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ABSTRACT
Introduction  None of the studies of type 2 diabetes 
(T2D) subtyping to date have used linked population-
level data for incident and prevalent T2D, incorporating a 
diverse set of variables, explainable methods for cluster 
characterization, or adhered to an established framework. 
We aimed to develop and validate machine learning (ML)-
informed subtypes for type 2 diabetes mellitus (T2D) using 
nationally representative data.
Research design and methods  In population-based 
electronic health records (2006–2020; Clinical Practice 
Research Datalink) in individuals ≥18 years with incident 
T2D (n=420 448), we included factors (n=3787), 
including demography, history, examination, biomarkers 
and medications. Using a published framework, we 
identified subtypes through nine unsupervised ML 
methods (K-means, K-means++, K-mode, K-prototype, 
mini-batch, agglomerative hierarchical clustering, Birch, 
Gaussian mixture models, and consensus clustering). 
We characterized clusters using intracluster distributions 
and explainable artificial intelligence (AI) techniques. We 
evaluated subtypes for (1) internal validity (within dataset; 
across methods); (2) prognostic validity (prediction for 5-
year all-cause mortality, hospitalization and new chronic 
diseases); and (3) medication burden.
Results  Development: We identified four T2D subtypes: 
metabolic, early onset, late onset and cardiometabolic. 
Internal validity: Subtypes were predicted with high 
accuracy (F1 score >0.98). Prognostic validity: 5-year 
all-cause mortality, hospitalization, new chronic disease 
incidence and medication burden differed across T2D 
subtypes. Compared with the metabolic subtype, 5-year 
risks of mortality and hospitalization in incident T2D were 
highest in late-onset subtype (HR 1.95, 1.85–2.05 and 
1.66, 1.58–1.75) and lowest in early-onset subtype (1.18, 
1.11–1.27 and 0.85, 0.80–0.90). Incidence of chronic 
diseases was highest in late-onset subtype and lowest 
in early-onset subtype. Medications: Compared with the 
metabolic subtype, after adjusting for age, sex, and pre-
T2D medications, late-onset subtype (1.31, 1.28–1.35) and 

early-onset subtype (0.83, 0.81–0.85) were most and least 
likely, respectively, to be prescribed medications within 5 
years following T2D onset.
Conclusions  In the largest study using ML to date in 
incident T2D, we identified four distinct subtypes, with 
potential future implications for etiology, therapeutics, and 
risk prediction.

INTRODUCTION
More than 537 million adults are affected 
by diabetes mellitus worldwide, which is 
predicted to rise to 643 million by 2030.1 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Studies of type 2 diabetes (T2D) subtyping have 
often used non-representative datasets, employed 
limited variables and comorbidities, lacked medica-
tion data as clustering features, and focused on a 
single time point.

WHAT THIS STUDY ADDS
	⇒ At both T2D onset (incident T2D) and study exit 
(prevalent T2D), we identified four distinct clusters: 
(1) metabolic, (2) early onset, (3) late onset, and (4) 
cardiometabolic, which differed by baseline char-
acteristics, medication usage, hospitalization and 
mortality.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Based on a replicable framework, explainable ma-
chine learning is an instrumental approach for sub-
typing diseases in electronic health record data, and 
these T2D subtypes, after external validation, have 
potential applications to standardize subtypes in 
research, inform clinical guidelines, improve T2D 
management, and optimize healthcare utilization.
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In the UK, approximately 7% of the population, corre-
sponding to over 5 million individuals, are either diag-
nosed with or at risk of developing diabetes mellitus, 
with type 2 diabetes (T2D) accounting for over 90% of 
diagnosed cases.2 3 The mortality rate of individuals with 
T2D is almost twice as much as people without diabetes, 
making it the ninth leading cause of global mortality with 
over 1 million attributable deaths per year.4 5

T2D is a multifactorial disease with complex and inter-
connected risk factors, comorbidities, and complications 
such as obesity, hypertension (HT), cardiovascular disease 
(CVD), chronic kidney disease (CKD), heart failure 
(HF), cancers, cognitive decline, mental health sequelae 
and age-related disability.6–8 Furthermore, prevalence of 
T2D and its outcomes and complications vary widely by 
risk factors such as genetic disposition, age, sex, ethnicity, 
sociodemographic status, lifestyle, family history, and 
medication.9–11 Many T2D risk factors and complications 
are preventable and manageable with changes in phar-
maceutical and lifestyle interventions (eg, diet, exercise, 
smoking cessation), education, or medication adher-
ence.3–6 12 13 The complex phenotypic characteristics of 
T2D signal the need for an individualized approach for 
risk stratification,14 as emphasized in National Institute 
for Health and Care Excellence guidelines.15

Risk stratification to date has mostly relied on datasets 
which are unrepresentative of whole populations, limited 
availability of variables,16 17 focused on particular risk 
factors or biomarkers,18 or complications.19 Population-
level, linked, longitudinal electronic health records 
(EHR) could facilitate more comprehensive investigation 
of T2D subtypes, as well as more advanced data analytics. 
We have developed a framework for use of machine 
learning (ML) in subtyping of long-term conditions, 
which has been used to develop and validate subtypes in 
HF20 with external and genetic validation, and CKD,21 
which may be useful to distinguish T2D subtypes.

In a linked, longitudinal, national EHR in England, in 
420 448 individuals with T2D and 3787 factors, we used 
multiple ML methods following our published frame-
work to (1) generate subtypes with clinical relevance 
throughout the course of T2D, and low risk of bias for 
individual selection and algorithms (development); (2) 
demonstrate internal (across methods) and prognostic 
validity (predictive accuracy for 5-year all-cause mortality 
and hospitalization) (validation); and (3) investigate 
distribution of medication classes at baseline and over 
time (medications).

METHODS
In this study, we used our framework for ML-informed 
subtype implementation, and internal and prognostic 
validation20 to guide our methods. We have used the 
Transparent Reporting of a Multivariable Prediction 
Model for Individual Prognosis or Diagnosis-Cluster 
checklist to report our methods.21

To generate subtypes (development)
Clinical relevance
Our methodology was focused on diagnostic and prog-
nostic accuracy and risk stratification related to T2D. 
The primary objective was to improve patient outcomes 
and clinical benefits through better subtyping of T2D. 
We used individual-level, longitudinal data from Clinical 
Practice Research Datalink (CPRD) Gold, which links 
EHR, including primary care, Hospital Episode Statis-
tics, and death registration from the Office for National 
Statistics (ONS). CPRD is representative of the UK popu-
lation by sociodemographic variables.21

Patients
We included individuals aged ≥18 years with a diagnosis 
of T2D. The study entry date was the latest of the indi-
vidual’s 18th birthday, January 1, 1997, or the ‘up-to-
standard CPRD Gold date’ when the primary care 
practice was deemed to qualify for research. T2D diag-
nosis was by Read code v2 and International Classifica-
tion of Diseases Tenth Revision clinical vocabularies and 
validated CALIBER phenotype algorithms in the Health 
Data Research (HDR) UK phenotype library. Any patients 
with clinical codes of type 1 diabetes only were excluded. 
The study exit time was defined as the earliest of death 
date, April 30, 2020, or termination of CPRD recording.

Algorithm
We assessed combinations of variables, feature engi-
neering methods, and clustering algorithms to identify 
the optimal clinically viable solution. A total of 3787 vari-
ables (online supplemental table S1), including socio-
demographic factors (n=3), chronic diseases (n=25), 
medication (n=3750), behavioral factors (n=2), and 
biomarkers (n=7), were used to create the final set of 25 
unitary and composite features for the analysis. Variables 
with missing categories, including ethnicity, Index of 
Multiple Deprivation (IMD), and behavioral factors, were 
used for cluster characterization only. All variables were 
determined at the time of T2D diagnosis for the incident 
and at the study exit for prevalent T2D. Biomarkers were 
assessed based on their mean values during the final year 
prior to T2D onset and at study exit.

For smoking and alcohol consumption, which may 
change over time, the final status before the index date 
was considered. Medications were grouped into five 
major categories to reduce feature dimensionality. We 
assessed factor analysis of multiple data and multiple 
correspondence analysis (MCA) to transform mixed and 
categorical variables, respectively, into numerical form, 
accounting for potential correlations and collinearity. 
We used MCA to transform variables to preserve ≥95% 
of the variance of all features transformed into discrete 
variables. For biomarker variables, the categorization was 
based on reference ranges. Missing values were imputed 
with a default ‘unknown’ category. For clustering, we 
only considered variables without missing or unknown 
categories (ie, complete feature analysis), while we used 
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all the variables as shown in online supplemental table 
S1 for cluster characterization. To determine the optimal 
number of clusters, we used the Elbow, Davies-Bouldin 
(DB), and Calinski-Harabasz (CH) methods with the clin-
ical expert review.

We compared the clustering results using nine 
algorithms (K-means with random and K-means++ 
initialization, K-mode, K-prototype, mini-batch, agglom-
erative hierarchical, Birch, Gaussian mixture models, 
and consensus clustering) on data subsamples to assess 
computational feasibility. Performance was measured 
using silhouette, DB, and CH cluster validity indices. 
For interpretation and characterization of clusters and 
assessing feature impact, we applied Light Gradient-
Boosting Machine (LightGBM)22 classification based on 
cluster labels, followed by using SHapley Additive exPla-
nations (SHAP) values for explainable ML outputs.23 
SHAP values offer an improved alternative to pairwise 
correlation analysis by considering the relative impor-
tance of a variable in cluster membership, accounting 
for complex and non-linear interactions among all vari-
ables. Furthermore, SHAP values provide the direction 
of the feature importance, highlighting both the effect 
of high frequency as well as absence or rarity of a vari-
able to cluster membership.24 The LightGBM model was 
trained for imbalanced multiclass labels using multilog 
loss metric, gradient-boosted decision tree, and 10-fold 
cross-validation to avoid overfitting. Additionally, we 
assessed the prevalence of each variable per cluster, as 
well as the proportion of variables across all clusters, for 
detailed cluster characterization.

To demonstrate validity (validation) and medication profile 
(medications)
Internal and prognostic validity
We cross-validated cluster characteristics by SHAP values 
to validate the optimal cluster count. To evaluate the 
predictive validity of final cluster labels, we employed 
10-fold cross-validation using three supervised classifi-
cation algorithms, including LightGBM, support vector 
machine (SVM), and K-nearest neighbors (KNN). These 
classification models were assessed based on macro-level 
accuracy and F1 score. Our use of ‘hard’ rather than 
‘fuzzy’ clustering methods meant that individuals were 
members of discrete clusters.

For prognostic validation, Kaplan-Meier survival anal-
ysis and Cox regression modeling were used to evaluate 
5-year all-cause mortality, hospital admission, and medi-
cation prescription after diagnosis of T2D. The Cox 
regression model was adjusted for confounding factors 
of age and sex. For Cox regression of post-T2D medica-
tion prescription, we additionally adjusted the model for 
medications prescribed before the T2D onset. Further-
more, we assessed the statistical significance of the 
transition in cluster membership trajectories from T2D 
diagnosis (incident T2D) to study exit (prevalent T2D) 
using McNemar’s test.

Ethical approval
This study is based in part on data from the CPRD obtained 
under license from the UK Medicines and Healthcare 
products Regulatory Agency. The data are provided by 
patients and collected by the National Health Service 
(NHS) as part of their care and support. The ONS is also 
acknowledged as the provider of the ONS Data contained 
within the CPRD Data. The interpretation and conclu-
sions contained in this study are those of the author/s 
alone. Copyright (2020), reused with the permission of 
NHS Digital. All rights reserved. Anonymized data were 
used for analyses; therefore, informed consent was not 
necessary.

Funding
AstraZeneca UK, HDR UK.

RESULTS
Clinical relevance and patients
We included 420 448 individuals with incident T2D 
(mean age at T2D diagnosis 59.98 years (SD 13.86); male 
56.21%) (online supplemental figures S1 and S2). By the 
end of the study, the mean age of individuals with preva-
lent T2D was 69.47 (SD 14.16), with 132 425 (30.59%) of 
participants exiting the study due to all-cause mortality 
(online supplemental figure S2 and online supplemental 
table S3).

Algorithm
Variables (online supplemental table S1) included 
comorbidities, family history of diabetes and CVD, and 
medication categories (including glucose-lowering 
therapies, diuretic, cardiac other, lipid lowering, renin 
angiotensin aldosterone inhibitors), comprising 3750 
individual medications. Variables with unknown or 
missing categories, including smoking, alcohol consump-
tion, ethnicity, and IMD, were excluded from clustering. 
Biomarkers were based on the mean of all available test 
results 1 year prior to T2D diagnosis and at study exit. 
Biomarkers were also excluded from clustering. However, 
all variables were used for characterization of final clus-
ters. After performing MCA on categorized variables, 25 
MCA features were retained, effectively preserving 97% 
and 95% of the variation in original datasets at the time 
of T2D onset and study exit, respectively. We selected the 
K-means clustering algorithm with K-means++ centroid 
initialization on the output of MCA as the final clus-
tering algorithm based on its performance, the trade-off 
between cardinality and magnitude, and computational 
complexity as tested on subsampled data. We evaluated 
cluster numbers for K in the range of 2–9 based on 
Elbow, DB, and CH indices. Optimal cluster numbers 
were 3–4 at the time of T2D diagnosis and 4 at the study 
exit (online supplemental figure S3).

Internal validity
There were four clusters identified at T2D onset: meta-
bolic, early onset, late onset, and cardiometabolic, and 
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four clusters for prevalent T2D at study exit labeled as 
Pr-metabolic, and Pr-cardiometabolic based on SHAP 
values (figure  1). The metabolic subtype was the most 
common (47.05%) with mean age of 62.54 (SD 7.93) 
years, representing generic T2D with no distinct pattern 
of comorbidity or medication usage. Those in the early-
onset subtype were younger (mean age 42.23, SD 8.87), 
with more frequent family history of diabetes, high 
prevalence of depression, high prevalence and propor-
tion of smoking and heavy alcohol consumption. Indi-
viduals in the late-onset cluster were older (mean age 
82.86, SD 6.47), more likely to be female, with CKD and 
other multiple comorbidities, more likely to be a non-
smoker, non-drinker and of white ethnic background. 
The cardiometabolic subtype had mean age of 62.61 
(SD 9.68), with family history of CVD, HT, dyslipidemia, 
and high medication burden in all categories (figure 1, 
online supplemental table S2, figure  2, online supple-
mental figure S4). At study end, the Pr-metabolic cluster 
had mean age of 66.94 (SD 8.69) with no specific pattern 
of comorbidities or medication usage. The Pr-early onset, 
with mean age of 44.68 (SD 8.39), was characterized by 
high prevalence of depression, smoking and alcohol 
consumption. The Pr-late-onset subtype was oldest (mean 
age 86.53, SD 5.97), more likely to be female, and higher 
prevalence of cardiac medications and comorbidities, 
particularly dementia, macular degeneration, nephrotic 
syndrome, and neuropathy, was common. The Pr-car-
diometabolic subtype (mean age 71.53, SD 10.05) was 
characterized by HT, dyslipidemia, and glucose disorder, 
elevated body mass index (BMI), highest medication 
burden, and higher mortality (online supplemental 
figures S5–S7, online supplemental table S3). Cluster 
labels of subtypes at T2D onset and study exit showed 
predictive validity using LightGBM, SVM, and KNN clas-
sification algorithms with 10-fold cross-validation (F1 
scores all >0.98; online supplemental table S4).

Prognostic validity
All subtypes at T2D onset predominantly progressed to 
the equivalent prevalent subtype at study end. Those 
with cardiometabolic and late onset had the highest 
proportions remaining in the same category (87.24% 
and 82.01%, respectively) (figure 3, online supplemental 
table S5). Early onset commonly progressed to meta-
bolic (43.98%), followed by Pr-cardiometabolic (6.40%) 
and Pr-late onset (3.11%). T2D generic commonly 
progressed to Pr-late onset (22.19%) and Pr-cardiomet-
abolic (10.43%). Late onset mainly progressed to Pr-car-
diometabolic (15.80%), and rarely to metabolic and early 
onset (2.18%). Those in the cardiometabolic subtype 
progressed mainly to the Pr-late-onset subtype (6.29%).

The 1-year and 5-year all-cause mortality rates were 
1.05% and 3.89%, 0.81% and 2.87%, 1.06% and 
4.41%, and 0.83% and 2.83% in metabolic, early-onset, 
cardiometabolic and late-onset subtypes (figure  4). 
The 1-year and 5-year all-cause hospitalization rates 
were 3.04% and 7.75%, 1.03% and 2.76%, 1.35% and 

3.00%, and 0.96% and 1.85% in metabolic, early-onset, 
cardiometabolic and late-onset subtypes (figure  4). 
Compared with the metabolic subtype (online supple-
mental figure S8), age and sex-adjusted 5-year mortality 
risks in descending order were late onset (HR 1.95, 
1.85–2.05, p<0.0001), cardiometabolic (1.50, 1.46–1.53, 
p<0.0001) and early onset (1.18, 1.11–1.27, p<0.0001). 
The 18% higher mortality risk in the early-onset subtype 
compared with the metabolic subtype underscores the 
importance of further investigation into the severity of 
outcomes in the early-onset cluster. Age and sex-adjusted 
5-year hospitalization risks in descending order were late 
onset (1.66, 1.58–1.75, p<0.0001), cardiometabolic (1.37, 
1.34–1.40, p<0.0001) and early onset (0.85, 0.80–0.90, 
p<0.0001), respectively. After age and sex adjustment, 
individuals with early onset were less likely to develop 
chronic diseases after T2D onset than those with meta-
bolic. Late-onset and cardiometabolic subtypes had a 
higher risk of new chronic diseases compared with meta-
bolic, particularly in the late-onset subtype for lower limb 
amputation (2.51, 1.51–4.17, p<0.0001), neuropathy 
(2.06, 1.63–2.59, p<0.0001), and nephrotic syndrome 
(HR 2.05, 1.76–2.40, p<0.0001); and in cardiometabolic 
for lower limb amputation (1.81, 1.51–2.16, p<0.0001), 
nephrotic syndrome (1.75, 1.67–1.82, p<0.0001), and 
CKD (1.59, 1.56–1.62, p<0.0001), dementia (1.53, 1.48–
1.59, p<0.0001), macular degeneration (1.49, 1.42–1.56, 
p<0.0001), and chronic obstructive pulmonary disease 
(1.48, 1.45–1.51, p<0.0001) (online supplemental table 
S6).

Medications
Individuals in cardiometabolic and late-onset subtypes 
were respectively 2.60 (HR 2.60, 2.58–2.63, p<0.0005) 
and 1.69 times (HR 1.69, 1.65–1.74, p<0.0001) more 
likely to receive medication within 5 years after 
T2D onset compared with the metabolic subtype. 
Compared with metabolic, age and sex-adjusted medi-
cation prescription rate in early onset was 19% less. 
Adjusting for pre-T2D medication prescription, risk 
of new prescription was reduced in late onset (1.31, 
1.28–1.35, p<0.001) and cardiometabolic (1.03, 1.01–
1.05, p<0.0005), suggesting associations between 
medication prescription before and after T2D.

Individuals in the early-onset subtype were overall 
less likely to be prescribed with medication after T2D 
onset compared with those in the metabolic subtype, 
particularly for mineralocorticoid receptor antagonist 
(MRA) (HR 0.50, 0.45–0.54, p<0.0001), warfarin (HR 
0.56, 0.50–0.62, p<0.0001), potassium-sparing diuretic 
(0.57, 0.39–0.84, p<0.0001), and thiazide diuretic 
(0.58, 0.56–0.61, p<0.0001). The likelihood of medi-
cation prescription was higher in late onset and 
cardiometabolic compared with metabolic. Increases 
in likelihood of medication prescription compared 
with metabolic in late onset were MRA (HR 2.06, 
1.87–2.27, p<0.0001), warfarin (HR 2.03, 1.89–2.18, 
p<0.0001), GLP1 (HR 1.89, 1.67–2.13, p<0.0001), 
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Figure 1  Cluster-specific characteristics at type 2 diabetes (T2D) onset. BMI, body mass index; CKD, chronic kidney disease; 
COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; HF, 
heart failure; HT, hypertension; RAASi, renin angiotensin aldosterone inhibitor; SHAP, SHapley Additive exPlanations; TC, total 
cholesterol; TG, triglyceride.
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and insulins (HR 1.81, 1.65–1.99, p<0.0001); and 
in cardiometabolic were thiazide diuretics (1.49, 
1.44–1.53, p<0.0001), GLP1 (HR 1.45, 1.41–1.50, 
p<0.0001), and insulins (1.43, 1.40–1.47, p<0.0001) 
(online supplemental table S7).

DISCUSSION
In the largest study of ML-informed subtypes in T2D to 
date, we had three major findings. First, we identified 
four clinically distinguishable subtypes across incident 
and prevalent T2D: metabolic, early onset, late onset 
and cardiometabolic, with thorough internal validation. 
Second, there were distinct trajectories of these T2D 
subtypes, whether by subtype at the end of the study 
period, all-cause hospitalization or mortality. Third, we 
confirmed major differences in new and existing medica-
tion usage across novel T2D subtypes.

A recent systematic review included 62 studies of 
‘complex’ or ML approaches to T2D subclassification 
in a total of 793 291 participants.25 However, efforts to 
understand subtypes in T2D have neither used nationally 
representative data, nor used generalizable, reproduc-
ible methods, nor been validated, nor been associated 
with a wide range of outcomes.25 Using nationally repre-
sentative EHR data in 420 448 individuals, we have used 
multiple, explainable methods in incident T2D with a 
larger number of variables and a longer follow-up than 
prior studies. The same systematic review speculated 
‘whether subclassification approaches at diagnosis alone 
are enough’ and therefore, our longitudinal follow-up of 
individuals and subtype classification at the end of the 
study period (‘prevalent’) is an advance in methodology. 
However, prior to clinical implementation, external vali-
dation of the subtypes observed in this study in other 
datasets,20 as well as genetic validation,26 is necessary for 

cluster replication, and to better understand the overlaps 
and differences, compared with other proposed T2D 
subtypes. As Misra and colleagues note, clinical utility of 
T2D subtypes depends on the ability to use easily acces-
sible data. Therefore, our use of routine EHR and simple 
variables is likely to increase generalizability and applica-
bility of our T2D subtypes.

In 114 231 individuals in the Swedish National Diabetes 
Register, a recent study derived five subtypes in T2D using 
K-means clustering: older onset, severe hyperglycemia, 
severe obesity, younger onset, and insulin use.27 Another 
study proposed five clusters based on only six clinical vari-
ables, including BMI and HbA1c, in All New Diabetics In 
Scania, a purposively sampled diabetes dataset.16 28 Our 
subtypes are plausible and consistent with these subtypes 
and other studies but need to be validated externally 
prior to clinical implementation or evaluation. The iden-
tified subtypes are likely to be more clinically generaliz-
able than those identified in other studies using smaller 
samples of research cohorts or registry-based popula-
tions, which may not represent clinical practice or the 
general population. Interestingly, our T2D subtypes are 
also similar to the subtypes which we identified in HF 
(early onset, late onset, atrial fibrillation related, meta-
bolic, cardiometabolic) and CKD (early onset, late onset, 
cancer related, metabolic, cardiometabolic).20 21 Increas-
ingly, links between T2D, CVD (particularly HF) and CKD 
are recognized from epidemiology to clinical practice, 
and there are also overlaps with other diseases such as 
non-alcoholic fatty liver disease and obesity. Approaches 
to precision medicine and subtyping across diseases 
have been based on incident diseases ‘one-at-a-time’ and 
depending on which disease occurs first.20 21 25 However, 
as lifetime risk and multiple long-term conditions are 
increasingly investigated, the similarity of subtypes across 

Figure 2  Prevalence and proportion of comorbidities and medication subcategories in the four clusters at type 2 diabetes 
(T2D) onset. CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular disease; HF, 
heart failure; HT, hypertension.
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diseases suggests that it may be more appropriate to use 
clustering approaches in combinations of diseases and 
over the life course, with implications for potential etiol-
ogies and mechanisms of disease subtypes.

T2D is associated with high morbidity, mortality 
and healthcare utilization and costs, particularly in 
the context of multiple long-term conditions.29 We 
confirm the high burden of disease and high hospital-
ization rates, consistent with previous studies. There are 
clear differences in prognosis across the four subtypes, 
whether by all-cause mortality, hospital admissions or 
new diseases. For mortality, the worst prognosis is in the 
late-onset subtype and the best prognosis in the meta-
bolic subtype, whereas for hospital admissions, the best 
prognosis is in the early-onset subtype. The high risk of 
developing severe complications, including over double 
the risk of lower limb amputation (HR 2.51, 1.51–4.17, 
p<0.0001), neuropathy (HR 2.06, 1.63–2.59, p<0.0001), 
and nephrotic syndrome (HR 2.05, 1.76–2.40, p<0.0001) 
in the late-onset versus the metabolic subtype, illustrates 

the major burden of healthcare need associated with 
T2D. The fact that the majority of individuals with T2D 
remained in the same subtype throughout the study 
period suggests that subtyping at time of diagnosis is 
likely to be clinically useful but requires external valida-
tion. There was a significant transition from metabolic 
to late-onset subtype, and from late-onset to cardiomet-
abolic subtype over time. Both trajectories highlight the 
importance of preventing progression to more morbid or 
high-burden subtypes in people with T2D.

Investigation of differences in medication across 
subtypes of T2D may be instructive both in terms of 
understanding healthcare utilization and trajectory 
of disease, but also in informing future preventive and 
therapeutic strategies and clinical trials. Patients in the 
early-onset subtype exhibited a lower likelihood of medi-
cation prescription within 5 years after T2D onset than 
other clusters. Patients with T2D diagnosed at ages 19–40 
are known to be under-represented in pharmaceutical 
studies,30 and further investigation in other datasets is 

Figure 3  Trajectory of clusters from type 2 diabetes (T2D) onset to study exit with an average of 9.49 (SD 6.72) years of 
follow-up time.
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required to assess this pattern within the early-onset 
cluster. Individuals in the late-onset subtype had the 
highest likelihood of medication prescription within 5 
years after T2D diagnosis, adjusted for sex, age, and pre-
T2D medication. In the cardiometabolic subtype, there 
was a high medication burden prior to diagnosis of T2D. 
There is evidence of a significant impact of adjusting for 
pre-T2D medication on the trajectory of medication in 
the cardiometabolic subtype, emphasizing the impor-
tance of considering both pre-T2D and post-T2D medi-
cation prescription in analysis of subtypes.

Strengths and limitations
Our study introduces T2D subtyping in the largest study 
population in a nationally representative dataset encom-
passing the most comprehensive range of variables. We 
have implemented and validated ML-based subtype defi-
nition using an established framework. Additionally, we 
have employed an explainable AI technique for subtype 
characterization, capturing non-linear and complex 
interconnection among variables and highlighting the 
positive and negative impacts of variables on cluster 
membership. Cluster characterization and internal vali-
dation were conducted through rigorous cross-validated 
supervised learning. Compared with simple, statistical 
subtyping based on single variables, we were able to the 

assess a wide range of variables on cluster membership 
in more realistic models, and the representativeness of 
the study population makes our subtypes highly likely to 
be generalizable, unlike prior smaller, less representative 
studies.

There are several limitations to our study. First, we did 
not have access to biomarker variables in the clustering 
algorithm. While CPRD is a comprehensive, linked dataset, 
representative of the UK population, it is a generic EHR 
rather than a diabetes-specific dataset, leading to incomplete 
biomarker values at T2D onset or study exit. Therefore, our 
T2D phenotype relied primarily on clinical coding rather 
than biomarkers. Without complete biomarker variables 
at T2D onset in the data, there may be a minority of type 
1 diabetes records in the cohort due to miscoding at the 
point of care. To minimize the risk of misclassification, we 
have used validated phenotype definitions exclusively based 
on explicit diagnostic codes for T2D.31 The interpretation of 
our findings must account for this potential misclassification 
of diabetes common to code-based phenotyping in EHR 
data. Second, additional incomplete variables were ethnicity, 
IMD, and behavioral factors for all individuals. Based on 
the internal validation findings, we used a complete feature 
rather than a complete case approach to mitigate these 
limitations and minimize the effects of incomplete variables. 

Figure 4  Cumulative incidence rates over 5 years from type 2 diabetes (T2D) diagnosis to the first (A) all-cause mortality, (B) 
all-cause hospitalization, and (C) medication prescription.
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Third, we only considered all-cause rather than cause-specific 
mortality and hospitalization, and average follow-up was 9.49 
years. Fourth, while we have labeled the clusters as metabolic, 
early onset, late onset and cardiometabolic, they represent 
the overall attributes of cluster membership rather than 
strict clustering rules. For example, ‘early onset’ and ‘late 
onset’ are simplified labels to name the subtypes but should 
not be interpreted as definitive rules or cut-offs for catego-
rizing patients into subtypes based on age alone. Incorpo-
rating a probabilistic soft clustering approach in the future 
could enhance subtype characterization. Fifth, as already 
stated, we have not yet externally validated the subtypes in 
other datasets for phenotypic or genetic replicability. Sixth, 
we only had data about medication prescription, not adher-
ence. Finally, we have not explored the clinical utility or cost-
effectiveness of the defined subtypes, which is needed prior 
to implementation.

CONCLUSION
We have developed four novel subtypes in T2D with 
potential application to research and clinical practice, 
which have clearly defined differences in baseline char-
acteristics, outcomes and medications. Although these 
subtypes require external validation and assessment of 
clinical utility, they may have potential to improve design 
and implementation of prevention and treatment in 
people with T2D.
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