Skip to main content
Viewing from:
Department GEZ-LTA Erasmushogeschool
Intended for healthcare professionals
Subscribe
Log In
More
Log in via Institution
Log in via OpenAthens
Log in via BCS
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?
Basket
Search
More
Search for this keyword
Advanced search
Latest content
Current issue
Archive
Browse by collection
Authors
About
Podcasts
Search for this keyword
Advanced search
Close
More
Main menu
Latest content
Current issue
Archive
Browse by collection
Authors
About
Podcasts
Subscribe
Log in
More
Log in via Institution
Log in via OpenAthens
Log in via BCS
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?
BMJ Journals
More
You are viewing from:
Department GEZ-LTA Erasmushogeschool
You are here
Home
Archive
Volume 104, Issue 23
Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms
Email alerts
Article metrics
Article menu
Article
Text
Article
info
Citation
Tools
Share
Rapid Responses
Article
metrics
Alerts
PDF
Arrhythmias and sudden death
Original research article
Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms
Online download statistics by month:
Online download statistics by month: May 2018 to April 2025
Abstract
Full
Pdf
May 2018
183
4
2
Jun 2018
1410
67
46
Jul 2018
650
48
23
Aug 2018
597
36
24
Sep 2018
442
34
26
Oct 2018
649
67
48
Nov 2018
1016
87
57
Dec 2018
769
34
21
Jan 2019
390
32
18
Feb 2019
346
19
17
Mar 2019
617
29
21
Apr 2019
355
32
31
May 2019
233
24
18
Jun 2019
231
24
19
Jul 2019
310
30
16
Aug 2019
247
21
12
Sep 2019
291
20
13
Oct 2019
334
38
21
Nov 2019
909
28
13
Dec 2019
707
36
22
Jan 2020
222
23
18
Feb 2020
168
18
17
Mar 2020
207
50
9
Apr 2020
158
7
6
May 2020
144
11
7
Jun 2020
137
9
8
Jul 2020
136
8
6
Aug 2020
186
11
18
Sep 2020
171
9
8
Oct 2020
169
9
8
Nov 2020
247
13
11
Dec 2020
200
4
3
Jan 2021
192
12
9
Feb 2021
250
6
5
Mar 2021
169
4
6
Apr 2021
210
10
12
May 2021
52
14
13
Jun 2021
44
11
9
Jul 2021
35
10
9
Aug 2021
32
11
7
Sep 2021
42
9
10
Oct 2021
155
9
9
Nov 2021
246
14
7
Dec 2021
149
3
3
Jan 2022
133
5
2
Feb 2022
197
6
5
Mar 2022
223
16
18
Apr 2022
177
9
3
May 2022
136
4
3
Jun 2022
115
19
8
Jul 2022
170
12
6
Aug 2022
150
6
5
Sep 2022
204
12
3
Oct 2022
167
17
6
Nov 2022
106
9
7
Dec 2022
173
5
4
Jan 2023
425
15
7
Feb 2023
171
2
3
Mar 2023
382
8
5
Apr 2023
152
10
9
May 2023
123
6
4
Jun 2023
164
12
6
Jul 2023
156
6
7
Aug 2023
114
8
6
Sep 2023
148
2
5
Oct 2023
175
6
6
Nov 2023
106
10
6
Dec 2023
191
4
4
Jan 2024
181
9
13
Feb 2024
148
3
15
Mar 2024
180
5
1
Apr 2024
219
5
3
May 2024
145
1
1
Jun 2024
171
7
5
Jul 2024
143
5
1
Aug 2024
175
6
3
Sep 2024
154
8
5
Oct 2024
127
4
5
Nov 2024
113
4
2
Dec 2024
183
17
19
Jan 2025
143
15
6
Feb 2025
77
15
6
Mar 2025
27
8
3
Apr 2025
39
19
2
Total
20890
1335
914
Read the full text or download the PDF:
Subscribe
Log in
Log in via Institution
Log in via OpenAthens
Log in via BCS
Log in using your username and password
For personal accounts OR managers of institutional accounts
Username
*
Password
*
Forgot your log in details?
Register a new account?
Forgot
your user name or password?