
Valencia Team

IEEE Orlando Section

Progress Report 3: March

Project Addressing Climate Change:

Solar Powered Ventilation with Controlled Airflow for

Parked Cars

Daniel Eisenbraun [IEEE # 98706125]

Ian Matheson [IEEE # 98579639]

Supervisor:

Dr. Masood Ejaz [IEEE # 92131157]

Department of Electrical & Computer Engineering Technology (ECET)

Division of Engineering, Computer Programming, & Technology

Valencia College

2022 - 2023

Contact: Daniel Eisenbraun & Ian Matheson

deisenbraun@mail.valenciacollege.edu

imatheson@valenciacollege.edu

mailto:deisenbraun@mail.valenciacollege.edu
mailto:imatheson@valenciacollege.edu

Introduction:

This brief report covers important project developments in March. A review of spent budget and

added costs will be given, followed by build progress.

Spent Budget and Added Costs:

The group incurred one additional cost this month when they swapped the IR proximity sensors

for HC-SR04 Ultrasonic proximity sensors. The cost is given in the “Added Costs” section of the

Project Budget.

Progress:

Build Progress

The group made the final push to complete the full system build this month. This includes some

software modifications such as cooling mode hysteresis, MCU on-board temperature sensing, and

datalogging capabilities. Hardware modifications include the replacement of IR proximity sensors

with Ultrasonic proximity sensors and full system assembly. The vent-visors were mounted to the

test vehicle and any resulting damages were amended.

Cooling Mode Hysteresis

The flowchart in figure 1 shows how the hysteresis is

implemented. Two global variables hold the previous

mode and previous temperature standard deviation. At

the start of the function, the new temperature standard

deviation is taken. If the difference between them is

greater than 3, then a cooling mode will be selected.

The previous mode will then be set to the selected

mode, and the previous temperature deviation will be

set to the new temperature deviation. If the condition

is not satisfied, then the mode returned by the function

will be set equivalent to the previous mode.

The printout below shows the hysteresis in action.

With no temperature sensors plugged in, the T values

vary wildly. The cooling mode is only selected when

the difference between new_t and prev_t is greater

than 3. This is observed from the first to the second

iteration and from the third to the fourth iteration.

Figure 1 - Flowchart for cooling mode

hysteresis.

https://deisenbraun.wixsite.com/senior-design-2022/design-proposed-budget

Reading the Onboard Temperature Sensor

To read the temperature in Fahrenheit from the Raspberry Pi Pico onboard sensor, the following

two lines of code are used. The sensor is reasonably accurate and matched the room temperature

closely.

Writing Data to a .txt File

Writing data to files using CircuitPython is tricky. CircuitPython cannot normally write data to

files from within the program; the tradeoff is that the programmer has read and write access to

the whole file structure on the board. Luckily, there is a simple workaround. First, a file named

boot.py is created in the main directory. This file is the first thing that executes when the Pico

gets power. The following code is written in boot.py. This allows the Pico to write.

The tricky part about this is that once the Pico has write access, the user can no longer

write files, so no changes can be made to the code in this mode. To make changes, the user can

use the CircuitPython terminal to execute the following code, which changes the name of boot.py

so that it doesn't run on startup. To switch the mode back again, the user can simply change the

name back to boot.py from the file explorer.

Another tricky thing about this method is that once the Pico has write access, the user has

no way to know whether the code is executing properly. To do that, a try/except method is used

in the main loop to change the blink speed of the onboard LED according to the error status.

With the above functionality in place, writing data to a txt file is simple. The following

code opens the datalog file in append mode and places the headers in the first line. The get_time

function is called as the first argument in every iteration of the datalog.write code to get the time

from Pico startup. Unfortunately, the Pico does not have a real-time clock, so the start time must

be noted manually anytime we run tests.

http://boot.py/
http://boot.py/
http://boot.py/
http://boot.py/

Running the Pico standalone in write mode, the following .txt file is generated. This is

easily converted to spreadsheet format by importing the .txt file in Excel and using commas as

the column delimiter.

Switch to Ultrasonic Proximity Sensors

Following the confirmation of a major design flaw with the IR proximity sensors, the group sought

an alternative. Dr. Radu Bunea, a professor at Valencia College, suggested that ultrasonic sensors

be used in place of IR sensors. They effectively perform the same task but use sound instead of

light. They are also far cheaper than quality optical filters.

Swap to Ultrasonic Proximity Sensor

To replace the IR Proximity sensor, the HC-SR04 Ultrasonic Proximity Sensors were acquired.

A test was performed which confirmed their functionality as proximity sensors with a function

generator and an oscilloscope.

(a)

(b)

Figure 2 - (a) Ultrasonic Echo signal with no object present and (b) with object present.

System Integration of Ultrasonic Sensors

Luckily, this sensor has the same number of pins that the IR sensor had, so implementing it into

the control module was relatively painless. To start, the schematic in figure 3a was drawn up to

use as a reference while soldering. Next, the IR circuit components were desoldered from the

MCU board, and the Ultrasonic circuit components were added. The completed circuit is shown

in figure 3b.

(a)

(b)

Figure 3 - Ultrasonic sensor components soldered to the MCU PCB.

2-pin connectors were used to connect the ultrasonic sensors to the control module. These

were soldered and wrapped directly to the pins. The green indicator LED's cathode was also

soldered directly to the ground pin of the window 1 ultrasonic sensor. A single-pin connector

was used to connect the LED's anode.

Figure 4 - Wiring of Ultrasonic sensor and LED.

Next, the proximity sensor code had to be modified. Ian kept the code very similar to the

original proximity code. It essentially pulses the Trig pin at 50 Hz and reads the Echo pin at the

same rate. When an object approaches the sensor, the average voltage at the Echo pin should

increase.

To determine whether the window is up or down, the threshold is set in the code below.

To test the sensors, all four of them were connected and set up on the bench such that

they were aimed out into the room. A hard reflective object was placed in front of each

ultrasonic sensor and then removed one at a time. The distance value was observed. With no

object present, the distance value came out to about 50000. When an object was placed right in

front of any of the sensors, a drop of about 5000 occurred, putting the distance around 45000.

The threshold was set so that if the distance exceeded 48000, the window would be registered as

"Down". Else, the window registers as "Up".

Figure 5 - Test setup for ultrasonic proximity sensors.

With the threshold set properly, Ian ran the code and moved the object in front of each of

the sensors in three-cycle intervals to produce the printout shown below. The green LED

attached to the window 1 sensor lit up when the window was "Down" and turned off when the

window was "Up," as expected.

Figure 6 - Testing integrated operation of all four ultrasonic proximity sensors.

Ultrasonic Proximity Sensor Testing and Troubleshooting

Once the vent visors were patched up and adhered to the testing vehicle, the group set about testing

the ultrasonic proximity sensors. The sensors immediately presented some issues. The distance

value came back lower than it did in the lab and the sensors weren't as sensitive to objects in close

proximity. Also, one of the sensors seemed to be far less sensitive than the others, making it

impossible to properly set the switching threshold.

First, the group used an oscilloscope to verify that the correct signals were being sent and

received by each sensor. Once this was verified, the group began modifying the program to adjust

the sensitivity of the sensors. A variety of pulse frequencies and repetitions were tested to no avail.

The group decided that a rewriting of the program could prove beneficial at this stage.

Going by the HC-SR04 datasheet (“Ultrasonic Ranging Module HC-SR04,” n.d.), the

sensor can be triggered by a 10us or greater pulse. At the falling edge of this pulse, the transmitter

will emit an 8-cycle sonic burst at 40 kHz. The Echo Pulse lever signal output which follows is

proportional to the proximity of the sensor to the object it is directed towards.

Figure 7 - Timing diagram for HC-SR04 ultrasonic sensor.

Figure 8 -Flowchart for

Ultrasonic Proximity Sensor

Software

The flowchart above shows how the new program

works. After setting the distance variable to 0, the Pico sends

a 10us pulse to the HC-SR04. Immediately after, the Pico

reads the ADC connected to the HC-SR04 Echo pin every

microsecond for a specified number of repetitions. Once the

specified number of reps has occurred, the program returns

the average distance value.

Testing the program in the vehicle, the sensors were

far more sensitive and consistent, but one sensor had reduced

sensitivity. The group adjusted the number of repetitions until

the sensitivity of all the sensors was great enough. 150

repetitions worked very well, and a new switching threshold

was set at 25000.

The group tested the functionality of the proximity

sensors according to the test procedures laid out by Daniel: by

rolling down all the windows and then rolling them up one at

a time. Per the engineering requirements, power should be

disconnected from the fans if any of the windows are rolled

up too high for airflow. The green LED should also be on

when the windows are down and off if they are up.

The results of the test indicate that the proximity

sensor circuit and control are functioning exactly as intended.

When any of the windows are rolled up too high for airflow,

the fans and the green LED shut off. When all windows are

low enough, the fans and green LED automatically turn back

on. This constitutes a pass for the engineering requirement

concerning window sensors.

Figure 9 - The Green LED is on when the window is down and off when the window is up.

Preparing and Mounting the Vent-Visor Fan Assemblies

Using lots of zip ties, the group wrangled the fan cables into something manageable. Zip-tie

surface mounts were attached to the vent visors using nuts and bolts, and these were used to zip-

tie the cables in place.

Figure 10 - Wire management on the vent-visor assembly.

Until this point, the vent visors had been quite resilient to drilling and mounting. Fastening the

final screws for cable mounting put too much stress on the visors, however, and resulted in some

terrifying cracks. Pictured below are two of the most gruesome examples.

Figure 11 - Breaks in the vent-visors.

To amend these breaks, the group applied hefty amounts of Flex-Glue to them. In some areas,

some electrical tape and/or epoxy were also used. Later, spray-on adhesive was applied across

each vent-visor, creating a protective layer over the breaks.

Figure 12 - Fixes for breaks in vent-visors.

Full System Testing & Results

With the full system assembled, the group set about testing the project requirements. Daniel wrote

an Acceptance Test Procedure document to give the test procedures, rules, guidelines, as well as

the pass or fail criteria. The full document can be found on the group’s website. A list of

completed tests and their results was created.

Table 1 – List of tests and PASS/FAIL status.

Summary

This month, the group completed the full system build and performed the majority of the testing

needed to verify the project engineering requirements.

https://deisenbraun.wixsite.com/senior-design-2022/copy-of-weekly-meetings
https://deisenbraun.wixsite.com/senior-design-2022/design-engineering-requirements

