Introduction
Systemic lupus erythematosus (SLE) is a heterogeneous disease with dysfunction in both the innate and adaptive components of the immune system,1 leading to inflammation in multiple organ systems. Periods of disease inactivity can be interrupted by flares of increased activity, or a patient may have chronic activity.2 No single clinical laboratory test is currently useful as an indicator of clinical disease activity. Attempts to establish markers have led to studies exploring titres of antibodies to double-stranded DNA (anti-dsDNA),3 levels of complement,4 erythrocyte sedimentation rate,5 chemokines6 and complement deposition on red blood cells.7
One approach to identify markers of disease activity is to investigate expression levels of genes thought to be involved in the pathogenesis or maintenance of SLE. The variable expression of cytokines determined by these genes is thought to contribute to SLE itself, as well as to the heterogeneity of SLE.8 The difficulty with cytokines is both their pleiotropic effects as well as the complex interactions among cytokines9 in some cases, leading to both proinflammatory and anti-inflammatory effects. Further, cytokines thought to be involved in the pathogenesis of SLE, such as interferon alpha, may not vary in states of high or low disease activity.10–12
TNFα has been explored with conflicting results in SLE.13 However, a member of the TNF ligand family, B cell activating factor (BAFF), also known as B lymphocyte stimulator (BLyS), is thought to be closely tied to the pathogenesis of SLE (summarised in ref. 14). BAFF is expressed by multiple cell types, including monocytes, activated neutrophils, T cells and dendritic cells.15–17 A variety of cytokines including interferon alpha, interferon gamma and TNF can induce its expression and secretion. Binding of BAFF to its receptors (of which there are three) leads to B cell proliferation, differentiation and survival, and IgG class switching.16 ,18 ,19 Significant effects have been found on T cells as well, with binding leading to proliferation, cytokine production and skewing towards a Th1 cell profile.20–22 In mice, overexpression of BAFF leads to SLE-like features.19 ,23 ,24 Elevated serum levels of BAFF were found in patients with SLE25 ,26 though an early study did not suggest a correlation with disease activity.27 Since that time, a 2-year four-centre longitudinal study,28 a Norwegian study29 and a paediatric study30 have shown correlation between serum BAFF protein levels and disease activity. A targeted therapy directed against BAFF, belimumab, is the first new therapy for SLE in 50 years.31 Treatment of lupus-prone NZB/W mice with BAFF inhibition delayed renal disease and death.32 ,33 Human trials found that inhibition of BAFF activity led to reduction in SLE activity as measured by the SLE Responder Index.31 ,34
The level of BAFF transcript expression may correlate better with disease activity than the serum level of the protein product.35 It was noted that, while BAFF was important in the pathogenesis of SLE, the association between serum BAFF protein levels and disease activity was weak. Collins and colleagues investigated BAFF mRNA levels from peripheral blood leucocytes and BAFF serum protein levels and compared both with SLE disease activity in 60 predominantly Hispanic (82%) patients with SLE; 37 of whom had repeat levels drawn. They found that the mRNA levels were better correlated with disease activity measured by the SLE Disease Activity Index (both full-length mRNA and an alternatively spliced isoform). Interestingly, their subsequent work36 found that the BAFF protein level, but not the BAFF mRNA level, was increased in rheumatoid arthritis and declined in response to TNF antagonist therapy in good responders. However, mRNA levels were unchanged in either good or poor responders. This might reflect local versus systemic production and be due to differences between rheumatoid arthritis and SLE pathology.
In this study, we explored the association between BAFF gene expression, BAFF protein level and the associations with same-day and longitudinal clinical disease activity in SLE.