Participants
Fourteen elite male soccer players participated in the study. Seven players (professional and/or international players) who had suffered a primary stress fracture of the fifth MT (MT-5 group—age 25±5 years, weight 74±6 kg, height 178±6 cm) and seven matched healthy (no injury) players (control group—26±4 years, 76±4 kg, 179±5 cm) were recruited. All MT-5 injured players underwent surgery at Aspetar Sports Medicine and Orthopaedic Hospital (Doha, Qatar) by the same orthopaedic surgeon (PD) for intramedullary screw fixation±bone graft from the pelvis. Postoperative care comprised 3 weeks in a non-weight-bearing cast and 3 weeks in a partial weight-bearing boot. Physiotherapy was started after cast removal with combined hydrotherapy and reduced gravity treadmill (Alter-G) in the initial phase. After 6 weeks, all players progressed to full-weight-bearing. For all MT-5 injured players, the affected foot was at their stance or non-dominant limb when kicking with 86% (6/7) of the players reporting prodromal symptoms prior to stress fracture. All stress fractures occurred with insidious onset and were not frank or acute traumatic fractures2 (figure 1). Playing positions comprised four midfield players, one wing, one striker and one defender.
X-ray of one players’ fifth metatarsal stress fracture (insidious onset) after surgical fixation with an intramedullary screw. Note location distal to the tuberosity where traumatic avulsion fractures occur.
Inclusion in the current study occurred only after MT-5 players had returned to play following complete radiographic union of the stress fracture and completion of rehabilitation programme with end-stage field-based return-to-play tests at the rehabilitation department in Aspetar Sports Medicine and Orthopaedic Hospital. MT-5 group players were on average 240±60 days after surgery during on-field biomechanical testing.
Healthy matched control participants were injury-free for 6 months prior to the study with no previous history of injury to MT-5 or anterior cruciate ligaments. Healthy participants were matched for playing position, body mass, height and level of competition.
Testing protocol
Participants were fitted with appropriate-sized firm ground soccer boots (Nike Tiempo Genio leather II; Nike, Beaverton, Oregon, USA) for field-based biomechanical testing (figure 2). Natural Bermuda grass (Cynodon dactylon) surface over-seeded with rye grass (Lolium perenne) with a predominantly sand rootzone at the Aspire zone (Doha, Qatar) was used for testing. Ground staff maintained the surface to have consistent mechanical properties for the duration of the study.13 Surface hardness (69±6 g using FIFA-approved 2.25 kg Clegg hammer), rotational resistance (43±7 Nm using FIFA-approved studded disc apparatus) and temperature (26±6 °C using Kestrel 4400 heat stress tracker, USA) were recorded.
Firm ground football shoe used by all participants (Nike Tiempo Genio II).
Plantar loading parameters were collected using the Pedar-X in-shoe system (Novel, Munich, Germany). Each insole is 1.9 mm thick and contains 99 capacitive sensors, which were calibrated prior to testing (Trublu Calibration; Novel). The validity and reproducibility of Pedar-X is excellent for running.9 14
Briefly, the Pedar-X insoles relay data sampled at 100 Hz to a data logger (carried in a custom-made back-pack) and then to a laptop via Bluetooth technology. Insoles are placed bilaterally with no foot orthotics in place so that the Pedar-X insoles were flat. A global positioning system (GPS) with accelerometer (Catapult, Australia) was used to verify running speed of the trials.
Standardised ‘warm-up’ protocol consisting of progressing running speeds, lower body resistance exercises (bodyweight, BW) and dynamic stretching was conducted by the same physical performance coach (RA). Following this, participants completed three soccer football-specific movement tests (figure 3). For each test, three familiarisation trials were first performed, followed by three trials of each test while kinetic and spatiotemporal data were collected via the Pedar-X and GPS unit as follows:
Football-specific movements. (A) Set-piece kick. (B) Curved run with ball interplay. (C) Forward straight-line run at 5.5 m s−1. The pressure insole icons denote areas where data collection started and finished during the running trials.
Set-piece kick: Participants were instructed to hit the furthermost top corner of the goal posts from a spot 10 m adjacent to the corner of the 18 yd box during three trials of curved set-piece kicks at 75% of maximum effort while data were collected from the stance leg.
Curved run with ball interplay: Participants performed three curved runs to mimic running into space onto a pass at around 75% of maximum effort. Participants dribbled the football to a cone where they passed to a stationary team-mate (RA) who sent out a subsequent pass for the participant to run onto while following the arc of the centre circle (figure 2). Participants were instructed to accelerate into the curved run, after passing the ball, at 75% of maximum effort.
Forward straight-line run: Participants ran 60 m at a speed of 5.5 m s−1 (19.8 km/h). Running speed was controlled using audio cues in which the participant should pass each 10 m distance marker cone as the audio cue (beep) sounds. Speed was checked with the GPS system and any trials outside ±10% were discarded.
For the straight run, plantar loading data from the stance phase of a minimum of six consecutive footfalls were extracted for both the left and right feet and were averaged for subsequent analysis using Novel evaluation software (Groupmask Evaluation; Novel). For the curved run with ball interplay, the maximum force (Fmax) of the inside foot (closest to the curve) was averaged over the three trials. For the set-piece kick, the Fmax at the non-dominant stance leg was averaged over the three trials. The Fmax was normalised to each participant’s bodyweight to facilitate between-participant comparison and was examined for the whole foot as well as anatomical regional areas (‘masks’) for each task (figure 4).15 Fmax recorded by Pedar-X is a proxy measure of vertical ground reaction force (vGRF) and has been shown to correlate well with a Kistler force platform.8 The between-limb difference for Fmax was calculated subtracting the value of the MT-5 injured limb from the uninjured limb for each MT-5 participant, and arbitrarily for the healthy participants as right leg subtracted from the left leg. Data for the whole foot and also anatomical masks were analysed with a focus on the lateral foot. The masks examined were ‘lateral midfoot’, ‘lateral forefoot’ and ‘lateral toes (2-5)’.
Between-group differences (MT-5 injured group vs control group) for specific anatomical regions of the foot expressed as effect sizes (Cohen’s d). (A) Set-piece kick. (B) Curved run with ball interplay. (C) Forward straight-line run at 5.5 m s−1. (D) Between-limb difference (within the MT-5 injured group) during a forward straight-line run at 5.5 m s−1.
Statistical analysis
Between-limb and between-group differences were examined with an analysis of variance and subsequent post hoc testing with p <0.05 set as indicating statistical significance. Between-group differences were reported using Cohen’s d.16 The differences were reported as small, medium, large and very large when they reached 0.2, 0.5, 0.8 and 1.2, respectively.17