Introduction
Chronic obstructive pulmonary disease (COPD) is a major cause of chronic morbidity and mortality worldwide, and acute exacerbations of COPD (AECOPD) are the main reason for hospitalisation of patients with COPD. While most exacerbations are due to viral or bacterial infections, up to one-third have an unknown aetiology There is an abundance of literature, which implicates abnormalities of the cardiovascular system as an important factor in the prognosis of patients with COPD.1
Recent research has suggested that there may be greater overlap between the pathophysiology of the lungs and the heart than was previously appreciated. As both chronic lung disease and cardiac disease are extremely common, there is a large cohort of patients with both conditions. It was recently shown by Andell et al2 in a previous issue of Open Heart that patients with COPD, who constitute 6% of patients diagnosed with myocardial infarction (MI), had a higher mortality and a greater risk of new-onset heart failure. Several biomarkers are currently in routine clinical use for diagnosis, prediction and risk stratification in cardiac disease (table 1) The predictive value of such cardiac biomarkers in AECOPD has not yet been systematically reviewed. Both troponin and brain natriuretic peptide (BNP) are markers of myocardial stress, which can be measured easily and relatively cheaply as a bedside test.
Troponins are widely used as biomarkers to aid the diagnosis of MI and become present in the blood at higher levels when cardiac myocytes are damaged. BNP is currently used as a biomarker in cardiac failure, as it, along with other natriuretic peptides, is released in response to increased atrial pressure. It has long been known that lung pathology can directly lead to cardiac disease, such as in cor pulmonale, in which right-sided heart failure is a result of increased pulmonary arterial pressure; this increase in pressure may be caused by a panoply of diseases, including pulmonary fibrosis and COPD.3 More specifically, the autoregulation of the pulmonary circulation, such as hypoxic pulmonary vasoconstriction, becomes maladaptive when there is widespread rather than localised hypoxia.3
Epidemiological evidence suggests that left ventricular (LV) failure is a common comorbidity in patients with COPD4 and that outcomes for patients with both LV failure and COPD are worse than those for patients with only COPD. In a long-term study of patients with COPD in Nordic countries, mortality in 36% of patients with COPD was due to cardiovascular causes. In patients with COPD, there is a significant burden of morbidity and mortality related to congestive heart failure, and patients with COPD have been noted to have higher in-hospital mortality.
The aim of this systematic review was to evaluate both BNP and cardiac troponins and their potential prognostic value as markers for LV dysfunction and cardiovascular mortality in patients admitted to hospital with AECOPD.