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ABSTRACT
Background  SARS-CoV-2 infection is associated with 
protection against reinfection. This study analysed this 
protection across different reinfection symptoms and 
severities, comparing the preomicron and omicron 
eras.
Methods  A nationwide, matched, test-negative, case–
control study was conducted in Qatar from 5 February 
2020 to 12 March 2024. The preomicron analysis used a 
sample of 509 949 positive and 8 494 782 negative tests, 
while the omicron analysis included 682 257 positive 
and 6 904 044 negative tests. Data were sourced from 
Qatar’s national databases for COVID-19 laboratory 
testing, vaccination, hospitalisation and death.
Results  Effectiveness of preomicron infection against 
preomicron reinfection was estimated at 80.9% (95% CI: 
79.1% to 82.6%) for asymptomatic reinfection, 87.5% 
(95% CI: 86.1% to 88.9%) for symptomatic reinfection, 
97.8% (95% CI: 95.7% to 98.9%) for severe COVID-19 
reinfection, 100.0% (95% CI: 97.5% to 100.0%) for 
critical COVID-19 reinfection and 88.1% (95% CI: 
50.3% to 97.2%) for fatal COVID-19 reinfection. For 
omicron infection against omicron reinfection, the 
estimates were 46.4% (95% CI: 36.9% to 54.4%) for 
asymptomatic reinfection, 52.8% (95% CI: 44.4% to 
60.0%) for symptomatic reinfection, 100.0% (95% CI: 
55.4% to 100.0%) for severe COVID-19 reinfection, 
100.0% (95% CI: 15.1% to 100.0%) for critical COVID-19 
reinfection, and 75.2% (95% CI: −58.8% to 97.5%) 
for fatal COVID-19 reinfection. Effectiveness over 
time since previous infection showed no discernible 
decline in protection against all forms of reinfection 
in the preomicron era, but a rapid decline against 
asymptomatic and symptomatic reinfections in the 
omicron era.
Conclusions  A gradient of protection against reinfection 
is evident, with the highest protection observed against 
severe forms of COVID-19. Over time, this gradient 
becomes more pronounced, as protection against 
asymptomatic and symptomatic reinfections decreases, 
while protection against severe outcomes remains 
strong.

INTRODUCTION
Reinfections have become a frequent occur-
rence in the epidemiology of SARS-CoV-2 
infection.1–3 This phenomenon resembles 
patterns observed for other respiratory 
infections, including common-cold corona-
viruses4 5 and influenza.6–9 While a natural 
SARS-CoV-2 infection provides initially robust 
protection against reinfection,10 11 this protec-
tion wanes over time.1 3 The ongoing evolution 
of SARS-CoV-2 with immune evasion proper-
ties,12–15 exemplified by the emergence of the 
omicron variant and its subvariants,3 12–14 16–19 
further contributes to the rising incidence of 
reinfections.16 19–22

We previously investigated the protection 
provided by COVID-19 mRNA vaccination 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Vaccine-induced immunity offers varying degrees of 
protection against a spectrum of SARS-CoV-2 infec-
tion symptoms and severities. However, the extent 
to which this applies to natural immunity remains 
unclear.

WHAT THIS STUDY ADDS
	⇒ A gradient in protection against SARS-CoV-2 rein-
fection is observed in Qatar’s predominantly young 
population, with the lowest protection against as-
ymptomatic reinfection and the highest against se-
vere, critical and fatal reinfections.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Further clarification is needed on the roles of humor-
al and cellular immunity in driving observed protec-
tion patterns, with ongoing monitoring essential to 
adapt public health strategies to the evolving SARS-
CoV-2 reinfection landscape.
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against a spectrum of SARS-CoV-2 infection symptoms 
and severities and also characterised the gradient in this 
protection over time.23 Building on this work, the present 
study examines the protection conferred by natural 
immunity against a range of SARS-CoV-2 reinfection 
symptoms and severities. Natural immunity here refers 
to the protection acquired from a SARS-CoV-2 infection 
against reinfection, as well as against COVID-19-related 
hospitalisation and death on reinfection.

Specifically, the effectiveness of infection against rein-
fection was estimated for five outcomes: asymptomatic 
reinfection, symptomatic reinfection, severe24 (acute 
care hospitalisation) COVID-19 at reinfection, critical24 
(intensive care unit hospitalisation) COVID-19 at rein-
fection and fatal25 COVID-19 at reinfection. Given the 
major genomic changes in the virus between the preomi-
cron and omicron eras, which led to substantial immune 
evasion and increased transmissibility,12–14 16–18 the anal-
ysis was stratified by era. This stratification allowed us to 
estimate and compare the effectiveness of a preomicron 
infection in preventing reinfection with a preomicron 
virus versus the effectiveness of an omicron infection in 
preventing reinfection with an omicron virus.

METHODS
Study population and data sources
This study was conducted on Qatar’s resident population 
before and after the emergence of the omicron variant 
on 19 December 202116 (online supplemental section 
S1 and online supplemental figure S1). The first analysis 
estimated the effectiveness of a preomicron infection 
in preventing reinfection with a preomicron virus from 
5 February 2020 (start of the COVID-19 pandemic in 
Qatar)26 until 18 December 2021 (end of the preomicron 
period). The second analysis estimated the effectiveness 
of an omicron infection in preventing reinfection with 
an omicron virus from 19 December 2021 (onset of the 
first omicron wave)16 until 12 March 2024 (end of study).

Throughout the study period, Qatar experienced the 
circulation of SARS-CoV-2 alongside other respiratory 
viruses, such as influenza, with the patterns of these 
viruses changing substantially over time due to the non-
pharmaceutical interventions implemented during the 
COVID-19 pandemic.27 28

Data were sourced from the integrated, nationwide, 
digital health information platforms, which include the 
national federated databases for COVID-19 laboratory 
testing, vaccination, hospitalisation and death (online 
supplemental section S2). These databases contain 
SARS-CoV-2-related data on testing, with no missing 
information since the beginning of the pandemic, 
encompassing all PCR tests regardless of location or 
facility (online supplemental section S3). Starting 5 
January 2022, these databases also incorporated all 
medically supervised rapid antigen (RA) tests (online 
supplemental section S3).

Until 31 October 2022, SARS-CoV-2 testing in Qatar 
was conducted on a mass scale, with around 5% of 
the population being tested every week, primarily for 
routine purposes such as screening or meeting travel-
related requirements.29 30 Subsequently, testing rates 
decreased, with less than 1% of the population being 
tested per week.31 Most infections detected throughout 
the pandemic were identified through routine testing 
rather than due to the presence of symptoms.29 30

In December 2020, Qatar initiated its COVID-19 vacci-
nation campaign using mRNA vaccines, prioritising 
individuals based on coexisting health conditions and 
age.29 32 Vaccination was tracked nationally and provided 
to all residents and citizens free of charge.29 32 Demo-
graphic information, such as sex, age and nationality, was 
obtained from the national health registry records. Qatar 
has a unique demographic profile, with only 9% of its 
population aged 50 years or older and 89% of its resi-
dents being expatriates from more than 150 countries.26 
Detailed descriptions of Qatar’s population and national 
databases have been reported previously.26 29 30 33–36

Study design
A matched, test-negative, case–control study design was 
employed to assess the effectiveness of SARS-CoV-2 infec-
tion against reinfection.3 16 37–39 Cases and controls were 
identified based on SARS-CoV-2 testing within each anal-
ysis period. Individuals with positive tests were designated 
as cases, while those with negative tests were designated 
as controls. The odds of having a previous infection were 
then compared between cases and controls.3 16 37–39

The protection conferred by infection was estimated 
against five forms of reinfection: asymptomatic, symp-
tomatic, severe24 COVID-19, critical24 COVID-19 and 
fatal25 COVID-19. SARS-CoV-2 reinfection is conven-
tionally defined as a documented infection occurring at 
least 90 days after a previous infection to distinguish true 
reinfections from potential cases of prolonged viral shed-
ding.40–42 Consistent with this definition, individuals with 
a positive SARS-CoV-2 test within the preceding 90 days 
were excluded from the analysis to avoid misclassifying 
cases of prolonged viral positivity as reinfections. The 
analysis was conducted over the entire study periods, as 
well as in 3-month intervals since the previous infection.

All PCR tests and a portion of the facility-based RA tests 
carried out in Qatar, irrespective of setting or location, 
are categorised based on symptoms and the reason for 
testing.29 30 These categories include clinical suspicion, 
contact tracing, surveys or random testing campaigns, 
individual request, routine healthcare testing, pretravel, 
post-travel or other. This categorisation allowed differen-
tiation between tests conducted due to asymptomatic or 
symptomatic infections.

Asymptomatic infection was defined as a positive PCR 
or RA test result obtained when the reason for testing 
was a survey, with no symptoms compatible with a respi-
ratory tract infection reported. Conversely, symptomatic 
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infection was defined by a positive PCR or RA test 
prompted by the presence of symptoms consistent with a 
respiratory tract infection. Accordingly, only PCR or RA 
tests from surveys (asymptomatic) or those conducted 
due to clinical suspicion (symptomatic) were included in 
the respective analyses.

Classification of severe,24 critical24 and fatal25 COVID-19 
followed WHO guidelines (online supplemental section 
S4). Trained medical personnel, independent of the 
study investigators, reviewed individual medical records 
to determine severity.43 As part of the national protocol, 
all individuals with a positive SARS-CoV-2 test and concur-
rent hospitalisation underwent infection severity assess-
ments every 3 days until discharge or death, regardless of 
hospital stay duration or the time between the positive 
test and the final outcome.43

The severity assessment results were provided to the 
study investigators in the form of a database containing 
a categorical variable assessment. However, the data-
base did not include detailed information used to 
determine severity, such as oxygen use and mechanical 
ventilation, which are available in the Cerner system 
that tracks all medical encounters within Qatar’s public 
healthcare system but to which investigators do not 
have direct access. The categorical variable assessment 
is considered complete, as it was conducted in accor-
dance with a national COVID-19 protocol for clin-
ical assessment implemented across the entire public 
healthcare system.

Individuals experiencing progression to severe, critical 
or fatal COVID-19 during the follow-up period were clas-
sified based on their worst outcome, with death25 being 
the highest severity, followed by critical24 illness and then 
severe24 illness.43

All cases and controls that met the inclusion criteria 
and could be matched were included in the analyses. The 
test-negative design helps mitigate potential confounding 
due to differential healthcare-seeking behaviour3 37–39 
by restricting the population to individuals who sought 
testing for documented reasons. This approach ensures 
comparability between cases and controls regarding their 
healthcare-seeking patterns. Consequently, only tests 
with a documented reason for testing were included in 
the analyses.

The test-negative design applied in this study is an 
extension of the original test-negative design commonly 
used in influenza vaccine effectiveness studies.38 39 
This extended design leverages the widespread testing 
conducted during the COVID-19 pandemic, where indi-
viduals were tested for various reasons, such as routine 
requirements, and has been thoroughly investigated and 
validated through numerous studies, sensitivity analyses, 
negative control outcomes and mathematical modelling 
simulations.3 29 32 37 44–46 Importantly, cases and controls 
are exactly matched by the reason for testing and the 
testing method in this design. This exact matching 
minimises bias stemming from differential testing or 
healthcare-seeking behaviour.

For analyses specific to the omicron era, individuals 
with a documented preomicron infection were excluded 
to separately investigate the effects of preomicron and 
omicron immunities. For the analyses of asymptomatic 
and symptomatic reinfections, cases and controls were 
matched on a one-to-one ratio. In contrast, to enhance 
statistical precision due to the lower number of cases 
with severe outcomes, a one-to-five matching ratio was 
employed for analyses of severe,24 critical24 and fatal25 
COVID-19 reinfections.

Cases and controls were matched exactly on several 
factors to minimise the influence of confounding 
or mediating variables that might affect infection 
risk26 47–50 and to ensure non-differential healthcare-
seeking behaviour.37–39 These factors, informed by our 
previous research in Qatar,22 29 32 44 45 51 included sex, 
10-year age group, nationality, the number of coexisting 
conditions (0 to ≥6; online supplemental section S5), 
the number of vaccine doses received by the time of the 
study (outcome) test (0 to ≥4), calendar week of testing, 
testing method (PCR or RA) and reason for testing. This 
exact matching approach ensured that each case–control 
pair shared identical values for all these variables and 
controlled for the effect of vaccination on infection risk 
between cases and controls.

This study aimed to compare the protective effect of 
infection against various forms of reinfection. However, 
waning immunity can bias such comparisons if the time 
between the previous infection and the study test differs 
across analyses. To address this potential bias, matched 
case–control pairs identified through surveys were subse-
quently matched by calendar week of testing to their 
counterparts identified through clinical suspicion. Only 
case–control pairs matched on both the initial criteria and 
this additional calendar week matching were included in 
the analyses. Consequently, the distributions of time from 
previous infection to the study test were similar in both 
asymptomatic and symptomatic reinfection analyses.

Statistical analysis
All SARS-CoV-2 testing records were reviewed to select 
cases and controls; however, only matched samples 
were analysed. Cases and controls were described using 
frequency distributions and measures of central tendency 
and compared using standardised mean differences 
(SMDs). An SMD of ≤0.1 indicated adequate matching.52 
The median and IQR for the time between the previous 
infection and the study test were calculated.

Conditional logistic regression was used to estimate 
ORs and their corresponding 95% CIs, comparing the 
odds of having a previous infection between cases and 
controls. The analysis considered the date of the most 
recent documented previous infection for each partici-
pant. Individuals with no documented previous infection 
served as the reference group for all comparisons. CIs 
were not adjusted for multiplicity, and interactions were 
not examined.
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Table 1  Characteristics of the unmatched and matched cases and controls in samples used to estimate the effectiveness of 
a preomicron infection in preventing reinfection with a preomicron virus

Characteristics

Unmatched sample Matched sample

Cases Controls

SMD*

Cases† Controls†

SMD*N=430 196 N=8 286 336 N=300 871 N=300 871

Median age (IQR)—years 33 (25–41) 33 (25–41) 0.01‡ 32 (25–39) 32 (25–39) 0.00‡

Age group—no. (%)

 � <10 years 33 933 (7.9) 660 291 (8.0) 0.05 26 127 (8.7) 26 127 (8.7) 0.00

 � 10–19 years 31 171 (7.2) 618 680 (7.5) 23 427 (7.8) 23 427 (7.8)

 � 20–29 years 96 989 (22.5) 1 881 353 (22.7) 71 434 (23.7) 71 434 (23.7)

 � 30–39 years 145 498 (33.8) 2 714 746 (32.8) 104 987 (34.9) 104 987 (34.9)

 � 40–49 years 79 480 (18.5) 1 471 382 (17.8) 52 451 (17.4) 52 451 (17.4)

 � 50–59 years 31 333 (7.3) 664 936 (8.0) 17 788 (5.9) 17 788 (5.9)

 � 60–69 years 9104 (2.1) 216 037 (2.6) 3863 (1.3) 3863 (1.3)

 � 70+ years 2688 (0.6) 58 911 (0.7) 794 (0.3) 794 (0.3)

Sex

 � Male 309 604 (72.0) 5 846 746 (70.6) 0.03 215 812 (71.7) 215 812 (71.7) 0.00

 � Female 120 592 (28.0) 2 439 590 (29.4) 85 059 (28.3) 85 059 (28.3)

Nationality§

 � Bangladeshi 36 752 (8.5) 468 018 (5.6) 0.29 23 170 (7.7) 23 170 (7.7) 0.00

 � Egyptian 23 583 (5.5) 425 667 (5.1) 16 150 (5.4) 16 150 (5.4)

 � Filipino 38 642 (9.0) 500 249 (6.0) 29 362 (9.8) 29 362 (9.8)

 � Indian 114 011 (26.5) 2 228 037 (26.9) 85 785 (28.5) 85 785 (28.5)

 � Nepalese 46 690 (10.9) 584 670 (7.1) 31 212 (10.4) 31 212 (10.4)

 � Pakistani 22 249 (5.2) 399 394 (4.8) 15 486 (5.1) 15 486 (5.1)

 � Qatari 51 232 (11.9) 1 370 472 (16.5) 38 730 (12.9) 38 730 (12.9)

 � Sri Lankan 13 850 (3.2) 186 190 (2.2) 9251 (3.1) 9251 (3.1)

 � Sudanese 11 292 (2.6) 191 916 (2.3) 7735 (2.6) 7735 (2.6)

 � Other nationalities¶ 71 895 (16.7) 1 931 723 (23.3) 43 990 (14.6) 43 990 (14.6)

Coexisting conditions

 � 0 341 326 (79.3) 6 728 125 (81.2) 0.05 251 878 (83.7) 251 878 (83.7) 0.00

 � 1 49 504 (11.5) 841 617 (10.2) 30 545 (10.2) 30 545 (10.2)

 � 2 20 906 (4.9) 353 107 (4.3) 11 018 (3.7) 11 018 (3.7)

 � 3 8445 (2.0) 160 336 (1.9) 3650 (1.2) 3650 (1.2)

 � 4 4609 (1.1) 91 729 (1.1) 1738 (0.6) 1738 (0.6)

 � 5 2661 (0.6) 54 008 (0.7) 918 (0.3) 918 (0.3)

 � 6+ 2745 (0.6) 57 414 (0.7) 1124 (0.4) 1124 (0.4)

Vaccine doses**

 � 0 393 213 (91.4) 5 579 037 (67.3) 0.70 274 460 (91.2) 274 460 (91.2) 0.00

 � 1 14 750 (3.4) 183 299 (2.2) 8743 (2.9) 8743 (2.9)

 � 2 21 974 (5.1) 2 462 022 (29.7) 17 526 (5.8) 17 526 (5.8)

 � 3 259 (0.1) 61 872 (0.7) 142 (0.0) 142 (0.0)

 � 4+ 0 (0.0) 106 (0.0) -- --

Method of testing

 � PCR 430 196 (100.0) 8 286 336 (100.0) -- 300 871 (100.0) 300 871 (100.0) --

 � RA -- -- -- --

Reason for testing

Continued

B
M

J O
pen R

espiratory R
esearch: first published as 10.1136/bm

jresp-2024-002718 on 26 M
arch 2025. D

ow
nloaded from

 https://bm
jopenrespres.bm

j.com
 on 19 A

pril 2025 by guest.
P

rotected by copyright, including for uses related to text and data m
ining, A

I training, and sim
ilar technologies.



Sukik L, et al. BMJ Open Respir Res 2025;12:e002718. doi:10.1136/bmjresp-2024-002718 5

Open access

Based on the test-negative study design, effectiveness 
and corresponding 95% CIs were calculated as 1−OR 
of previous infection among cases versus controls if the 
OR was ≤137 and as (1/OR)−1 if the OR was >1.35 53 This 
method ensures a symmetric scale for both negative and 
positive effectiveness, ranging from −100% to 100%.35 53 
In instances where conditional logistic regression failed 
to converge due to zero events among exposed cases, 
the 95% CIs were obtained using McNemar’s test. This 
approach provides only an approximate estimate of the 
CIs in these specific situations, following a method used 
in earlier studies.23 54

The effectiveness by time since previous infection 
was also assessed in 3-month intervals by restricting 
the study samples to cases and controls with a previous 
infection falling within the specified 3-month time-
interval categories. Subgroup analyses were also 
performed, restricting the study sample to vaccinated 
and unvaccinated individuals separately. Statistical 
analyses were conducted using STATA/SE software 
V.18.0 (StataCorp).

Patient and public involvement
Patients and/or the public were not involved in the 
design, or conduct, or reporting, or dissemination plans 
of this research.

RESULTS
Study populations
Online supplemental figures S2 and S3 illustrate the 
study population selection process for estimating the 
protection of a preomicron infection in preventing rein-
fection with a preomicron virus and of an omicron infec-
tion in preventing reinfection with an omicron virus, 
respectively.

Table 1 describes the characteristics of the unmatched 
and matched study samples for the preomicron period, 
while online supplemental table S1 presents the same 
information for the omicron period. The study was 
conducted on the entire population of Qatar, reflecting 
the country’s internationally diverse but predominantly 
young and male population.

Protection of preomicron infection against preomicron 
reinfection
The effectiveness of a preomicron infection in preventing 
asymptomatic and symptomatic reinfections with a 
preomicron virus was 80.9% (95% CI: 79.1% to 82.6%) 
and 87.5% (95% CI: 86.1% to 88.9%), respectively 
(table 2 and figure 1A). The median time between the 
previous infection and the study test was 236.5 days (IQR: 
164–301.5 days) for asymptomatic reinfection and 249 
days (IQR: 179–302 days) for symptomatic reinfection.

Characteristics

Unmatched sample Matched sample

Cases Controls

SMD*

Cases† Controls†

SMD*N=430 196 N=8 286 336 N=300 871 N=300 871

 � Clinical suspicion 169 301 (39.4) 776 472 (9.4) 1.17 58 145 (19.3) 58 145 (19.3) 0.00

 � Contact tracing 80 509 (18.7) 470 961 (5.7) 73 143 (24.3) 73 143 (24.3)

 � Port of entry 55 203 (12.8) 2 812 485 (33.9) 54 118 (18.0) 54 118 (18.0)

 � Individual request 19 829 (4.6) 438 567 (5.3) 18 342 (6.1) 18 342 (6.1)

 � Survey 62 689 (14.6) 1 570 226 (18.9) 58 145 (19.3) 58 145 (19.3)

 � Healthcare routine testing 23 492 (5.5) 304 119 (3.7) 21 937 (7.3) 21 937 (7.3)

 � Pretravel 10 664 (2.5) 1 791 856 (21.6) 10 048 (3.3) 10 048 (3.3)

 � Postantibody 9 (0.0) 755 (0.0) 1 (0.0) 1 (0.0)

 � Other 8500 (2.0) 120 895 (1.5) 6992 (2.3) 6992 (2.3)

*SMD is the difference in the mean of a covariate between groups divided by the pooled SD. An SMD of ≤0.1 indicates 
adequate matching.
†Cases (SARS-CoV-2-positive tests) and controls (SARS-CoV-2-negative tests) were matched one-to-one by sex, 10-year 
age group, nationality, the number of coexisting conditions, the number of vaccine doses at the time of the study test, 
calendar week of testing, method of testing (PCR or RA) and reason for testing. Matched case–control pairs identified 
through surveys were subsequently matched by calendar week of testing to their counterparts identified through clinical 
suspicion.
‡SMD is for the mean difference between groups divided by the pooled SD.
§Nationalities were chosen to represent the most populous groups in Qatar.
¶These comprise up to 184 and 127 other nationalities in Qatar in the unmatched and matched samples, respectively.
**Ascertained at the time of the SARS-CoV-2 test.
RA, rapid antigen; SMD, standardised mean difference.

Table 1  Continued
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The effectiveness of a preomicron infection in 
preventing each of severe, critical and fatal COVID-19 
reinfections with a preomicron virus showed all very high 
effectiveness at nearly 100% (table  2 and figure  1A). 
However, estimates for fatal COVID-19 reinfection lacked 
sufficient statistical precision due to the small number of 
cases.

The effectiveness by time since previous infection 
showed no discernible decline in protection over 
time against all forms of reinfection (table 3). Similar 
patterns of effectiveness were observed among vacci-
nated and unvaccinated individuals (online supple-
mental figure S4).

Protection of omicron infection against omicron reinfection
The effectiveness of an omicron infection in preventing 
asymptomatic and symptomatic reinfections with an 
omicron virus was 46.4% (95% CI: 36.9% to 54.4%) and 
52.8% (95% CI: 44.4% to 60.0%), respectively (table 2 
and figure 1B). The median time between the previous 

infection and the study test was 255 days (IQR: 197–299 
days) for asymptomatic reinfection and 272 days (IQR: 
194–305 days) for symptomatic reinfection.

The effectiveness of an omicron infection in preventing 
each of severe and critical COVID-19 reinfections with an 
omicron virus was 100%, as no cases of severe or critical 
COVID-19 were observed among those with a previous 
infection (table 2 and figure 1B). However, these effec-
tiveness measures, along with the one against fatal 
COVID-19, lacked statistical precision due to the small 
number of cases.

The effectiveness by time since previous infection 
showed a rapid decline in protection over time against 
asymptomatic and symptomatic reinfections (table  4). 
Effectiveness was highest within three to less than 6 
months after infection (>80%) but dropped to negli-
gible levels by 1 year or more after the previous infection. 
While the effectiveness against each of severe, critical 
and fatal COVID-19 reinfections appeared to remain very 
high across time intervals, the small number of cases in 

Table 2  Effectiveness of (A) a preomicron infection in preventing asymptomatic, symptomatic, severe COVID-19, critical 
COVID-19 and fatal COVID-19 reinfections with a preomicron virus and (B) an omicron infection in preventing asymptomatic, 
symptomatic, severe COVID-19, critical COVID-19 and fatal COVID-19 reinfections with an omicron virus

Effectiveness of

Cases
(SARS-CoV-2-positive tests)

Controls
(SARS-CoV-2-negative tests)

Effectiveness* in % 
(95% CI)†

Previous 
infection (n)

No previous 
infection (n)

Previous 
infection (n)

No previous 
infection (n)

(A) A preomicron infection against reinfection with a preomicron virus

 � Asymptomatic infection‡§ 658 57 487 3086 55 059 80.9 (79.1 to 82.6)

 � Symptomatic infection‡¶ 381 57 764 2835 55 310 87.5 (86.1 to 88.9)

 � Severe COVID-19 infection** 9 7917 1356 31 829 97.8 (95.7 to 98.9)

 � Critical COVID-19 infection** 0 1055 149 4049 100.0 (97.5 to 100.0)††

 � Fatal COVID-19 infection** 2 397 50 1365 88.1 (50.3 to 97.2)

(B) An omicron infection against reinfection with an omicron virus

 � Asymptomatic infection‡§ 398 23 927 591 23 734 46.4 (36.9 to 54.4)

 � Symptomatic infection‡¶ 330 23 995 564 23 761 52.8 (44.4 to 60.0)

 � Severe COVID-19 infection** 0 155 10 465 100.0 (55.4 to 100.0)††

 � Critical COVID-19 infection** 0 44 6 133 100.0 (15.1 to 100.0)††

 � Fatal COVID-19 infection** 1 23 6 58 75.2 (−58.8 to 97.5)

*Effectiveness of infection in preventing reinfection was estimated using the test-negative, case–control study design.
†CIs were not adjusted for multiplicity and thus should not be used to infer definitive differences between different groups.
‡Cases and controls were matched exactly one-to-one by sex, 10-year age group, nationality, the number of coexisting conditions, the 
number of vaccine doses at the time of the study test, calendar week of testing, method of testing (PCR or RA) and reason for testing. 
Matched case–control pairs identified through surveys were subsequently matched by calendar week of testing to their counterparts 
identified through clinical suspicion.
§Asymptomatic infection was defined as a positive SARS-CoV-2 PCR or RA test result obtained when the reason for testing was a survey, 
with no symptoms compatible with a respiratory tract infection reported.
¶Symptomatic infection was defined as a positive SARS-CoV-2 PCR or RA test prompted by the presence of symptoms consistent with a 
respiratory tract infection.
**Cases and controls were matched exactly one-to-five by sex, 10-year age group, nationality, the number of coexisting conditions, the 
number of vaccine doses at the time of the study test, calendar week of testing, method of testing (PCR or RA) and reason for testing. 
Severity, criticality and fatality were defined according to the WHO guidelines.
††The 95% CI was estimated with the use of McNemar’s test because of zero events among exposed cases.
RA, rapid antigen.
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these categories limited the statistical precision of these 
estimates. Similar patterns of effectiveness were observed 
among vaccinated and unvaccinated individuals (online 
supplemental figure S4).

DISCUSSION
The study’s results suggest distinct patterns for SARS-
CoV-2 natural immunity. First, a gradient in effectiveness 
against reinfection is observed based on the severity and 
presence of symptoms, with higher protection corre-
sponding to more symptomatic and severe reinfections. 
The lowest protection was against asymptomatic rein-
fection, while the highest protection was against severe 
forms of COVID-19 at reinfection. Second, this gradient 
in immune protection becomes more pronounced over 
time after the previous infection. While protection against 
asymptomatic or symptomatic reinfections can wane over 
time, particularly for omicron immunity against omicron 
reinfection,3 protection against severe forms of reinfec-
tion appears to remain robust. Third, the results indicate 
modest differences in protection levels against each of 
severe, critical and fatal COVID-19 reinfections.

Remarkably, the observed patterns for natural immu-
nity mirror those documented for vaccine-induced 
immunity,23 suggesting that these are generic features 

of SARS-CoV-2 immunity, regardless of whether it 
is acquired through infection or vaccination. These 
patterns may reflect the distinct roles played by different 
components of the immune system. Protection against 
asymptomatic or symptomatic infections appears to be 
primarily driven by humoral immunity, specifically the 
presence of neutralising antibodies that prevent the 
virus from entering cells.55–58 However, these antibodies 
decline over time,55 59 60 potentially leading to waning 
protection against asymptomatic and symptomatic rein-
fections. Meanwhile, cellular immunity,61 particularly the 
generation of memory T cells, provides more enduring 
protection against severe outcomes.62 63 Although these 
cells may not prevent the initial establishment of infec-
tion, they can rapidly respond to it, substantially miti-
gating the likelihood of severe infection in individuals 
with prior immunity, whether acquired through infection 
or vaccination.62 63

This study has limitations. While the study relied on 
documented SARS-CoV-2 infections, it is certain that 
some infections were never documented. However, this 
is not likely to materially impact the estimates, as our 
previous analyses and their recent updates have demon-
strated that even substantial misclassification of prior 
infection status has minimal influence on the estimated 

Figure 1  Effectiveness of (A) a preomicron infection in preventing asymptomatic, symptomatic, severe COVID-19, critical 
COVID-19 and fatal COVID-19 reinfections with a preomicron virus and (B) an omicron infection in preventing asymptomatic, 
symptomatic, severe COVID-19, critical COVID-19 and fatal COVID-19 reinfections with an omicron virus. Data are presented 
as effectiveness point estimates. Error bars indicate the corresponding 95% CIs. *The negative lower bound for the CI was 
truncated because the CI was too wide. COVID-19, coronavirus disease 2019.
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effectiveness of infection against reinfection.3 37 This 
robustness is an advantage of the test-negative study 
design.3 37 Furthermore, a recently completed analysis 
assessed the effectiveness of infection against reinfection 
using two distinct study designs—a test-negative design 
and a cohort study design—applied to the same datasets.3 
The findings from the cohort study design corroborated 

and validated those obtained through the test-negative 
design.3

In the preomicron era, the effectiveness against asymp-
tomatic and symptomatic reinfections appeared slightly 
higher 6 to less than 9 months after the previous infec-
tion compared with 3 to less than 6 months. This seem-
ingly counterintuitive result can be explained by the rare 

Table 3  Effectiveness at 3-month intervals since the time of previous infection for a preomicron infection in preventing 
asymptomatic, symptomatic, severe COVID-19, critical COVID-19 and fatal COVID-19 reinfections with a preomicron virus

Effectiveness of

Cases Controls

Effectiveness* in % 
(95% CI)†

Previous 
infection (n)

No previous 
infection (n)

Previous 
infection (n)

No previous 
infection (n)

3 months to <6 months since previous infection

 � Asymptomatic infection‡§ 232 57 351 940 56 643 76.0 (72.3 to 79.3)

 � Symptomatic infection‡¶ 106 57 477 693 56 890 84.9 (81.5 to 87.8)

 � Severe COVID-19 infection** 3 7857 322 32 518 95.5 (89.1 to 98.9)

 � Critical COVID-19 infection** 0 1049 39 4120 100.0 (90.1 to 100.0)††

 � Fatal COVID-19 infection** 1 395 10 1385 71.4 (−57.6 to 96.5)

6 months to <9 months since previous infection

 � Asymptomatic infection‡§ 143 57 395 1170 56 368 87.9 (85.6 to 89.9)

 � Symptomatic infection‡¶ 108 57 430 1003 56 535 89.7 (87.4 to 91.6)

 � Severe COVID-19 infection** 3 7864 459 32 424 97.5 (92.3 to 99.2)

 � Critical COVID-19 infection** 0 1049 50 4111 100.0 (92.3 to 100.0)††

 � Fatal COVID-19 infection** 0 396 15 1383 100.0 (72.1 to 100.0)††

9 months to <1 year since previous infection

 � Asymptomatic infection‡§ 209 57 382 889 56 702 78.1 (74.4 to 81.2)

 � Symptomatic infection‡¶ 135 57 456 816 56 775 83.8 (80.5 to 86.5)

 � Severe COVID-19 infection** 3 7873 520 32 382 97.8 (93.2 to 99.3)

 � Critical COVID-19 infection** 0 1048 61 4098 100.0 (93.8 to 100.0)††

 � Fatal COVID-19 infection** 1 396 28 1369 88.9 (17.0 to 98.5)

≥1 year since previous infection

 � Asymptomatic infection‡§ 71 57 360 269 57 162 74.7 (66.9 to 80.7)

 � Symptomatic infection‡¶ 30 57 401 310 57 121 90.3 (85.9 to 93.3)

 � Severe COVID-19 infection** 0 7841 49 32 692 100.0 (92.2 to 100.0)††

 � Critical COVID-19 infection** 0 8 1047 4138 100.0 (99.6 to 100.0)††

 � Fatal COVID-19 infection** 0 395 0 1389 Omitted‡‡

*Effectiveness of infection in preventing reinfection was estimated using the test-negative, case–control study design.
†CIs were not adjusted for multiplicity and thus should not be used to infer definitive differences between different groups.
‡Cases (SARS-CoV-2-positive tests) and controls (SARS-CoV-2-negative tests) were matched exactly one-to-one by sex, 10-year age group, 
nationality, number of coexisting conditions, the number of vaccine doses at the time of the study test, calendar week of testing, method of 
testing (PCR or RA) and reason for testing. Matched case–control pairs identified through surveys were subsequently matched by calendar 
week of testing to their counterparts identified through clinical suspicion.
§Asymptomatic infection was defined as a positive SARS-CoV-2 PCR or RA test result obtained when the reason for testing was a survey, 
with no symptoms compatible with a respiratory tract infection reported.
¶Symptomatic infection was defined as a positive SARS-CoV-2 PCR or RA test prompted by the presence of symptoms consistent with a 
respiratory tract infection.
**Cases (SARS-CoV-2-positive tests) and controls (SARS-CoV-2-negative tests) were matched exactly one-to-five by sex, 10-year age 
group, nationality, the number of coexisting conditions, the number of vaccine doses at the time of the study test, calendar week of testing, 
method of testing (PCR or RA) and reason for testing. Severity, criticality and fatality were defined according to the WHO guidelines.
††The 95% CI was estimated with the use of McNemar’s test because of zero events among exposed cases.
‡‡Effectiveness could not be estimated as there were no previous infections among both cases and controls.
RA, rapid antigen.
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occurrence of prolonged PCR positivity in a few cases,64 
where individuals still tested positive for over 90 days 
after their infection. This misclassification of prolonged 
positivity as reinfection underestimates effectiveness 3 to 
less than 6 months after the previous infection.

Given Qatar’s relatively young population,26 our results 
may not be generalisable to regions with a high propor-
tion of elderly individuals. While a robust matching 

method was employed, limitations in data availability 
prevented matching based on factors such as geography 
or occupation. However, as a city-state, Qatar exhibited 
relatively consistent infection rates across neighbour-
hoods. Additionally, considering nationality, age and 
sex as strong socioeconomic indicators in Qatar,26 47–50 
matching based on these factors may have partially 
controlled for unmeasured variables like occupation. 

Table 4  Effectiveness at 3-month intervals since the time of previous infection for an omicron infection in preventing 
asymptomatic, symptomatic, severe COVID-19, critical COVID-19 and fatal COVID-19 reinfections with an omicron virus

Effectiveness of

Cases Controls

Effectiveness* in % 
(95% CI)†

Previous 
infection (n)

No previous 
infection (n)

Previous 
infection (n)

No previous 
infection (n)

3 months to <6 months since previous infection

 � Asymptomatic infection‡§ 34 23 849 145 23 738 81.0 (71.1 to 87.5)

 � Symptomatic infection‡¶ 28 23 855 128 23 755 84.7 (75.0 to 90.7)

 � Severe COVID-19 infection** 0 152 3 467 100.0 (−58.7 to 100.0)††

 � Critical COVID-19 infection** 0 42 1 133 100.0 (−97.4 to 100.0)††

 � Fatal COVID-19 infection** 0 22 3 56 100.0 (−97.4 to 100.0)††

6 months to <9 months since previous infection

 � Asymptomatic infection‡§ 161 23 856 263 23 754 48.8 (35.3 to 59.4)

 � Symptomatic infection‡¶ 90 23 927 193 23 824 62.8 (50.1 to 72.3)

 � Severe COVID-19 infection** 0 153 3 468 100.0 (−58.7 to 100.0)††

 � Critical COVID-19 infection** 0 41 0 133 Omitted‡‡

 � Fatal COVID-19 infection** 0 20 0 56 Omitted‡‡

9 months to <1 year since previous infection

 � Asymptomatic infection‡§ 171 23 857 170 23 858 −0.8 (−23.0 to 21.7)

 � Symptomatic infection‡¶ 175 23 853 247 23 781 38.9 (22.8 to 51.7)

 � Severe COVID-19 infection** 0 153 2 468 100.0 (−81.2 to 100.0)††

 � Critical COVID-19 infection** 0 42 1 133 100.0 (−97.4 to 100.0)††

 � Fatal COVID-19 infection** 0 20 0 56 Omitted‡‡

≥1 year since previous infection

 � Asymptomatic infection‡§ 23 23 796 22 23 797 −12.5 (−68.3 to 58.6)

 � Symptomatic infection‡¶ 9 23 810 11 23 808 28.6 (−55.6 to 77.3)

 � Severe COVID-19 infection** 0 153 2 469 100.0 (−81.2 to 100.0)††

 � Critical COVID-19 infection** 0 43 3 133 100.0 (−58.7 to 100.0)††

 � Fatal COVID-19 infection** 1 21 3 58 18.4 (−92.4 to 95.0)

*Effectiveness of infection in preventing reinfection was estimated using the test-negative, case–control study design.
†CIs were not adjusted for multiplicity and thus should not be used to infer definitive differences between different groups.
‡Cases (SARS-CoV-2-positive tests) and controls (SARS-CoV-2-negative tests) were matched exactly one-to-one by sex, 10-year age 
group, nationality, the number of coexisting conditions, the number of vaccine doses at the time of the study test, calendar week of testing, 
method of testing (PCR or RA) and reason for testing. Matched case-–control pairs identified through surveys were subsequently matched 
by calendar week of testing to their counterparts identified through clinical suspicion.
§Asymptomatic infection was defined as a positive SARS-CoV-2 PCR or RA test result obtained when the reason for testing was a survey, 
with no symptoms compatible with a respiratory tract infection reported.
¶Symptomatic infection was defined as a positive SARS-CoV-2 PCR or RA test prompted by the presence of symptoms consistent with a 
respiratory tract infection.
**Cases (SARS-CoV-2-positive tests) and controls (SARS-CoV-2-negative tests) were matched exactly one-to-five by sex, 10-year age 
group, nationality, the number of coexisting conditions, the number of vaccine doses at the time of the study test, calendar week of testing, 
method of testing (PCR or RA) and reason for testing. Severity, criticality and fatality were defined according to the WHO guidelines.
††The 95% CI was estimated with the use of McNemar’s test because of zero events among exposed cases.
‡‡Effectiveness could not be estimated as there were no previous infections among both cases and controls.
RA, rapid antigen.
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This matching strategy, validated in previous studies 
with diverse epidemiological designs and using control 
groups to test for null effects,29 32 44–46 has been shown 
to effectively mitigate differences in infection exposure 
between study groups.29 32 44–46

However, real-world data can harbour biases from 
unforeseen or unexpected sources. These biases may 
stem from variations in test-seeking behaviour, changes 
in testing patterns due to evolving policies, differences in 
test accessibility and disparities in the likelihood of being 
tested between individuals who have previously recov-
ered from an infection and those who have never been 
infected or lack documentation of a past infection.

Despite the large study population and the use of 
national-level data, the relatively low number of critical 
and fatal COVID-19 infections limited the statistical 
precision of certain estimates, particularly in the omicron 
era. The study focused on characterising the protection 
conferred by natural immunity against a spectrum of 
SARS-CoV-2 infection symptoms and severities, inde-
pendent of other aspects of immune history. It did not 
investigate the interactions between vaccine-induced and 
natural immunity, a complex phenomenon influenced 
by factors such as vaccine type, number of doses, infec-
tion variant, the order and timing of sequential immuno-
logical exposures and the variant of infection challenge, 
among other variables.30 35 65–67

This study has strengths. First, it was conducted at a 
national level, involving a diverse population with nearly 
89% of the residents being expatriates from over 150 
countries.26 Second, the study used comprehensive and 
validated databases established through numerous SARS-
CoV-2 infection studies. Third, the control group was 
drawn from the entire national population, with a robust 
matching method implemented to ensure accurate 
pairing of cases and controls. Finally, the study design 
leveraged the advantages of the test-negative design 
and controlled for vaccination status, enabling a clear 
distinction between the effects of previous infection and 
vaccination.

In conclusion, this study observed distinct patterns in 
SARS-CoV-2 natural immunity. A gradient of protection 
against reinfection was observed, with the highest effec-
tiveness against severe forms of COVID-19. This gradient 
becomes more pronounced over time, with protection 
against asymptomatic and symptomatic reinfections 
waning, while protection against severe outcomes remains 
robust. These findings mirror observations for vaccine-
induced immunity, suggesting these patterns may be funda-
mental to SARS-CoV-2 immunity regardless of the source 
of immune response. The differential roles of humoral 
and cellular immunity may underpin these patterns, 
with neutralising antibodies primarily driving protection 
against asymptomatic and symptomatic infections, and 
memory T cells providing enduring defence against severe 
outcomes. Continuous monitoring and updating of public 
health strategies are warranted to adapt to the evolving 
landscape of protection against SARS-CoV-2 reinfections.
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