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=G Briefing Objective

* Provide an understanding of the roles for Data Fusion & Resource
Management (DF&RM)

* Describe how the Data Fusion heritage can be used to “jump-start” dual
Resource Management solutions

e Describe DF&RM Dual Node Network (DNN) Technical Architecture

* Provide Problem-to-Solution Mappings for Data Association

* Provide Baseline Max A Posteriori (MAP) Data Association Hypothesis
Evaluation Equations




**DF&RM Dual Node Network (DNN) Technical Architecture

» Distributed Data Fusion Node Networks

» Data Association Hypothesis Evaluation Alternatives
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« Data Fusion is the process of combining data/information to
estimate or predict the state of some aspect of the world.

 Resource Management is the process of planning/
controlling response capabilities to meet mission objectives
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e Architectures are frequently used mechanisms to address a broad range of
common requirements to achieve interoperability and affordability
objectives

e An architecture (IEEE definition) is a structure of components, their
relationships, and the principles and guidelines governing their design and

evolution over time

e An architecture should:

Identify a focused purpose with sufficient breadth to achieve affordability objectives
Facilitate user understanding/communication

Permit comparison, integration, and interoperability

Promote expandability, modularity, and reusability

Achieve most useful results with least cost of development



Operational
View (OV)

Identifies Warfighter
Relationships and Information Needs

/ﬁfff
Jf? 5/ Produets Retate to
e N\

Specific Capabilities Identified
Systems To Satisfy Imformation-Exchange
N Levels of Other Ops Requirements
View (SV)
111t1 istic Techmical Criteria Governin -
Relat; s CC‘) ap a.b1!1t1esi Ellild C‘_h aracteristics Inetce ro;)cerable Implementatioi/ Prescribes Standards and
o erationa equirements -
P q Procurement of the Selected Conventions
System Capabilities

* The operational architecture provides the “what and who” operational needs
* The technical architecture provides “problem-to-solution space” guidance

* The systems architecture defines the “how” to build the operational system
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» Data Mining discovers and models some as aspect of data input to each fusion level
» Data Fusion combines data to estimate/predict the desired state at each fusion level
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¢ Data batching by source, past
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Association

® Exploit overlapping
measurement observables

® Generate, evaluate & select
association hypotheses

Estimation

® Exploit independent
measurement observables

® Use associations w/ a priori
parameters to compute estimates
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® Task batching by resource,
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Exploit overlapping resource
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® Generate, evaluate & select
response plans
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capabilities

® Use assignments w/ performance
parameters to compute control
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Probabilistic: Preferred If statistics known

> Chi-Square Distance

— Doesn’t require prior densities
— Useful for comparing multi-dimensional Gaussian data

— However, no natural way to incorporate attribute and a priori data
> Max Likelihood

— Doesn’t require unconditional prior densities, p(x)

— Does require conditional priors, p(Z|x)

> Bayesian Maximum a Posteriori (MAP)

— Naturally combines kinematics, attribute, and a priori data
— Provides natural track association confidence measure

— However, requires prior probability (e.g. kinematics and class) densities; difficult to specify



* Non-Probabilistic: Useful if high uncertainty in the uncertainty

> Evidential (Dempster-Shafer)
— Non-statistical: User specifies evidence “mass” values (support and plausibility numbers)

— Essentially 2-point calculus (uniform uncertainty-in-the-uncertainty with simple knowledge combination
rules)

> Fuzzy Sets
— User specifies membership functions to represent the uncertainty-in-the-uncertainty

— User specifies fuzzy knowledge combination rules (e.g., sum, prod, max/min) which are much easier
compute than second-order Bayesian

— More complex to develop, maintain, and extend
> Confidence Factors and Other ad hoc Methods
— Explicit derivation of logical relationships
— Generally ad hoc weightings to relate significance of factors
— Can include information theoretic and utility weightings




* Chi-square (Mahalanobis) Scoring:
* I'V1=[R,-T,]%/[0g*+0,2] = 22/[1+1]=2
o I'V-1=[R,-T,]%/[0g%+0.3%]=4%/[1+16]=16/17
e R associated to 1 sigma away but further
distance away less accurate T,

Selected

1 1

T ] T
R,=0K T,32  Ty=4

1 1

Input Re'port

T, Selected

* Max. a Posteriori (Bayesian):
e [2nV] > e(-.5I'V-1l) =[6.28*2]>
e(-.5[R,-T,]%/[0r?+07,%]) ~ .28 1~ .10
* [2ntV] > e(-.51*V1) =[6.28*17] e(-.5[R;-
T,]%/[0g%+075%]) ~ .097 =47~ .060
* Ris associated to the closer more accurate T, R,=0 T,=2 T,
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Deterministic Data Association then target estimation

N
MAX P(H|REPORTS) = MAX[P(REPORTS|H)P(H) THEN MAX PO |H)
H

« Target state estimation with probabilistic data association

MAX P(0 |REPORTS) = MAX[ ¥ P(REPORTS|H,0)P(H|6) IR 6)
o 0 H

* Joint association decision and target state estimation

MAX P(H,6 |REPORTS) = MAX[ MAX P(@ |REPORTS, H)IP(H|REPORTS)
H,0 H @

H is the association hypothesis and Theta Is the track state.




* The total scene hypothesis score is the product of the individual hypothesis
scores for the 5 possible hypothesis types:

* association hypotheses

* pop-up (i.e., track initiation) hypotheses

* input false alarm (FA) hypotheses

* track propagation (missed coverage) hypotheses

» drop track (false track) hypotheses

* Pd and Pfa use track association confidences and incorporate the entity birth and
death statistics

* Track confidence estimates are needed to differentiate the 5 hypotheses types

* When the class tree uncertainty-in-the-uncertainty is high it is not used in scoring



e Sources 1 & 2 have noncommensurate attributes if for an exhaustive set of
disjoint of entity classes, K,

P(Z(S,) | Z(S,), Class K, Y(S.), H) = P(Z(S,) | Class K, Y(S, ), H)

where,

e 7(S)is the set of measured attributes (i.e., all non kinematics measurements) from each
source i,

e H is the association hypothesis between sources S; & S,,
e Y(S,) are the measured kinematics from the two sources

e All source attributes not conditionally independent are treated as separately
commensurate parameters

* For commensurate sources, feature differences are scored
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I Entity Type Declarations (Statistics per Truth Type)
) Unkno!/m (A M) ‘
Helicopter (M) : i
) i - includes personnel Unclassified (A
- Manually classified: 1.0 Tracked Vehicle (A)  -includes I’pleelicopters if No ATR ¥
| automatically detected ]
‘ ‘ ‘ Wheeled \vehicle (A)
T72 MeE0 M1A2 Challenger \Aarrior BMP FV432  Spartan HMMWA/  Range Rover
AM AM AM M M AM AM AM S AM M
T72: 36 | ML: 53.6 | Bvaze: 416 ] HMNMMWWA/:40
ME0: 1.6 T72: 1.6 T72: 6.4 T72: 1.6
Mil: 1.6 ME0: 2.4 NMEB0: 6.4 ME0: 4.8
BMP: 20 BMP: O M1: 6.4 Mil: O
F\/432: 104 F\/432: 11.2 BMP: 6.4 BMP: 16
Spartan: 10.4 Spartan: 11.2 Spartan: 6.4 F\432: 8.8
HMMVWV: O v HMMWA/: O v HMMWN: 6.4 v Spartan: 8.8
Unknown: 20 Unknown: 20 Unknown: 20 Unknown: 20
M60: 53.6 BMP: 50.4 Spartan: 41.6
T72: 0 I\_Iote: V_alues based on T72: 5.6 T72: 6.4
ML 5.6 simulation test results MEO: 1.6 MB0: 6.4
BMP: O except for F\v432, Spartan M1: O MLl: 6.4
Fv432: 104 | @ndUnknown whichwere F\v432: 10.4 BMP: 6.4 A: automated
Spartan: 10.4 added In based on Spartan: 10.4 FVv432: 6.4 M: manual
HMMVWA: 0 [ engineering judgment HMMWW: 1.6 HMIMVW: 6.4
Unknown:20 Unknown: 20 Unknown: 20



The total scene hypothesis score is the product of scores for 5 types of S to T association
hypotheses of kinematics, Y, attributes, Z, and entity class confidences, K:

1.

Association Hypotheses

P(Y(S) | Y(T),H) P(Z(S), Z(T) | Y(S), Y(T), H) P(H) = { | V | /2} exp[-1/2{IT V-11}]
e {(Z[P(K | Z(T),Y(T), H) P(K| Z(S),Y(S), H)/P(K | Y(T),Y(S), H)]} ® [1-Pra (S)]
[1- Pra(T)] Pp (S) Pp (T)

Pop-up (i.e., Track Initiation) Hypotheses

P(Y(S) | Y(T),H) P(Z(S), Z(T) | Y(S), Y (T), H) P(H) = {E(| V [ /2 )} exp[-1/2{u}] *
[1-Pra (S)] [1- Po(T)] Pb (S)

False Alarm (FA) Hypotheses

P(Y(S) | Y(T),H) P(Z(S), Z(T) | X(S), Y(T), H) P(H) = { E(| V| 1/2 )} exp[-1/2{u}] =
Pra (S) Pp (S)

Propagation Hypotheses

P(Y(S) | Y(T),H) P(Z(S), Z(T) | Y(S), Y(T), H) P(H) = [1-Pra (T)] [1- Po(S)] Pp (T)
Track Drop Hypotheses

P(Y(S) | Y(T),H) P(Z(S), Z(T) | X(S), Y(T), H) P(H) = Pra (T) Pp (T)



Y(S) are the sensor report Gaussian kinematics with covariance R
Y(T) are the track Gaussian kinematics with covariance P *,,

H is one of 5 association hypothesis types, E is expectation fcn
|V| is determinant of innovations covariance, V= H[P * ] H' +R,
L is the mean of the chi-square statistic (i.e., {I"VI})

| is the innovations vector, | = Y(S) - H Y(T),

P(K) are the confidences of the disjoint entity class tree,

Z(T) [Z(S)] are the parameters/attributes from the track [report],
P,(S) [P,(T)] is the sensor [track file] probability of detection

P.o (S) [Pe, (T)] is the sensor [track file] probability of false alarm,



* P(K|D) =P(D|K) P(K) / Z(P(Truth T) P(D |Truth T) where

 P(K|D) is the probability of the entity being of class K given the specified sensor declaration D that is computed
for all the possible disjoint classes. These terms are inserted for the n P(K|Z(S),Y(S), H) sensor report disjoint

classification type confidences.
* P(K) is the a priori probability of the entity being of class K

 P(D|K) is the probability that the declaration D is made given the entity is of class K from the declaration
confusion matrix

 P(D |Truth T) is the probability of the specified declaration D given the entity is of truth type T from the
declaration confusion matrix where T varies over the possible scenario truths

 P(Truth T) is the a priori probability of the truth in the scenario being of type T where T varies over the possible
scenario truths
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* Uses the separation point on the PDF as the kinematics score, so
high uncertainty tracks do not overly attract reports as w/chi-square
scoring

* Bayesian scoring and update of the classification uncertainties with
pedigree of noncommensurates used for class error correlation
compensation or separate noncommensurate class vectors

* Track confidence estimation provides rigorous basis for the scoring of
the four non-association hypotheses

* Misalignment bias states & uncertainties added for scoring and to
remove relative misalignments
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* Propagation of Probability for Entity Track in Consistent Operational
Picture (COP) & False Track

* Track Confidence Contribution to Association Hypothesis Scoring

* Update of Probability of Entity Track in COP and False Track
Confidences With Track Propagations and Pop Ups

* Update of COP Probability of False Track for Associated Tracks,
Propagated Tracks, & Pop Ups



al Prople s e NACE AP PINE
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SOLUTION SPACE Probabilistic Possibi-listic Logic/Symbolic Neural Unified
PROBLEM SPACE AdH | LkI Bay | NP | Chi [ CEA | Inf DS Fuz | S/IF| SD ES C-B usS FF [Rec RS
INPUT DATA
« |dentity/attributes Y Y N Y
» Kinematics Y Y Y Y
» Parameter attributes Y Y Y Y
* A priori sensor data N Y N Y AdH
* Linguistic data Y Y Y Y Y Y Lkl
» Spatio-temporal Y Y Bay
» High uncertainty Y Y Y NP
+ Unknown structure Y Y Y Chi
« Non-parametric data Y Y Y Y CEA
 Partial data Y
« Differing dimensions Y Inf
« Differing conditionals Y DS
- Error PDF known N Y Y N N N N N N N N N N N N Fuz
SCORE OUTPUT S/F
* Yes/no, pass-through Y 2:
» Discrete score bins Y Y Y Y Y Y Y Y
+ Numerical scores Y Y Y Y Y Y Y cB
» Multi scores per Y Y us
» Confidence function Y Y FF
PERFORM MEAS Rec
* Low cost/complexity Y Y Y Y Y N N N N N N N Y Y Y Y N RS
» Compute efficiency N N Y Y Y Y
» Score accuracy N Y Y N Y Y Y Y N N N N N N N Y
» User adaptability Y Y Y Y Y Y
* Training set required N N Y Y
» Self-coded/trained Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
* Robustness to error Y Y Y Y
* Result explanation N Y Y Y Y Y Y Y
« High processing Avail N N N y Y N Y Y Y Y Y Y

KEY

Ad Hoc
Likelihood
Bayesian
Non-parametric
Chi-Squared

Conditioned Event
Algebra

Information Theoretic
Dempster-Shafer
Fuzzy Logic

Scripts/ Frames
Semantic Distance
Expert Systems
Case-Based Reasoning
Unsupervised Learning
Feed-Forward

Recurrent Supervised
Learning

Random Set



L J
Methods Approach Event Problem Solution Costs/Risks | Performance Verification Speed
Representation Domain Development
Ad Hoc analyst table look-up predefined  [rule-of-thumb simple not approximate; |all cases fast table look-up
driven fixed upgradable |brittle tested
features
Probabilistic | algorithm  pointwise rigorously analyst solves | upgradable |precise; alternative path via path
driven probability defined rigorously SW extendable tests parallelization
features
Possibilistic | algorithm  juncertainty-in- feature analyst solves | upgradable; |Broader app’s; [alternative path via path
driven the-uncertainty | uncertainties japproximation | more extendable tests parallelization
known complex
Logic/ rule driven setwise degree | expert expert defines | rule gets close; rules explanation | via rule
Symbolic of membership | described rules compatibility/ |user adaptable parallelization
features scalability
Neural self- firing level unknown data driven; training approximate;  |numerous training | massively parallel
Networks organized |patterns feature user objectives | breadth; HW |non-linear cases chips
relationships scalability interpolation
Unified algorithm  jnormalized combination janalyst solves | most most breadth  [alternative path via approximation
& rule representation s of the hybrid complex tests
driven above
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Performance (log scale)
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Behavior

Consistent Nistorically
-Based BeNavior

Incongistent [Not Based
Upon Historical] Behaviodg

Problem Difficulty (log scale)
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hothecic Selection Prable

* Need to Search through Association Matrix to find best

Global Hypothesis Reports
%) TYPES OF GLOBAL
-;éé Scores HYPOTHESIS
* Association Matrix: " Set Partitioning
 Types of Global Hypotheses
» Set Partitioning: no two tracks (local hypotheses) share a report
* Set Covering: There may be shared reports Q
* N-D Approaches: Search All Scans by All Sources

* Globally Optimal Solution
* Computationally Demanding
(NP-Hard: < Exponential Run-Time)
* 2-D Approaches: Search only Current Scan “
* Locally Optimal Solution
* Polynomial Run-Time

Set Covering




Current Reports No Observation
-IN[P(R{, T4| | -In[P(R,, T4] | -In[P(R5, T,| | -InP(H,) Inf
Current| H)P(H)] H)P(H)] H)P(H)]
Tracks | -In[P(R,,T,| | -IN[P(R,,T,| | -IN[P(R5, T, Inf -InP(H.,)
H)P(H)] H)P(H)] H)P(H)]
-InP(H,) Inf Inf 0] 0]
Track - -
Initiation Inf -InP(H,) inf 0 0
or FA inf inf -InP(H,) 0 0

“No Observation” columns added to denote the better hypothesis, H,, of false or propagated
tracks for unassociated tracks

“No Association” rows added to denote the better hypothesis, H,, of false alarm or initiated
tracks for unassociated reports

Zero’s in lower right box discourage selection of non-association hypotheses
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P(class C| all S;, H) = {IT; [{P(C|S;,H)/P(C|Y(S; alli), H)} P(C| Y(S; for all i), H)] } / Z ATL [{P(K]|S, H)/P(K| Y(S,alli), H)}
P(K] Y(S, for all i), H)]}

if P(C|H)=0 [=0 if P(C|H)=0]
e Cisthe element of the fused entity class tree being updated,
e S for each source iisits measured data [both kine@atic and attribute]

e P(C|Y(S), H) is the probability of an entity of type C given only kinematics data from source i & H, the

association hypothesis,
e Kisthe index of type disjoint tree classes [summed over for normalization],

e P(C|S, H) are the entity class tree confidences based upon all measurements from each source i
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