Skip to main content

Large-Scale Weakly-Supervised Content Embeddings For Music Recommendation And Tagging

Qingqing Huang, Aren Jansen, Li Zhang, Daniel P. W. Ellis, John Anderson, Rif A. Saurous

  • SPS
    Members: Free
    IEEE Members: $11.00
    Non-members: $15.00
    Length: 14:43
04 May 2020

We explore content-based representation learning strategies tailored for large-scale, uncurated music collections that afford only weak supervision through unstructured natural language metadata and co-listen statistics. At the core is a hybrid training scheme that uses classification and metric learning losses to incorporate both metadata-derived text labels and aggregate co-listen supervisory signals into a single convolutional model. The resulting joint text and audio content embedding defines a similarity metric and supports prediction of semantic text labels using a vocabulary of unprecedented granularity, which we refine using a novel word-sense disambiguation procedure. As input to simple classifier architectures, our representation achieves state-of-the-art performance on two music tagging benchmarks.

Value-Added Bundle(s) Including this Product

More Like This

  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00
  • SPS
    Members: $150.00
    IEEE Members: $250.00
    Non-members: $350.00