Hypertension and diabetes
Hypertension (HTN) is a largely asymptomatic disease affecting around 50 million Americans and one billion people worldwide.1–3 Patients with HTN are at an increased risk for heart failure (HF), stroke, renal disease and acute myocardial infarction (AMI).1 ,3 Although HTN is the most common primary care diagnosis in the USA, it remains undertreated.3
Pharmacological treatment of HTN includes the class of medications known as β-blockers (BBs). The various agents in this class differ substantially in their pharmacological properties. Atenolol, metoprolol, bisoprolol and nebivolol are β1 selective BBs, preferentially inhibiting cardiac β1 receptors as opposed to β2 receptors. Carvedilol, in contrast, inhibits β1, β2 (postsynaptic and presynaptic) and α1 receptors, upregulates cardiac muscarinic M2 receptors and possesses antioxidant effects.4–7 Additionally, nebivolol (which is highly selective for the β1 receptor) also has vasodilating properties due to its ability to increase the endogenous production and release of endothelial nitric oxide (NO).3 ,8
Atenolol
The Medical Research Council (MRC) elderly HTN treatment trial was a placebo-controlled, single-blind trial that randomised 4396 patients between the age of 65–74 years to receive either hydrochlorothiazide (HCTZ; plus amiloride), atenolol or placebo.9 Despite the fact that atenolol reduced blood pressure (BP) to levels below that of placebo (approximately −10/7 mm Hg over 60 months), patients receiving atenolol, compared with patients assigned to placebo, did not have a significant reduction in any cardiovascular (CV) end point during 5.8 years of the study (stroke (relative risk (RR) 0.82, 95% CI 0.60 to 1.14, p=0.25); coronary heart disease (CHD; RR=0.97, 95% CI 0.73 to 1.30, p=0.85); CV events (RR=0.96, 95% CI 0.77 to 1.19, p=0.69); CV death (RR=1.06, 95% CI 0.81 to 1.39, p=0.66) and total death (RR=1.08, 95% CI 0.88 to 1.34, p=0.46)). On the other hand, patients receiving HCTZ plus amiloride had a significantly reduced risk of stroke (31%, 95% CI 3% to 51%, p=0.04); CHD events (44%, 95% CI 21% to 60%, p=0.0009) and all CV events (35%, 95% CI 17% to 49%, p=0.0005). Even after adjusting for lower than atenolol-induced BP changes, HCTZ plus amiloride still led to a lower risk of CV events (p=0.01) than atenolol. Despite this fact, both the HCTZ plus amiloride and the atenolol groups compared with placebo had significantly increased withdrawals per 1000 patient years due to impaired glucose tolerance 6.9 (HCTZ) versus 2.7 (placebo) per 1000 patient years and 5.8 (atenolol) versus 2.7 (placebo) per 1000 patient years.
In summary, atenolol provided no CV or all-cause mortality reduction in elderly hypertensive patients over a period of 5.8 years but increased glucose intolerance.8 A limitation in the interpretation of these results is the fact that after 5.8 years only 52% of patients remained on HCTZ plus amiloride and only 37% of patients remained on atenolol.
The Heart Attack Primary Prevention in Hypertension (HAPPHY) study trial randomised 6569 men aged 40–64 years with mild-to-moderate HTN to a thiazide diuretic (bendrofluazide or HCTZ) or a BB (atenolol or metoprolol) to determine if BBs differed from thiazides in the prevention of CHD events and death.10 Although both groups had a similar BP lowering effect (140/89 mm Hg in the BB group and 140/88 mm Hg in the thiazide group, p value not significant), when compared with each other, the BB group did not show any difference in fatal/non-fatal CHD per 1000 patient years (10.62 vs 9.48/years, respectively; OR=0.88, 95% CI 0.68 to 1.14), fatal/non-fatal stroke (2.58 vs 3.35/years, respectively; OR=1.29, 95% CI 0.82 to 2.04) or all deaths (7.73/years vs 8.25/years, respectively; OR=1.06, 95% CI 0.80 to 1.41). This was unexpected since HCTZ monotherapy (without amiloride, etc) has never been shown to reduce CV events compared with placebo or controls.11–13 Therefore, the first generation BBs (atenolol and metoprolol) in this study offer no additional benefit when compared with a thiazide diuretic (HCTZ), which suggests that atenolol or metoprolol may not be superior to placebo for improving CV prognosis in HTN.
Left ventricular hypertrophy (LVH), which typically develops as a consequence of poorly controlled HTN as well as obesity and ageing, carries a higher CV morbidity and mortality rate; it remains uncertain whether or not BBs reduce the risk of CV events in this patient population. In the Losartan Intervention For Endpoint Reduction (LIFE) trial, atenolol was compared with losartan in patients with HTN with evidence of LVH on ECG.14 Losartan was statistically superior to atenolol for reducing the primary composite end point of CV death and stroke (11% vs 13%, adjusted HR=0.87, 95% CI 0.77 to 0.98, p=0.021). Similarly, the incidence of stroke (5% vs 7%, HR=0.75, 95% CI 0.63 to 0.89, p=0.001) as well as new-onset diabetes mellitus (DM; 6% vs 8%, HR=0.75, 95% CI 0.63 to 0.88, p=0.001) was significantly lower in the losartan group. However, CV mortality (4% vs 5%, HR=0.89, 95% CI 0.73 to 1.07, p=0.206), MI (4% vs 4%, HR=1.07, 95% CI 0.88 to 1.31, p=0.491) and total mortality (8% vs 9%, HR=0.90, 95% CI 0.78 to 1.03, p=0.128) were not statistically different between the two groups. The incidence of adverse effects was lower in the losartan group as compared with the atenolol group. These adverse events included bradycardia (1% vs 9%, p<0.0001), cold extremities (4% vs 6%, p<0.0001), hypotension (3% vs 2%, p=0.001), sexual dysfunction (4% vs 5%, p=0.009), albuminuria (5% vs 6%, p=0.0002), hyperglycaemia (5% vs 7%, p=0.007), asthenia/fatigue (15% vs 17%, p=0.001), back pain (12% vs 10%, p=0.004), dyspnoea (10% vs 14%, p<0.0001), lower extremity oedema (12% vs 14%, p=0.002) and pneumonia (5% vs 6%, p=0.018).14
The rebound peripheral vasoconstriction that occurs from decreased cardiac output (CO) and unopposed α stimulation due to β1 selective BB therapy results in decreased skeletal muscle perfusion causing adverse effects on lipid and glucose metabolism by increasing insulin resistance. Significant increases in glucose concentrations have been seen with atenolol, metoprolol and propranolol.15–18 As discussed previously, the LIFE study showed a 25% (HR=0.75, 95% CI 0.63 to 0.88, p=0.001) lower risk of new-onset DM in the losartan-treated group compared with the atenolol group.19 In the Atherosclerosis Risk in Communities (ARIC) cohort study of 3804 patients with HTN, the BB group had a 28% higher risk of type 2 DM (T2DM) compared with the control group (RR=1.28, 95% CI 1.04 to 1.57).14 The Captopril Prevention Project (CAPP) trial investigated in 10 985 patients with HTN the effect of captopril (50–100 mg/day) versus a conventional anti-HTN treatment regimen that included a diuretic, a BB or both.20 The patients in the conventional treatment group most frequently received atenolol (50–100 mg/day) or metoprolol (50–100 mg/day) and/or HCTZ (25 mg/day) or bendrofluazide (2.5 mg/day); CV mortality (0.77, p=0.092) and the incidence of T2DM (RR=0.79; p=0.007) were found to be lower in the captopril than in the conventional therapy group. Conversely, fatal and non-fatal strokes showed a higher incidence with captopril treatment (1.25, p=0.044), whereas fatal and non-fatal MI had similar incidences (0.96, p=0.68).
In the International Verapamil-Trandolapril Study (INVEST) trial, approximately 23 000 patients with HTN and CHD were randomised to verapamil or atenolol. Verapamil-treated patients had a significantly lower incidence of new-onset DM versus atenolol (15% lower risk; RR=0.85, 95% CI 0.77 to 0.95).21 In the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA) trial, atenolol given for 5.5 years increased CV mortality (p=0.001), all-cause mortality (p=0.025), and the development of DM (p<0.0001) compared with amlodipine.22 In a post hoc analysis of the ASCOT-BPLA study, use of atenolol was a significant predictor for the development of DM.23 In a 5-year study of 228 patients comparing treatment with doxazosin to atenolol, atenolol caused a significant reduction in high-density lipoprotein cholesterol from baseline (p<0.05), as well as a significant increase in triglycerides from baseline (p<0.0001); both of these changes suggest that atenolol triggered an increase in insulin resistance. Several other studies have confirmed the negative effects of atenolol on lipids in patients with HTN.24 Thus, it is clear that β1 selective BBs (atenolol and metoprolol) can worsen the metabolic syndrome (increased insulin resistance, worsened atherogenic dyslipidaemia and increased weight gain).
Metoprolol
The Metoprolol Atherosclerosis Prevention in Hypertensives (MAPHY) trial was a post hoc analysis of the metoprolol arm of the HAPPHY study.25 It focused on male patients between 40 and 64 years of age who had a history of HTN with an untreated diastolic BP of over 100 mm Hg and investigated the effects of metoprolol on the incidence of CHD events (sudden cardiac death (SCD) and MI) compared with thiazide diuretics. Patients receiving metoprolol were significantly less likely to experience a CHD event as compared with those on diuretics (111 vs 144 cases, p=0.001, corresponding to 14.3 vs 18.8 cases/1000 patient years; RR=0.76 at the end of the trial; 95% CI 0.58 to 0.98). Moreover, the incidence of SCD, fatal and non-fatal MI was reduced with metoprolol as compared with the diuretic treatment (p=0.024). Similarly, the risk of silent MI (p=0.016) and first definite non-fatal MI (p=0.0034, 10.6 vs 14.3 cases/1000 patient years at the end of the trial) were also lower with metoprolol. It is important to note that all baseline characteristics, including BP, were similar in the 255 participants who had a CV event versus those who did not. This suggests that the benefit demonstrated by metoprolol occurred due to something other than an anti-HTN effect. Despite these beneficial results, MAPHY should be interpreted with caution because of its post hoc subgroup design.
Metoprolol has been shown to have less favourable effects on glycaemic control when compared with carvedilol. The Glycemic Effects in Diabetes Mellitus: Carvedilol-Metoprolol Comparison in Hypertensives (GEMINI) trial showed that compared with metoprolol, carvedilol significantly reduced new-onset DM (10.3% vs 12.6%, p=0.048), and significantly improved insulin sensitivity (p<0.004 vs p=0.48).4 Additionally, carvedilol decreased triglycerides significantly more than metoprolol (−2.9%; p=0.001 for the between-group difference) and caused significantly less weight gain (0.17 vs 1.2 kg, respectively; p<0001).4 In addition, microalbuminuria, a surrogate marker for endothelial function, occurred less often in the carvedilol group (6.4% vs 10.3%; p=0.04).4 Pharmacological comparisons between carvedilol versus atenolol and metoprolol are listed in table 1.
Meta-analyses
Almost two decades ago, conflicting meta-analyses came out, just a year apart from each other. While the first suggested BB therapy was appropriate as a first-line antihypertensive agent, another meta-analysis published a year later indicated that BBs are indeed inappropriate first-line antihypertensives in uncomplicated HTN in elderly patients.26 ,27 A recent meta-analysis of 13 randomised controlled trials (RCTs) encompassing 105 951 patients with primary HTN indicated that the RR of stroke was higher for BBs than other anti-HTN medications (RR=16%; 95% CI 4% to 30%);28 in these meta-analyses, atenolol was the most frequently utilised BB for first-line treatment of HTN. The meta-analysis concluded that BBs (mainly atenolol) increased the risk of stroke and were less effective than other antihypertensives as first-line therapy.
Another meta-analysis evaluated the effects of atenolol on morbidity and mortality in patients with HTN29 and demonstrated that although there was a significant difference in the BP lowering effect of atenolol and placebo, this anti-HTN effect of atenolol failed to translate into a significant reduction in the all-cause mortality (RR=1.01, 95% CI 0.89 to 1.15). Similarly, CV mortality (RR=0.99, 95% CI 0.83 to 1.18) and MI (RR=0.99, 95% CI 0.83 to 1.19) were not significantly different between the placebo and the atenolol groups. However, the risk of stroke was decreased, but not significantly, in the atenolol group as compared with placebo (RR=0.85, 95% CI 0.72 to 1.01). When compared with other anti-HTN agents, there was no significant difference in the anti-HTN effect; there was, however, a significantly higher mortality in the atenolol group (RR=1.13, 95% CI 1.02 to 1.25). Moreover, there was a higher risk of CV mortality (RR=1.16, 95% CI 1.00 to 1.34) and stroke (RR=1.30, 95% CI 1.12 to 1.50) with atenolol as compared with the other antihypertensives. Thus, this meta-analysis illustrated that although atenolol produces a marginal benefit as compared with placebo with regard to stroke prevention, it does not hold any benefit over other antihypertensives. The authors concluded that the results of this meta-analysis question whether atenolol should be used as a first-line anti-HTN agent.
A Cochrane review was conducted on the effectiveness and safety of BBs on the rates of morbidity and mortality in patients with HTN.30 This meta-analysis failed to show any significant benefit of BBs on the total mortality rates when compared with placebo (RR=0.99, 95% CI 0.88 to 1.11), diuretics (RR=1.04, 95% CI 0.91 to 1.19) or renin-angiotensin aldosterone system (RAAS) inhibitors (RR=1.10, 95% CI 0.98 to 1.24). Conversely, total mortality was higher when BBs were compared with calcium-channel blockers (CCBs; RR 1.07, 95% CI 1.00 to 1.14). There was a statistically significant decrease in the risk of total CV disease (RR=0.88, 95% CI 0.79 to 0.97) and stroke (RR=0.80, 95% CI 0.66–0.96) when BBs were compared with placebo. However, there was no difference in the risk of CHD between BBs and placebo (RR=0.93, 95% CI 0.81 to 1.07) or total CV disease between BBs and diuretics or RAAS inhibitors. There was a higher risk of total CV disease (RR=1.18, 95% CI 1.08 to 1.29) and stroke (RR=1.24, 95% CI 1.11 to 1.40) when BBs were compared with CCBs. The risk of stroke was also higher with BB as compared with RAAS inhibitors (RR=1.30, 95% CI 1.11 to 1.53). Additionally, patients on BBs had a higher rate of discontinuation when compared with RAAS inhibitors (RR=1.41, 95% CI 1.29 to 1.54), but such a difference was not seen with the other drugs. This analysis shows that the benefit of BB therapy is only moderately superior to placebo and is significantly inferior to other anti-HTN drugs. However, these results with the older BB agents cannot be generalised to the newer vasodilating BBs (carvedilol and nebivolol).
The risk of development of new-onset DM with BBs was assessed in a systematic review.31 This review included 12 studies with a total of 94 492 participants and found that there was a 22% increase in the risk of development of new-onset DM with BB therapy as compared with non-diuretic anti-HTN therapy (RR=1.22, 95% CI 1.12 to 1.33). There was also an increased risk of DM with BB therapy as compared with placebo (fixed-effects model: 33% increase, RR=1.33, 95% CI 1.00 to 1.76, p=0.05; random-effects model: 44% increase, RR=1.44, 95% CI 0.69 to 3.00, p=0.33; heterogeneity χ2 6.18, p=0.013). The risk of DM was, however, less with BB therapy than with thiazide diuretics (fixed effect model: 26% decrease, RR=0.74, 95% CI 0.61 to 0.90, p=0.002; random effect model: 21% decrease, RR=0.79, 95% CI 0.45 to 1.41, p=0.43; heterogeneity χ2=23.18, p<0.0001). Among BBs, the risk of DM was greatest with atenolol treatment and the risk of new-onset DM increased with the duration of the treatment. BB therapy increased the risk of death by 4% (pooled RR=1.04, 95% CI 1.00 to 1.09, p=0.056; heterogeneity χ2 10.63, p=0.560) and the risk of stroke by 15% (pooled RR=1.15, 95% CI 1.01 to 1.30, p=0.029; heterogeneity χ2 27.8, p=0.001) compared with other anti-HTN agents. There was no effect on MI (pooled RR=1.02, 95% CI 0.92 to 1.12, p=0.769; heterogeneity χ2 19.30, p=0.023). The risk of DM, death and stroke is, therefore, increased by BB therapy as compared with other non-diuretic anti-HTN drugs and this effect was more pronounced with atenolol therapy.
In another meta-analysis, the role of BBs for the prevention of developing HF in patients with HTN was evaluated.32 This review included 12 RCTs with 112 177 patients with HTN and showed that the BP was reduced by 12.6/6.1 mm Hg by BB therapy as compared with placebo (systolic BP weighted mean reduction 12.6±7.8 mm Hg; diastolic BP weighted mean reduction 6.1±4.4 mm Hg). As compared with other anti-HTN agents, the BP lowering efficacy was similar across all groups (vs diuretics 0.0/−1.0 mm Hg; vs RAAS inhibitors−0.3/−0.6 mm Hg; vs CCBs −0.1/+0.7 mm Hg) and the decrease in the HF risk was also similar (RR=1.00, 95% CI 0.92 to 1.08). When compared with placebo, BBs showed a 23% decrease in the risk of HF (p=0.055). However, comparison between BBs and other anti-HTN agents showed no statistically significant difference (BB vs others, 2.1% vs 2.1%, p=0.91). In trials comparing atenolol with other anti-HTN agents, atenolol had a similar effect in preventing HF (1.8% vs 1.7%; p=0.72) and the risk of stroke was increased by 19% in the BB group. In addition, there was no additional anti-HTN benefit of BB therapy when compared with other anti-HTN drugs. Moreover, there was a higher incidence of stroke in this elderly population. Therefore, this evidence confirms that first generation BBs should not be prescribed as first-line anti-HTN agents, especially in the elderly.