Introduction
Abdominal aortic aneurysm (AAA) disease is particularly prevalent in elderly men, affecting 5% of men over the age of 65 years1 and causing 2–3% of deaths within this group.2 Aneurysm rupture is associated with a mortality rate in excess of 80%.3 ,4 Population screening halves the mortality associated with AAA and has led to the establishment of national screening and surveillance programmes.1 However, once an aneurysm has been diagnosed, there is currently no accurate method of predicting which patients are at risk of rupture and would benefit from elective surgical or endovascular intervention.
The aetiology of AAA is multifactorial, with environmental and genetic factors playing a part. Aneurysms typically occur in patients with atherosclerosis and there are a number of common risk factors, however, there are also distinct differences between the two disease processes. Atherosclerotic lesions are predominantly located within the tunica intima, whereas aneurysm disease affects the media and also the adventitia. Aneurysm disease is most commonly confined to the infrarenal aorta, whereas atherosclerosis is generally more widespread throughout the arterial tree. In aneurysm disease, cigarette smoking and hypertension are more strongly correlated with incidence and risk of rupture.5
The combined effects of biomechanical factors and biological processes weaken the aortic wall, and lead to aneurysm formation, expansion and rupture. Histopathologically, the aneurysmal aortic wall is characterised by focal medial neovascularisation, infiltration of inflammatory cells (principally macrophages) and fragmentation of elastin and collagen fibres within the extracellular matrix. Regions of intense biological activity represent sites of potential rupture, and can be considered as putative targets for novel imaging techniques to predict aneurysm expansion and assess the risk of rupture. In addition, tissue and wall stresses vary spatially within the aneurysm, and tensile strength varies in different parts of the aneurysm sac.6 ,7 It is likely that expansion and rupture occur where regions of high biomechanical stress coincide with these biological ‘hotspots’ in the aneurysm wall that have become weakened. Indeed, there is strong evidence that aneurysm rupture is seen in those patients with more rapid aneurysm expansion rates.8 ,9
MRI
MRI is increasingly being used as an investigative tool for cardiovascular disease, enabling distinction between the different atherosclerotic plaque components, such as the lipid-rich necrotic core, fibrous cap and areas of calcification.10 Standard gadolinium-based MRI is able to identify areas of thrombus formation and fibrosis in AAA.11 However, recent innovations in cellular and molecular imaging methods have enabled the detection of key biological processes and vessel characteristics that may correlate with aneurysm disease progression.12–14
Superparamagnetic particles of iron oxide (SPIO) are part of a novel class of MRI contrast agents that provide additional biological and functional information through the detection of cellular inflammation within tissues. Current preparations of ultrasmall SPIO (USPIO) are biodegradable and safe for clinical administration.15–17 USPIO are phagocytosed by macrophages within vascular and lymphatic tissues,18–21 and can be used to detect tissue inflammation. USPIO accumulate in ruptured and vulnerable carotid plaques, and USPIO-enhanced MRI can detect a reduction in plaque inflammation following treatment with high-dose atorvastatin.22 USPIO uptake has also been demonstrated in other regions of the vasculature, including the aorta, in preclinical models and also in small clinical studies.23 ,24
We have recently conducted a series of MRI studies in patients with AAA and shown that uptake of USPIO in the aortic wall correlates with macrophage activity, and identifies cellular inflammation.25 Using a 3 T MR scanner, patients with asymptomatic AAA (n=29; aneurysm diameter 4.0–6.6 cm) attending our surveillance programme were imaged before and 24–36 h after intravenous administration of USPIO. Histological examination of aneurysm tissue confirmed co-localisation and uptake of USPIO in areas of macrophage infiltration.
Patients exhibiting USPIO uptake and inflammation within the wall of their aneurysm had a threefold higher aneurysm expansion rate (n=11, 0.66 cm/year; p=0.020) than patients with no (n=6, 0.22 cm/y) or non-specific (n=8, 0.24 cm/y) USPIO uptake, despite similar baseline anteroposterior diameters.25 Indeed, one patient with a hotspot of USPIO uptake and biological activity within the wall of an aneurysm, died suddenly 2 months after scanning, from presumed aneurysm rupture.
We have shown that USPIO-enhanced MRI holds major promise as a new method of risk-stratification of patients with AAA and extends beyond simple anatomical measurements of aneurysm diameter. The aim of this present study is to validate this technique within a larger multicentre cohort study and to examine the relationship between baseline USPIO uptake and subsequent aneurysm expansion, requirement for elective repair and incidence of rupture.