Requirements for interconnections to secondary networks are not applicable.

Clause 10 (Interoperability, Comms):

- 10: Communication requirements may not be appropriate for grid operations, SCADA, EMS.
- 10: Framework may already be specified for BPS interconnections in IEC 61850

Clause 11 (Tests and verification):

- 11: Type tests of equipment may never be sufficient to verify compliance at the PCC.
- Plant-level verification framework may be applicable for BPS interconnections.
- Wholesale interconnections incl. FERC LGIP and SGIP use modeling & simulation

Conclusions:

- IEEE Std 1547-2018 Standard for DER does not directly apply to BPS-connected inverter-based resources. 75% of the content is inappropriate for BPS connected projects.
- Roughly 25% of 1547-2018 requirements may be appropriate in context of BPS, including:
 - 3.1: Harmonized terminology and general concepts
 - 6: Ride-through capability requirements, including voltage, frequency, ROCOF, voltage phase angle jump, etc.

Other questions:

What about sub-transmission IBR?

Comparison of DER standards and certification

Standards for DER		Listing/		Interconnection Standards			State/ PUC/Utility Rules		
			Certification			1555 4543	1555 4543	CA	HI/HECO
Function Set	Advanced Functions Capability	UL 1741	UL 1741(SA) 2016	IEEE 1547.1 -201?*	IEEE 1547-2003	IEEE 1547a- 2014	IEEE 1547- 2018	Rule 21 (Phases)	Rule 14H & U SRDv1.1
All	Adjustability in Ranges of Allowable Settings			Δ		٧	ŧ		
Monitoring & Control	Ramp Rate Control		Δ					‡ (P1)	+
	Communication Interface			Δ			ŧ	‡ (P2)	+
	Disable Permit Service (Remote Shut-Off, Remote Disconnect/Reconnect)			Δ			ŧ	‡ (P3)	ŧ
	Limit Active Power			Δ			‡	‡ (P3)	
	Monitor Key DER Data			Δ			ŧ	‡ (P3)	
Scheduling	Set Active Power							[‡(P3)]	
	Scheduling Power Values and Models							‡ (P3)	
Reactive Power	Constant Power Factor	v	Δ	Δ	V	V	+	‡ (P1)	Х
	Voltage-Reactive Power (Volt-Var)		Δ	Δ	X	V	‡	‡ (P1)	ŧ
	Autonomously Adjustable Voltage Reference			Δ			‡	!!!	!!!
&	Active Power-Reactive Power (Watt-Var)			Δ	X		‡		+
Voltage	Constant Reactive Power	V		Δ	V	٧	‡		
Support	Voltage-Active Power (Volt-Watt)		Δ	Δ	X	٧	+	‡ (P3)	+
	Dynamic Voltage Support during VRT						٧	[‡(P3)]	
	Frequency Ride-Through (FRT)		Δ	Δ			+	‡ (P1)	+
Bulk System	Rate-of-Change-of-Frequency Ride-Through			Δ			+	!!!	!!!
Reliability	Voltage Ride-Through (VRT)		Δ	Δ			‡	‡ (P1)	ŧ
&	VRT of Consecutive Voltage Disturbances			Δ			‡	!!!	!!!
Frequency Support	Voltage Phase Angle Jump Ride-Through			Δ			‡	!!!	!!!
	Frequency-Watt		Δ	Δ	Х	٧	‡	‡ (P3)	‡
Other Advanced DER Functions	Anti-Islanding Detection and Trip			Δ			‡	‡ (P1)	‡
	Transient Overvoltage						+		+
	Remote Configurability						+	‡ (P2)	+
	Return to Service (Enter Service)						+	‡ (P1)	+

[...] Subject to clarification of the technical requirements and use cases, !!! Important Gap

suggested updates to this table.

Capability (versus Utilization, determined by settings)

Technical Capability

(Ranges of *technical* settings)

Allowable Utilization

(Ranges of *allowable* settings)

IEEE 1547

 Performance & Functiona Capability Requirement
 Default settings

Ranges of allowable settings

Actual Utilization

Evaluated Capability

(Ranges of evaluated settings)

(Specified settings)

IEEE

IEEE STANDARDS ASSOCIATION

Other Topics / Brainstorming

Other Topics:

- Power quality
- Ride-through capability (inverter limitations)
- Performance of phase lock loop
- Desired behavior during faulted conditions and post-fault clearing
- Capability (ride-through robustness) vs. Utilization (trip settings)
- Short Circuit Duty contribution (inverter limitations)
- Monitoring and recording for performance reporting:
 - Data supportive of NERC GADS reporting
 - Data consistent with NERC & IEEE defined Availability Factor calculations
- Appropriate autonomous frequency measurement

- Ramp rates
- Interoperability & Cyber Security, Communications
- Connection to weak grids
 - Applicable short-circuit ratio (SCR) and X/R ratio limits for this standard
- Control interactions
 - Plant level
 - Between multiple plants in an area
- Control stability limits
 - e.g., for droop values of voltage control
- Reference point of applicability
 - Definitions and illustrations
 - Point of Common Coupling (PCC)
 - Point of Interconnection (POI)
- Applicability to FACTS devices, Type 3 wind turbines, etc.

IEEE P2800.1

Need and Scope

IEEE STANDARDS ASSOCIATION

IEEE P2800.1: Guide for Test and Verification Procedures for Inverter-Based Resources Interconnecting with Associated Transmission Electric Power Systems

Need for the Project:

This guide is needed for testing and verification the performance of inverter-based resources interconnecting with associated transmission electric power systems. The guide can help manufacturers and project developers improve the quality of the inverter and facility design to enhance the stability of the power grid. This guide fills the need for global standardized methods to help testing organizations optimize their test methods. It will refer to appropriate related standards, research results, operation and maintenance experience of inverter-based resources, including photovoltaic and wind power plants, and performance tests of the inverters all around the world. Recent events in North America such as the Blue Cut Fire Disturbance as well as institutional challenges in North America that suggest the inappropriate use of IEEE Std 1547.1 for large-scale solar plants underscore the need of this guide. Given that IEEE guides are voluntary industry guides, enforcement of any of the procedures specified in this guide will require its adoption by the regional Authority Governing Interconnection Requirements (AGIR); an AGIR is a cognizant and responsible entity that defines, codifies, communicates, administers, and enforces the policies and procedures for allowing electrical interconnection of inverterbased resources interconnecting with associated transmission electric power systems.

IEEE P2800.1: Guide for Test and Verification Procedures for Inverter-Based Resources Interconnecting with Associated Transmission Electric Power Systems

Scope:

This guide provides **test and verification procedures** for inverter-based resources interconnecting with transmission electric power systems. This guide specifies the test equipment, test conditions and test and verification methods for type tests, production tests, facility design and as-built **evaluations** and commissioning tests to be performed to demonstrate the interconnection capabilities and functions for equipment connected with transmission electric power systems. Included in the test and verification procedures are all performance and functional requirements for reliable integration of inverter-based resources into the power grid, including, but not limited to, voltage and frequency ridethrough performance, reactive power control, power quality, and dynamic voltage support under abnormal voltage conditions. This guide may also specify **verification procedures for generic** steady-state short-circuit models for fault analysis, as well as, generic fundamental frequency, stability-type models (root-mean-square, rms with positive-sequence and possibly negative-sequence representation) of inverter-based resources interconnecting with transmission electric power systems for bulk system stability studies and/or **proprietary time-domain** (electromagnetic transient, emt) models for verification of interconnection requirements of composite systems (facilities) at the point of interconnection.

Related activities: IEC TS 63102, Contact: Charlie Smith, Charlie@esig.energy, U.S. TA for SC 8A.

