Skip to main content

Deep Image Debanding

Raymond Zhou, Shahrukh Athar, Zhongling Wang, Zhou Wang

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 00:11:35
17 Oct 2022

in this paper, a novel graph-based approach for multi-label image classification called Multi-Label Adaptive Graph Convolutional Network (ML-AGCN) is introduced. Graph-based methods have shown great potential in the field of multi-label classification. However, these approaches heuristically fix the graph topology for modeling label dependencies, which might be not optimal. To handle that, we propose to learn the topology in an end-to-end manner. Specifically, we incorporate an attention-based mechanism for estimating the pairwise importance between graph nodes and a similarity-based mechanism for conserving the feature similarity between different nodes. This offers a more flexible way for adaptively modeling the graph. Experimental results are reported on two well-known datasets, namely, MS-COCO and VG-500. Results show that ML-AGCN outperforms state-of-the-art methods while reducing the number of model parameters.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00