Introduction
Neuroarthropathy or Charcot neuroarthropathy (CN) consists of acute osteoarticular destruction in the context of neuropathy, most commonly in the foot but also in the knee in some cases.1 The physiopathology of this disorder is poorly understood and the knowledge of its causality remains at the theoretical stage. The most common explanation is inflammatory arthropathy, according to which CN occurs as an increased inflammatory response to a lesion inducing increased bone lysis, with the involvement of bone remodelling factors,2 especially the receptor activator of nuclear factor B ligand (RANKL) and its natural antagonist osteoprotegerin (OPG). Many studies have confirmed abnormalities in the balance of the RANK/OPG system during the development of CN.3 A recent study examined in a retrospective manner the evolution of glycemic control in patients who have developed an active form of CN and demonstrated a significant drop in hemoglobin A1c (HbA1c) level in the near period of presentation of CN.4 We therefore wanted to know if the same reduction in the rate of HbA1c appears in cases of active CN presented through the descriptive multicentric study ‘EPICHAR’ handled at diabetic foot centers in France and Belgium, the main objective of which is to map patients living with Charcot’s foot (ie, identification of patients with acute and chronic Charcot and the diagnostics and therapeutic methods used).
Study objectives
The primary objective of our study is to investigate if rapid correction of HbA1c levels is accompanied by onset of the active phase of CN. The primary assessment criterion is the comparison of HbA1c levels 6 months (M6) before the diagnosis of the active phase of CN (M0). The secondary objective is to determine whether HbA1c levels rapidly fell between M6 and M3 (3 months) before the diagnosis of the active phase of CN, as well as between M3 and M0. The secondary assessment criterion is the dosage of HbA1c levels between M6 and M3 and between M3 and M0.