Introduction
Suboptimal diets are estimated to be responsible for 11 million deaths globally, more than smoking tobacco.1 Diet is a major contributory factor in the incidence of diabetes, cardiovascular disease and other non-communicable diseases, which cause a major burden on healthcare resources. Cardiovascular disease alone is estimated to be €210 bn/year in Europe, of which the majority (€111 bn) is healthcare costs, and the remainder is productivity losses (€45 bn) and informal care (€45 bn).2
In order to evaluate the effectiveness of dietary policies, it is necessary to have a reliable evidence base to describe the health benefits of dietary changes, particularly if the changes in nutritional intake have competing health outcomes, for example, if the policy reduces sugar intake, but increased salt. Population-level dietary public health policies are often evaluated in modelling studies to estimate the potential benefits, where the health effects cannot be easily observed. Modelling studies often make simplifying assumptions such as assuming all health benefits are captured by a single risk factor between diet and health, such as salt,3 fruit and vegetables,4 or calories.5 6 While economic evaluations have modelled a variety of associations between nutrition to health,7 few have modelled multiple nutritional components and captured food substitutions. Simulating substitutions to other food items is important to capture the overall benefit of a policy and any mitigating unintended consequences.
There is a large and rich literature describing the impacts of diet on cardiometabolic health, and cardiovascular disease. Systematic reviews have synthesised evidence for differing levels of individual nutrient groups, such as sodium,8 or carbohydrates, on the risk of cardiovascular disease.9 Changes to nutritional intake in real-world contexts often take the form of diets, which consist of multiple nutrient adjustments that impact the same cardiovascular outcomes. Researchers have addressed this by looking at dietary patterns10 11 or food types such as whole grains12 or red meat.13 Navigating this evidence can act as a barrier for researchers not trained in nutrition to interpret this evidence when dietary intervention outcomes are measured in nutrient intake (sugar, salt or fibre). Therefore, it is beneficial to bring together evidence for the health effects of sodium, fats and carbohydrates. Within fats monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), saturated fatty acids should be considered independently, as should sugars and fibre within carbohydrates, to identify positive and negative health effects.
Randomised controlled trials provide a robust method to reduce biases, but the duration of follow-up, or sample size, is unlikely to identify a relationship between diet and health events, such as diabetes, cardiovascular disease and cancer. Changes in cardiometabolic measurements for blood pressure, cholesterol and blood glucose can be detected within randomised controlled trials, and can be used as markers for risks of non-communicable diseases to indirectly predict the long-term health impacts. We limited our outcomes to those measure that are typically used in cardiovascular and diabetes risk scores,14 15 including blood pressure, cholesterol and HbA1c. Weight was excluded because energy intake was not an exposure of interest.
Despite the large number of systematic reviews collating evidence for individual nutrients, no synthesising evidence for multiple nutrient exposures was found. The aims of this study were to describe the relationships between diet composition described by major nutrient groups and cardiometabolic risk factors. We undertook an umbrella review of reviews to identify estimates from meta-analyses of randomised controlled trials and developed a causal pathways diagram to synthesise the findings.