

IEEE ROADMAPS

outline Technology Innovations for humanitarian Solutions

Dr. Rakesh Kumar, IEEE Life Fellow IEEE Roadmaps Committee Chair rakesh@tcxinc.com

EDS Chapter Webinar 9/27/2023

About Me

- Long time Industry professional
 - 2 Start-ups, Cadence, Unisys, Motorola
- Long term IEEE Volunteer
 - Past President, Solid-State Circuits Society
 - TAB Hall of Honor
 - Led TAB efforts at 2 Sections Congress events
- Currently
 - Chair, IEEE Roadmaps Committee
 - Chair, IEEE Data-based Strategy Ad Hoc
 - Chair, IEEE DataPort

www.ask.ieee.org

Outline

- Technology Directions
- IEEE Roadmaps
 - IRDS, HIR, ITRW, INGR
 - "In the works" Roadmaps
- Humanitarian applications

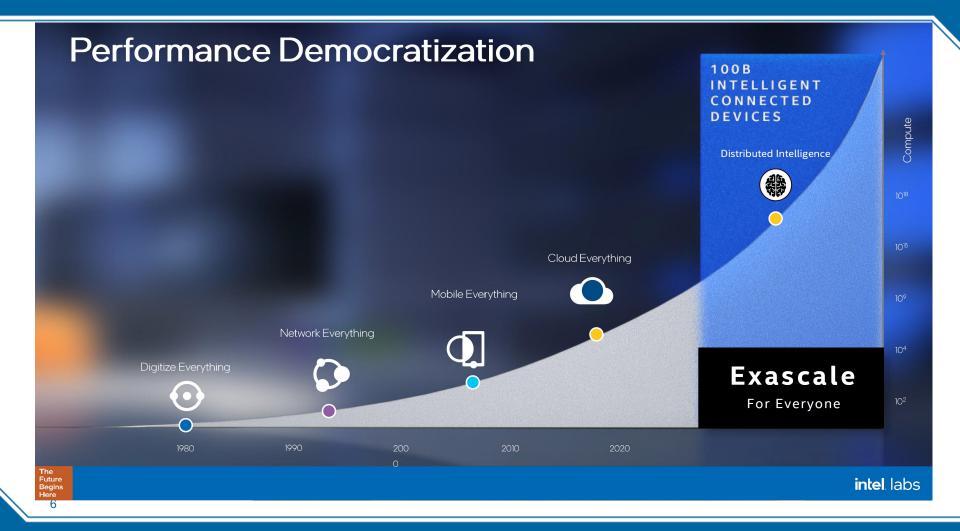
Technology has changed Lives....

... Many of you are creating solutions....

...Many Many more challenges & solutions on the way!!!....

... Many New PRODUCT Opportunities...

...Many TECHNOLOGY Innovations needed... Multi-disciplinary Integrations



From Pat Gelsinger, Intel CEO...

Ref: Pat Gelsinger, Intel Investor Day, June 2022

Evolution of the Digital Phone

1980's	1990's	2000's	2010's	2020's	2025-30
1G	2G	3G	4G	5G	"Next Gen"
					Better Speed
					Lower Latency
					Capacity/BW
					Reliability
					"Pervasive Application
				Better Speed	
				Lower Latency	
				Capacity/BW	
				Reliability	
				IoT	
				AI	
				VR/AR	
				Robotics	
				Cloud//Edge Computing	
				SDN	
			Video		
			Better Speed		
			Lower Latency		
		Internet connectivity			
		Wireless connectivity			
	_	Digital n/w			
	Text				
Voice Analog n/w					

IEEE

If you work in the Industry....you might want to know

- ➤ The industry direction...
- > What Technologies are coming in 3-5 years or longer
- What are the Roadblocks and possible Solutions

IEEE Roadmaps positioned to create this value

The IEEE Technical Roadmaps committee coordinates...

- 4 published Technical* Roadmaps <u>https://roadmaps.ieee.org</u>
- Many more 'on the horizon'

* Companies usually have "**Product**" Roadmaps these provide them vision and competitive advantage

Each Roadmap brings together International experts...

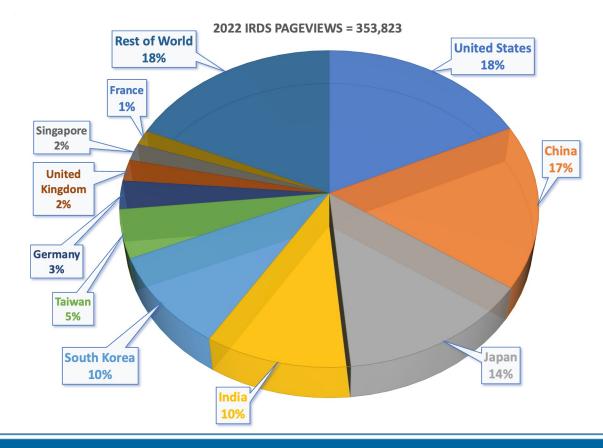
- > From the industry, academia, government, research entities
- Forms Working Groups
- Discusses Tech Trends
- Makes predictions for 5-10-15+ years
- Refreshed every 1-2 years

Identifies "Base" Technology Trends

Serves as an independent, unbiased REFERENCE resource

Identify Gaps and "Brick Walls"

A Semiconductor & Devices Roadmap ["IRDS"]

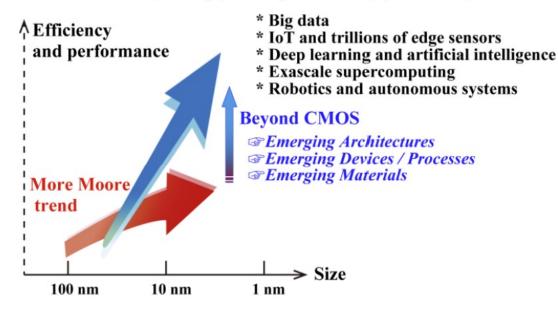

INTERNATIONAL ROADMAP FOR DEVICES AND SYSTEMS TM

- >1M views in 2022
- In the EU Chips Act
- In the Japan Chips Act
- Referenced in US Chips Act
- Many Presentations

https://irds.ieee.org

Over 1M cumulative Page Views

	2022 Pagevie	353,823	
1	United States	18%	63370
2	China	17%	59281
3	Japan	14%	48959
4	India	10%	36529
5	South Korea	10%	34012
6	Taiwan	5%	17485
7	Germany	3%	10298
8	United Kingdom	2%	7720
9	Singapore	2%	6231
10	France	2%	5440
	Rest of World	18%	64498



Toward Energy-Efficient, Data-intensive, Cognitive Applications

→ Novel Computing Paradigms and Massive Parallelism, Bio-inspired mechanisms

Novel computing paradigms and application pulls

Relationship of More Moore, Beyond CMOS, and Novel Computing Paradigms and PEEE Applications (Courtesy of Japan beyond-CMOS Group)

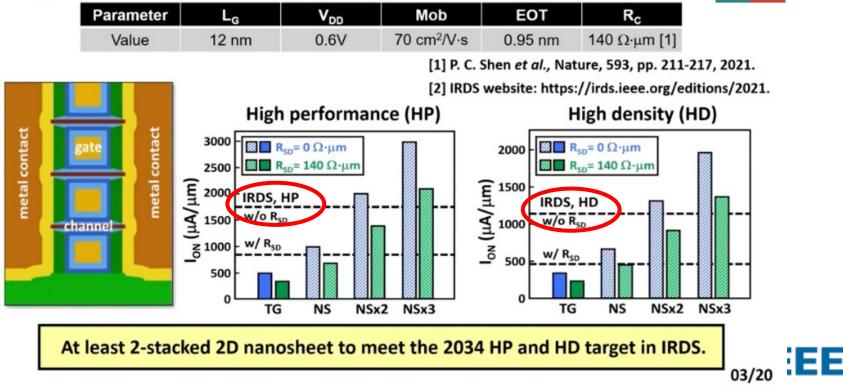
Table MM-7 Device Architecture and Ground Rules Roadmap for Logic Devices.

Note: GxxMxx/Tx notation refers to Gxx: contacted gate pitch, Mxx: tightest metal pitch in nm, Tx: number of tiers. This notation illustrates the technology pitch scaling capability. On top of pitch scaling there are other elements such as cell height, fin depopulation, DTCO constructs, 3D integration, etc. that define the target area scaling (gates/mm²).

IRDS example of Roadblocks

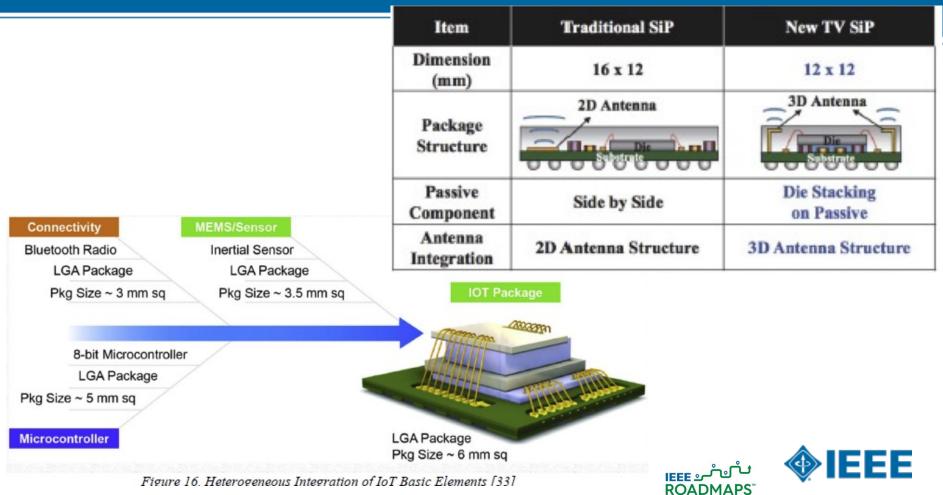
YEAR OF PRODUCTION	2021	2022	2025	2028	2031	2034
	G51M30	G48M24	G45M20	G42M16	G40M16/T2	G38M16/T4
Logic industry "Node Range" Labeling (nm)	"5"	"3"	"2.1"	"1.5"	"1.0 eq"	"0.7 eq"
IDM-Foundry node labeling	i7-f5	i5-f3	i3-f2.1	i2.1-f1.5	i1.5e-f1.0e	i1.0e-f0.7e
Logic device structure options	FinFET	finFET LGAA	LGAA	LGAA	LGAA-3D	LGAA-3D
Platform device for logic	finFET	finFET	LGAA	LGAA	LGAA-3D	LGAA-3D
	Oxide	Dxde	S S S	ci c	S S S	
LOGIC DEVICE GROUND RULES						
Mx pitch (nm)	36	32	24	20	16	16
M1 pitch (nm)	34	32	23	21	20	19
M0 pitch (nm)	30	24	20	16	16	16
Gate pitch (nm)	51	48	45	42	40	38
Lg: Gate Length - HP (nm)	18	16	14	12	12	12
Lg: Gate Length - HD (nm)	20	18	14	12	12	12
Channel overlap ratio - two-sided	0.20	0.20	0.20	0.20	0.20	0.20
Spacer width (nm)	7	6	5	4	4	4
Contact CD (nm) - finFET, LGAA	19	20	21	22	20	18
Contact CD (nm) - VGAA						
Device architecture key ground rules						
FinFET pitch (nm)	28.0	24.0				
FinFET Fin width (nm)	6.0	5.0				
FinFET Fin height (nm)	50	64				
Footprint drive efficiency - finFET	3.79	5.54				
Lateral GAA lateral pitch (nm)			22.0	20.0	20.0	20.0
Lateral GAA vertical pitch (nm)			18.0	16.0	14.0	14.0
Lateral GAA (nanosheet) thickness (nm)			7.0	6.0	5.0	5.0
Number of vertically stacked nanosheets			3	3	4	4
LGAA width (nm) - HP			30	25	20	15
LGAA width (nm) - HD			15	11	6	6
LGAA width (nm) - SRAM			7	6	6	6
LGAA total height (nm)			53	48	57	57
Footprint drive efficiency - lateral GAA - HP			4.93	4.77	5.88	5.52
Device effective width (nm) - HP	106.0	133.0	222.0	186.0	200.0	160.0
Device effective width (nm) - HD	106.0	133.0	132.0	102.0	88.0	88.0
Device lateral pitch (nm)	28	24	22	20	20	20
Device height (nm)	50.0	64.0	53.0	48.0	57.0	57.0
Device width (nm) - HP	6	5	30	25	20	15
Device width (nm) - HD	6	5	15	11	0	
Device width (nm) - SRAM	6	5	7	6	6	Screenshot

First Demonstration of GAA Monolayer-MoS₂ Nanosheet nFET with 410 μ A/ μ m I_D at 1V V_D at 40nm gate length

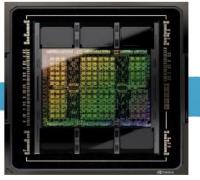

Yun-Yan Chung¹, Bo-Jhih Chou², Chen-Feng Hsu¹, Wei-Sheng Yun¹, Ming-Yang Li¹, Sheng-Kai Su¹, Yu-Tsung Liao², Meng-Chien Lee², Guo-Wei Huang³, San-Lin Liew³, Yun-Yang Shen⁴, Wen-Hao Chang⁴, Chien-Wei Chen⁵, Chi-Chung Kei⁵, Han Wang⁶, H.-S. Philip Wong¹, T. Y. Lee¹, Chao-Hsin Chien^{2*}, Chao-Ching Cheng^{1*} and Iuliana P. Radu^{1*}

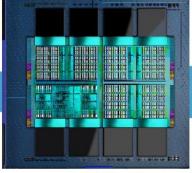
¹Corporate Research, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan *E-mail: chengcca@tsmc.com
²Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan *E-mail: chehien@nycu.edu.tw
³Failure Analysis Division, Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan
⁴Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
⁵Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
⁶Corporate Research, Taiwan Semiconductor Manufacturing Company, San Jose, USA

Stacked 2D Performance Simulation


A Heterogeneous Integration Roadmap ["HIR"]

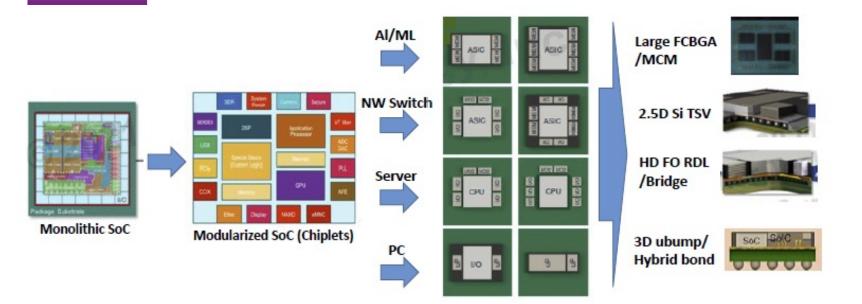
- Referenced in US Chips Act
- Many Presentations


https://eps.ieee.org/technology/heterogeneous-integration-roadmap.htm



Examples of Multi-die Hi-performance Compute Servers

2022: NVIDA Hopper H100 GPU core: 80 Billion Transistors 50MB L2, 80GB HBM3 – 3TBps bandwidth


2023: AMD MI300 3GPU+I CPU 8 HBM3

A "Chiplets" example...

Advanced packaging Heterogeneous Integration

A Wide Bandgap Semiconductor Roadmap ["ITRW"]

https://resourcecenter.ieee-pels.org/roadmap/PELSPRO0020.html

A Network Generations Roadmap ["INGR"]

International Network Generations Roadmap

Applications and Services	Millimeter Wave and Signal Processing
Artificial Intelligence / Machine Learning	Optics
Connecting the Unconnected	Satellite
Deployment	Security and Privacy
Edge Services and Automation	Standardization Building Blocks
Energy Efficiency	Systems Optimization
Massive MIMO	Testbed

- >1.5k Views per month
- Many Presentations
 - >6 Conferences
 - 7 Webinars
 - 2 Technical Workshops
 - Podcast series
 - >2k registrants

https://futurenetworks.ieee.org/roadmap/

INGR

14 Working Groups

Full Chapter / Free Abstract

Full Chapter / Free Abstract

-

Full Chapter / Free Abstract

Full Chapter / Free Abstract

Full Chapter / Free Abstract

Full Chapter / Free Abstract

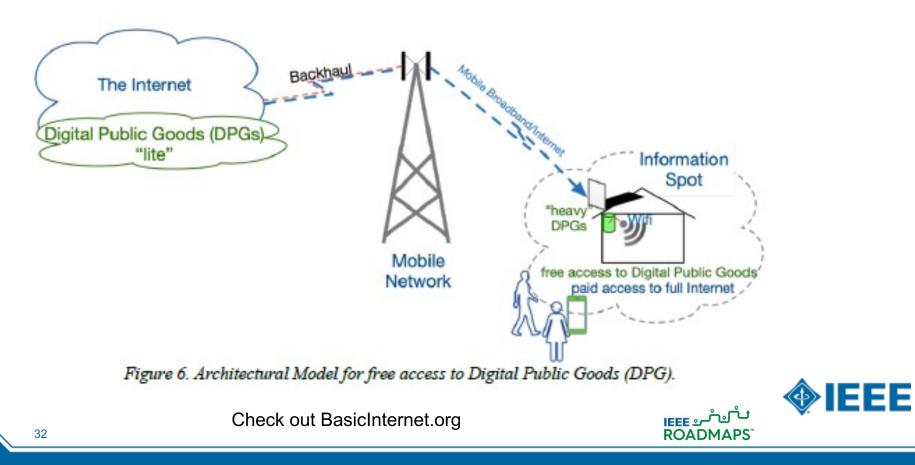
Full Chapter / Free Abstract

Full Chapter / Free Abstract

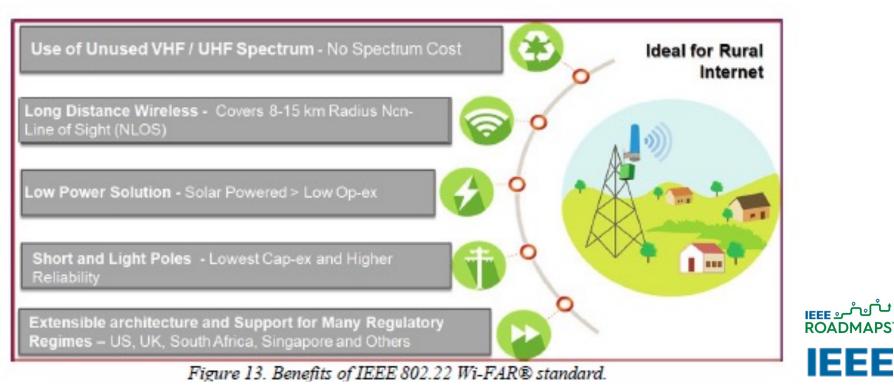
Full Chapter / Free Abstract

Full Chapter / Free Abstract

"Connecting the Un- and Under-Connected" WG ...Identify GAPS to be filled for increased Access and Relevance


3+ Billion people have no Internet connectivity!

- System-level customization & optimization of Technologies
- Affordable
- ➢ Relevant
- Local Language or HCI* for the Illiterate
- Spectrum allocation to increase reach and coverage
- Enable deployment in remote areas thru use of renewable energy سن المعالية



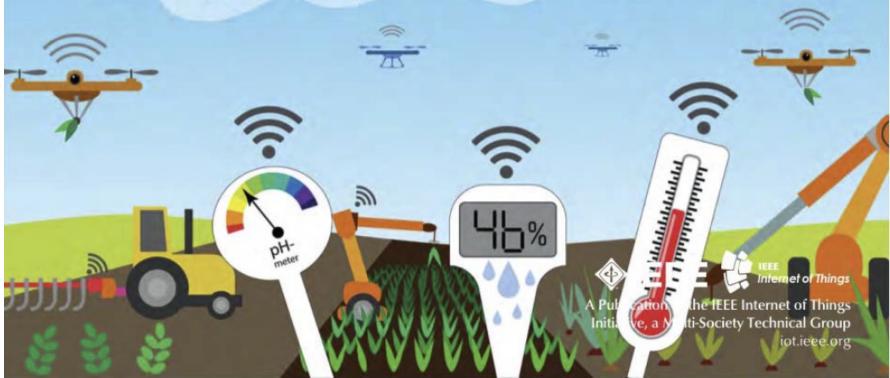
ROADMAPS

CTU – Architecture Model for CTU

CTU – IEEE 802.22 Wi-FAR Standard

INGR – Applications and Services WG

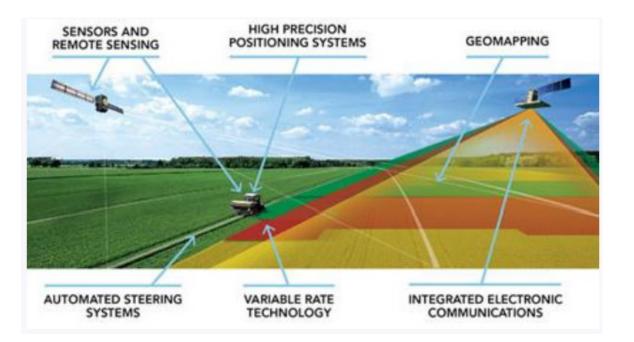
...Multi-disciplinary Framework for Networks and Ecosystems, and Governance


New industries and public works functions:

Agriculture Education Healthcare Electrical Power Media and Entertainment Public Safety Transportation Water treatment and Wastewater treatment

IoT, Networking & Computing in Precision Agriculture

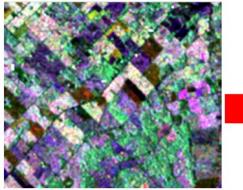
Ref: IoT Magazine Dec. 2019

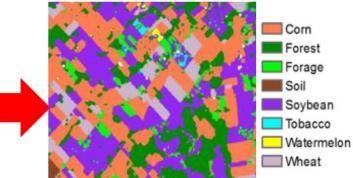

Precision Agriculture

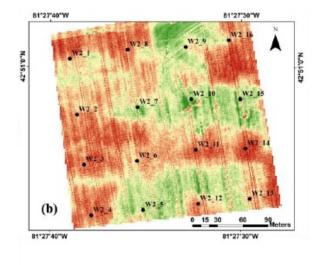
Combines...

- Remote sensing
- GPS (global positioning system)
- Mapping software

Enables Decision Making...


- ➢ Site-specific
- Variable rates for fertilizers, pesticides etc.




Precision Agriculture

Multi-temporal radar satellite data

UAV-derived N₂ estimation maps

Sample Points
 Canopy Nitrogen Weight g/m²
 High : 8.22
 Low : 3.36

ROADMAPS

Precision Agriculture – Disease detection examples

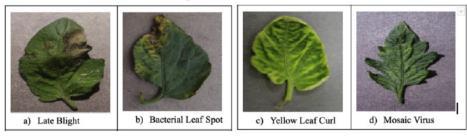
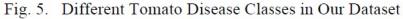



Fig. 2. Some examples

Ref: Chung et.al., "Remote Crop Disease Detection Using Deep Learning with IoT", 2022 IEEE GHTC, September 2022

s of	disease classes f	rom training data	set	a superior		
	Healthy	Spider Mites	Septoria Leaf Spot	Leaf Mold	Late Blight	
	Bacterial Spot	Mosaic Virus	Yellow Leaf Curl Virus	Early Blight	Target Spot	الالالا بالمراجعة المراجعة الم المحمد المراجعة المراجع المحمد المراجعة المراجع
I	Fig. 5. Differen	ROADMAPS				

Towards a 5G Testbed...Present 5G has Many Limitations

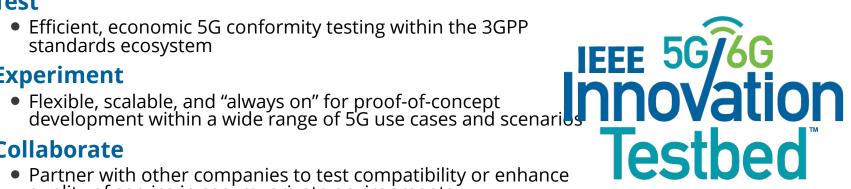
- Limited range due to Spectrum mid- and high-band
- Limited mmWave integration
- Security and Privacy issues
- Limited deployment of Standalone mode
 - Limited thruput, latency etc.

Operators need a Testbed to evaluate 5G enhancements

A 5G/6G Innovation Testbed

...launched by IEEE Future Networks to enable the Industry

• Test


- Efficient, economic 5G conformity testing within the 3GPP
- Experiment

Collaborate

• Partner with other companies to test compatibility or enhance quality of service in secure, private environments

Innovate

• Adjust, transform, and integrate new network functions or features

testbed.ieee.org

"On the horizon" Roadmaps

Int'l Tech Roadmap of Power Electronics for Distributed Energy Systems

Other Roadmaps under way

Instrumentation & Measurements for Brain [or Healthcare Systems]

Smart Lighting

Telepresence

LEOS (Lo Earth Orbit Satellites)

Public Safety

Reliability

What can YOU do?

- Participate in the Development
- Use the Roadmaps
- Help industry participants **Develop** a Roadmap at their company using our methodology
 - > Especially Young Professionals!!

Contact: roadmaps@ieee.org

