

Cisternal and intraventricular irrigation in subarachnoid and intraventricular haemorrhage

Allice Nyborg Rosenkrans Lind ⁽¹⁾, ^{1,2} Mathias Green Krabbenhøft, ¹ Jan Brink Valentin, ³ Mette Haldrup, ^{1,2} Stig Dyrskog, ⁴ Mads Rasmussen, ⁵ Claus Ziegler Simonsen, ^{2,6} Anders Rosendal Korshoej ^{1,2}

To cite: Lind ANR, Krabbenhøft MG, Valentin JB, *et al.* Cisternal and intraventricular irrigation in subarachnoid and intraventricular haemorrhage. *Stroke & Vascular Neurology* 2025;**10**: e003062. doi:10.1136/ svn-2023-003062

Additional supplemental material is published online only. To view, please visit the journal online (https://doi.org/10.1136/ svn-2023-003062).

Received 22 December 2023 Accepted 7 May 2024 Published Online First 23 May 2024

Check for updates

© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

¹Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark ²Department of Clinical Medicine, Aarhus University, Aarhus, Denmark ³Department of Clinical Medicine, Aalborg University, Aalborg, Denmark ⁴Department of Intensive Care, Aarhus University Hospital, Aarhus, Denmark ⁵Department of Anesthesiology, Gødstrup Regional Hospital, Herning, Denmark ⁶Department of Neurology, Aarhus University Hospital, Aarhus, Denmark

Correspondence to

Dr Anders Rosendal Korshoej; andekors@rm.dk

ABSTRACT

Background Subarachnoid haemorrhage (SAH) and intraventricular haemorrhage (IVH) are associated with poor patient outcomes. Intraventricular fibrinolysis is effective in clearing IVH and improving patient survival and neurological outcome. By similar rationale, cisternal irrigation has been proposed as a potential method to accelerate haematoma clearance in SAH. We aimed to provide a comprehensive review and meta-analysis evaluating the effect of intraventricular and cisternal irrigation on clinical outcomes in patients with SAH and IVH.

Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed preparing this systematic review and study selection was performed by multiple investigators. We extracted ORs from the individual studies and aggregated these using a random effects model. The quality of evidence was evaluated using Grading of Recommendations, Assessment, Development and Evaluations assessment and ROBINS-I or RoB-2.

Results 24 articles were included. In SAH, we found that cisternal irrigation with fibrinolytic agents was associated with reduced mortality (OR: 0.68, 95% Cl 0.46 to 1.00), higher probability of favourable functional outcome (OR: 1.80, 95% Cl 0.130 to 2.51), and reduced risks of DCl (OR: 0.28, 95% Cl 0.18 to 0.42) and cerebral vasospasm (OR: 0.28, 95% Cl 0.18 to 0.42), compared with conventional therapy. Cisternal irrigation with vasodilatory agents was associated with lower mortality (OR: 0.32, 95% Cl 0.13 to 0.79) and reduced risk of cerebral vasospasm (OR: 0.37, 95% Cl 0.17 to 0.79). The evidence for irrigation therapy of IVH was sparse and insufficient to show any significant effect.

Conclusion In this study, we found that cisternal irrigation could improve the prognosis in patients with SAH compared with conventional therapy. There is no evidence to support cisternal irrigation treatment of IVH.

INTRODUCTION

Aneurysmal subarachnoid haemorrhage (SAH) and intraventricular haemorrhage (IVH) are catastrophic cerebrovascular events associated with high mortality and severe morbidity.^{1–3} Direct exposure of cerebral vessels to the neuroinflammatory effects of haemoglobin degradation products is

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Subarachnoid haemorrhage (SAH) and intraventricular haemorrhage are associated with poor patient outcomes, however, cisternal and intraventricular irrigation have been proposed to accelerate haematoma clearance and improve patient outcomes.

WHAT THIS STUDY ADDS

⇒ We found that in patients with SAH, cisternal irrigation with fibrinolytic agents was associated with reduced mortality, improved functional outcome, and lower risk of delayed cerebral ischaemia and vasospasms, compared with conventional therapy. Cisternal irrigation with vasodilatory agents was associated with lower mortality and decreased risk of cerebral vasospasms.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

⇒ Fibrinolytic and vasodilatory cisternal irrigation may be warranted in the treatment of SAH. Larger prospective studies are needed to verify these results.

considered to play a major role in the pathogenesis of cerebral vasospasm and delayed cerebral ischaemia (DCI), being a complicating cause of morbidity in approximately one in four SAH survivors.⁴ Likewise, in IVH, haematoma formation and blood degradation products are associated with secondary neurological injuries due to obstructive hydrocephalus, mass effect and elevated intracranial pressure.² Conventional treatment typically includes supportive care and cerebrospinal fluid drainage to decompress the intracranial space and facilitate passive haematoma evacuation.¹⁵

A recent meta-analysis documented significant benefits from accelerated haematoma clearance using intraventricular fibrinolysis therapy, showing significant improvements in survival rate and functional outcome,⁶ compared with passive drainage in patients with IVH. Based on a similar rationale, intraventricular and cisternal irrigation using

physiological saline combined with fibrinolytic or vasoactive agents, has been proposed as a potential method to further accelerate haematoma and toxin clearance and thereby improve outcomes in both SAH and IVH.

In this study, we provide a systematic review and metaanalysis of the current literature on intraventricular or cisternal irrigation for SAH and IVH compared with conventional therapy. We evaluate the efficacy of both fibrinolytic and vasodilatory cisternal irrigation treatments with respect to clinical endpoints; including mortality, functional outcome, DCI and cerebral vasospasm.

METHODS

Search strategy

The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria⁷ (online supplemental tables S1 and S2). We searched the PubMed, Embase and Cochrane databases for full-text articles published in English until 11 October 2023, using the search strategy: ("lavage" or "irrigation" or "IRRAflow") AND ("hemorrhage" or "bleeding" or "hemorrhagic stroke") AND ("intraventricular" or "IVH" or "SAH" or "subarachnoid" or "intracerebral" or "ICH") NOT ("subdural" or "CSDH" or "SPECT" or "chronic subdural" or "abscess" or "pediatric" or "scalp" or "liver" or "infants" or "children" or "child" or "neonatal" or "natal" or "preterm") AND intracranial hemorrhages [MeSH Terms], without filters or limits. The search was repeated without MeSH Terms, limited to studies published within 1 year to include the newest research. If the full text was inaccessible, the article was requested from the corresponding author or publisher.

Eligibility criteria and study selection

We included studies that evaluated the effect of cisternal or intraventricular irrigation therapy in adult patients (>18 years) with either SAH or IVH (primary or secondary). Studies were excluded if they did not report clinical outcomes (mortality, functional outcome, DCI or cerebral vasospasm) or technical details of the irrigation intervention, such as irrigation rate, duration, saline solution and catheter placement. We also excluded in vitro studies, animal studies, reviews, meta-analyses and studies that were unavailable as full text. If the same cohort was included in multiple reports, the most recent eligible report was included. Articles were managed using Covidence.⁸ Duplicates were removed. All articles were initially assessed for eligibility by one investigator (MGK) based on abstract and title. The selected articles were then full text screened for eligibility by two investigators (MGK, MH). Disagreements were resolved by the principal investigator (ARK).

Outcomes and data extraction

We assessed the clinical outcomes mortality, functional outcome, DCI and cerebral vasospasm. All outcomes were dichotomised. A favourable functional outcome was defined as a modified Rankin Scale score of 0–2 (ie, independent in daily living), or a Glasgow Outcome Scale score of either 4–5 or 'good

a Glasgow Outcome Scale score of either 4–5 or 'good recovery' or 'moderate disability'. DCI was defined as the appearance of new ischaemic lesions detected on CT or MRI at least 48 hours after initial treatment. As cerebral vasospasm is an angiographic phenomenon that may or may not manifest clinically but is predictive of DCI, cerebral vasospasm was defined as either angiographically verified narrowing of cerebral arteries or an increase in mean flow velocity ≥ 160 cm/s on transcranial Doppler. If neither of these measures were reported, symptomatic vasospasm (neurological deterioration without other explanation) was considered a valid measure for cerebral vasospasm. Data were extracted by one investigator (ANRL).

Intervention subgroups

To increase homogeneity, the included studies were grouped by diagnosis (SAH or IVH). In studies investigating SAH, the study populations were further grouped into four categories based on the tested intervention: (1) conventional treatment, covering medical management, standard intensive care and in some cases external ventricular drain (see online supplemental tables S3 and S4 for details); (2) simple cisternal irrigation, with no active substances; (3) fibrinolytic cisternal irrigation using either tissue plasminogen activator or urokinase; (4) vasodilatory cisternal irrigation using calcium channel blockers, corticosteroids, phosphodiesterase inhibitors or magnesium sulfate. Furthermore, we included a metaanalysis of all studies comparing either fibrinolytic irrigation, vasodilatory irrigation or simple irrigation to conventional therapy, to assess the overall effect of cisternal irrigation.

Most studies investigated a combination of vasodilatory and fibrinolytic irrigation, thus complicating the grouping of the studies. To accommodate this, the analysis of fibrinolytic irrigation includes both studies using only fibrinolytic irrigation, and studies using fibrinolytic irrigation as the primary intervention and vasodilatory irrigation as a rescue therapy in patients showing signs of cerebral vasospasm. The analysis of vasodilatory irrigation includes both studies using only vasodilatory irrigation and studies using vasodilatory irrigation and fibrinolytic irrigation simultaneously as preventive therapy.

Quality assessment

The evidence quality was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach.⁹ Detailed GRADE guidance was used to assess the overall risk of bias, inconsistency, imprecision, indirectness and publication bias of the pooled estimates and reported in a summary of findings table. Each individual study was assessed for risk of bias with either ROBINS-I for observational studies¹⁰ or RoB-2 for randomised studies.¹¹ Publication bias was investigated by means of a visual inspection of the funnel plots for each outcome (online supplemental figures S1–S3).

Statistical analysis

The meta-analysis was stratified by patient diagnosis (IVH or SAH) and the type of irrigation investigated. Treatment effects were represented by ORs and pooled using a Mantel-Haenszel random-effects model. Results were reported as forest plots with 95% CIs. In addition, we pooled prevalence proportions of each outcome across all studies, including studies with no or non-comparable control groups, to further evaluate the effect between intervention groups. The statistical significance of differences in prevalence between groups was determined based on the 95% CIs. All analyses were conducted using RevMan V.5.4 software.¹²

RESULTS

Study selection and quality assessment

We identified 135 studies, and 4 duplicates were removed. The remaining 131 studies were screened by title and abstract and 60 studies were selected for full-text review. 22 articles were excluded due to the unavailability of the fulltext study. In total, 24 studies were included in the review and meta-analysis (figure 1), including 7 randomised controlled trials, 14 cohort studies, 2 case reports and 1 case–control study. The included articles evaluated a variety of irrigation interventions for both SAH and IVH with differences in irrigation solutions, catheter placements, irrigation durations and most importantly the

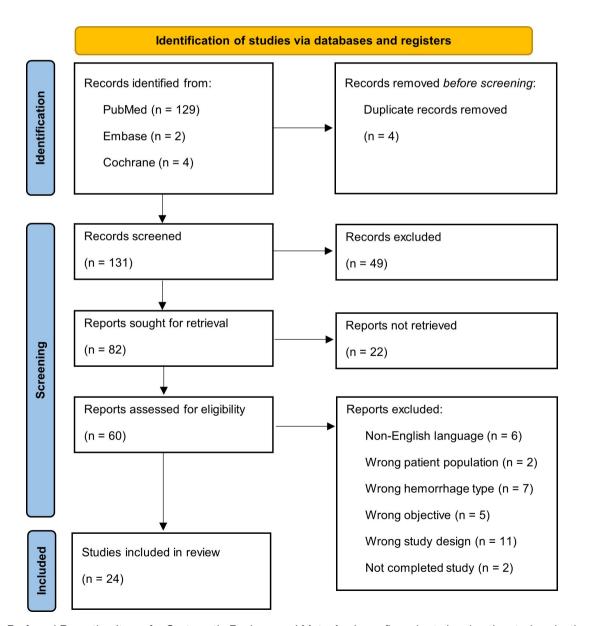


Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow chart showing the study selection process.

presence of active substances in the irrigation fluid (see online supplemental table S4 for details). The GRADE summary findings for selected outcomes and interventions are shown in table 1 and online supplemental table S5 and the risk of bias of the included studies can be found in online supplemental tables S6 and S7. Based on visual inspection of funnel plots, the risk of publication bias was low for all comparisons (online supplemental figures S5–S7).

Irrigation therapy in SAH

A total of 22 studies evaluated irrigation treatments for SAH, including intraoperative and postoperative methods. Intraoperative irrigation (5 of 22 studies) was conducted to blood collections in the subarachnoid space through the open cisternal access after clipping the aneurysm. Irrigation duration was approximately 30 min. Methods for postoperative irrigation (16 of 22 studies) included continuous saline infusion into the cerebrospinal fluid compartment through a ventricular or cisternal catheter and simultaneous drainage through a second ventricular or cisternal catheter. The duration of irrigation and irrigation rate were reported with substantial inconsistency across studies. The duration ranged between 2 and 18 days and the irrigation rate ranged between 20 and 180 mL/ hour for postoperative irrigation. A detailed description of intervention methods can be found in online supplemental table S4.

Overall cisternal irrigation in SAH

The mean mortality rate in patients treated with conventional therapy was 0.18 (95% CI 0.14 to 0.23)^{13–22} (online supplemental figure S4). Our meta-analysis showed a significant reduction in mortality in patients treated with any kind of irrigation therapy versus conventional therapy (OR: 0.65, 95% CI 0.45 to 0.94, p=0.02, GRADE: high) (figure 2A, table 1, online supplemental table S5) when comparing 10 studies.^{13–22}

In seven studies, the mean proportion of patients with favourable outcome after SAH was 0.46 (95% CI 0.32 to 0.61)^{13 16 18–22} after conventional therapy (online supplemental figure S5). Our meta-analysis showed significantly increased odds for a favourable outcome in patients treated with irrigation of any kind versus conventional therapy (OR: 1.83, 95% CI 1.35 to 2.48, p<0.001, GRADE: high) (figure 2B, table 1, online supplemental table S5).¹³ 16 18-22 The mean rate of DCI following SAH in patients treated with conventional therapy was 0.31 (95%) CI 0.22 to $(0.39)^{14}$ ¹⁵ ¹⁷ ^{19–22} (online supplemental figure S6). Our meta-analysis showed a significantly reduced rate of DCI in patients treated with any cisternal irrigation versus conventional therapy (OR: 0.33, 95% CI 0.19 to 0.58, p<0.001, GRADE: low) (figure 2C, table 1, online supplemental table S5).^{14 15 17 19-2}

The mean rate of cerebral vasospasm following SAH in patients treated with conventional therapy was $0.47 (95\% \text{ CI } 0.29 \text{ to } 0.66)^{15} \text{ }^{17-20} \text{ }^{22}$ (online supplemental figure S7). Our meta-analysis showed a significantly reduced rate of

cerebral vasospasm in patients treated with any cisternal irrigation versus conventional therapy (OR: 0.32, 95% CI 0.20 to 0.51, p<0.001, GRADE: low) (figure 2D, table 1, online supplemental table S5).^{15 17-20 22}

Only two studies included simple irrigation treatment.^{17 23} Mean prevalences for all outcomes can be found in online supplemental figures S4–S7.

Fibrinolytic cisternal irrigation in SAH

The mean mortality rate was significantly lower in patients treated with fibrinolytic irrigation (0.09, 95% CI 0.04 to 0.13)^{14–16} ^{18–22} ²⁴ ²⁵ compared with conventional treatment (0.18, 95% CI 0.14 to 0.23)^{13–22} (online supplemental figure S4). Our meta-analysis showed significantly reduced mortality rate in patients treated with fibrinolytic irrigation versus conventional therapy (OR: 0.68, 95% CI 0.46 to 1.00, p=0.05, GRADE: high) (figure 3A, table 1, online supplemental table S5).^{14–16} ^{18–22}

The mean rate of favourable outcome was significantly higher in patients treated with fibrinolytic irrigation (0.75, 95% CI 0.69 to 0.81)^{16 18-22 24-29} compared with conventional treatment (0.46, 95% CI 0.32 to 0.61)^{13 16 18-22} (online supplemental figure S5). Our metaanalysis showed significantly higher odds for favourable outcome for fibrinolytic irrigation versus conventional treatment (OR: 1.80, 95% CI 1.30 to 2.51, p<0.001, GRADE: high) (figure 3B, table 1, online supplemental table S5).

The mean rate of DCI was significantly lower in patients with SAH treated with fibrinolytic irrigation $(0.13, 95\% \text{ CI } 0.07 \text{ to } 0.19)^{19-22} \, {}^{24} \, {}^{27} \, {}^{30} \, {}^{31}$ than in patients treated with conventional treatment (0.31, 95% CI 0.22 to 0.39)^{14} \, {}^{15} \, {}^{17} \, {}^{19-22} (online supplemental figure S6). Our meta-analysis showed significantly reduced risk of DCI in patients with SAH treated with fibrinolytic irrigation versus conventional therapy (OR: 0.28, 95% CI 0.18 to 0.42, p<0.001, GRADE: high) (figure 3C, table 1, online supplemental table S5).

The mean rate of cerebral vasospasm was significantly lower in patients treated with fibrinolytic irrigation (0.21, 95% CI 0.14 to 0.28)^{15 18-20 22 24-27 29 30} than in patients treated with conventional treatment (0.47, 95% CI 0.29 to 0.66)^{15 17-20 22} (online supplemental figure S7). Our meta-analysis showed significantly lower risk of cerebral vasospasm in patients treated with fibrinolytic irrigation versus conventional therapy (OR: 0.28, 95% CI 0.18 to 0.42, p<0.001, GRADE: high) (figure 3D, table 1, online supplemental table S5).^{15 18-20 22}

Vasodilatory cisternal irrigation in SAH

The mean mortality in patients treated with vasodilatory irrigation was 0.05 (95% CI 0.01 to 0.08).^{13 18 23 24 32 33} This was significantly lower than for conventional treatment, however, there was no statistically significant difference between patients treated with fibrinolytic irrigation and vasodilatory irrigation (online supplemental figure S4). Comparing four studies, we observed a significantly lower mortality rate in patients treated with vasodilatory

vith conventional truent per 1000 523 523 251 251 403 Anticipated abs vith conventional truent per 1000 536 536 536 536 536 536 536 536 536 536	Cisternal irrigation overall compared with conventional treatment for subarachnoid haemorrhage ¹³⁻²²	Compared with conventional t	reatment for subarachn	Dold haemorrhage	la hataaiaitaA	atopto official
outcome (113) (1,6)(0,5) $High$ (1,6)(0,0) (1,3) (1,8)(0,0) 523 (1,8)(0,6) 533 (1,8)(0,6) 403 (1,8)(0,6) 403 (1,8)(0,6) 403 (1,8)(0,6) 403 (1,8)(0,6) 403 (1,8)(0,6) 403 (1,3)(0,6) 403 (1,3)(0,6) 403 (1,3)(0,2) 403 (1	Outcomes	rarucipants (studies) (n)	Certainty of the evidence (GRADE)	OR (95% CI)	Anticipated al Risk with conventional treatment per 1000	solute enects Risk difference with combined irrigation per 1000 (95% Cl) ref. Conventional
189 251 251 403 Anticipated abs with conventional trment per 1000 536 536 536 182 182 248 381 381 381 651 651	Favourable outcome	1113 (2 RCTs, 5 observational)	⊕⊕⊕⊕ High	1.83 (1.35 to 2.48)	523	144 (74 to 208)
251 403 Anticipated abs with conventional tment per 1000 536 536 536 536 536 536 182 182 182 381 381 381 548 381 548 381 567 5651 651	Mortality	1858 (2 RCTs, 8 observational)	⊕⊕⊕⊕ High	0.65 (0.45 to 0.94)	189	-57 (-94 to -9)
403 Anticipated abs with conventional tment per 1000 536 536 182 182 248 381 381 381 381 Anticipated abs ith no vasodilatory gation per 1000	DCI	1237 (1 RCT, 6 observational)	⊕⊕⊖⊖ Low	0.33 (0.19 to 0.58)	251	-152 (-191 to -88)
Anticipated abs with conventional tment per 1000 536 182 182 248 248 381 381 381 Anticipated abs ith no vasodilatory gation per 1000	Cerebral vasospasm	1075 (1 RCT, 5 observational)	⊕⊕⊖⊖ Low	0.32 (0.20 to 0.51)	403	-225 (-284 to -147)
Anticipated abs with conventional tment per 1000 536 536 182 248 248 381 381 381 Anticipated abs ith no vasodilatory gation per 1000	ibrinolytic cisternal irrige	ation vs conventional treatment	t for subarachnoid haen	norrhage^{14–16 18–22}		
536 182 248 381 381 Anticipated abs attion per 1000 651	Outcomes	Participants (studies) (n)	Certainty of the evidence (GRADE)	Relative effect OR (95% CI)	Anticipated al Risk with conventional treatment per 1000	ssolute effects Risk difference with fibrinolytic irrigation per 1000 (95% Cl) ref. Conventional
182 248 381 Anticipated abs ith no vasodilatory jation per 1000 651	Favourable outcome	1031 (2 RCTs, 4 observational)	⊕⊕⊕⊕ High	1.80 (1.30 to 2.51)	536	139 (64 to 207)
248 381 Anticipated abs ith no vasodilatory gation per 1000 651	Mortality	1715 (2 RCTs, 6 observational)	⊕⊕⊕⊕ High	0.68 (0.46 to 1.00)	182	-51 (-89 to 0)
381 Anticipated abs ith no vasodilatory jation per 1000 651	DCI	1176 (1 RCT, 5 observational)	⊕⊕⊕⊕ High	0.28 (0.18 to 0.42)	248	-163 (-192 to -126)
Anticipated abs ith no vasodilatory jation per 1000 651	Cerebral vasospasm	974 (1 RCT, 4 observational)	⊕⊕⊕⊕ High	0.28 (0.18 to 0.42)	381	-234 (-281 to -175)
Participants (studies) (n) Certainty of the effect OR (95% Cl) Anticipated abs evidence (GRADE) (95% Cl) Risk with no vasodilatory irrigation per 1000 317 $\oplus \oplus \bigcirc$ 2.03 651 (3 RCTs, 1 observational) Low (0.97 to 4.26) 651	asodilatory cisternal irriç	jation vs no vasodilatory cister	nal irrigation for subara	chnoid haemorrhage13	18 23 24	
317 ⊕⊕○ 2.03 651 (3 RCTs, 1 observational) Low (0.97 to 4.26) 51	Outcomes	Participants (studies) (n)	Certainty of the evidence (GRADF)	Relative effect OR	Anticipated al	ssolute effects
317 ⊕⊕⊖⊖ 2.03 651 (3 RCTs, 1 observational) Low (0.97 to 4.26)					Risk with no vasodilatory irrigation per 1000	Risk difference with vasodilatory irrigation per 1000 (95% Cl) ref. No vasodilatory irrigation
	Favourable outcome	317 (3 RCTs, 1 observational)	⊕⊕⊖⊖ Low	2.03 (0.97 to 4.26)	651	140 (-7 to 237)

6

Open access

Stroke and Vascular Neurology: first published as 10.1136/svn-2023-003062 on 25 February 2025. Downloaded from https://svn.bmj.com on 20 April 2025 by guest.
Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

9

Table 1 Continued					
Cisternal irrigation overall	Disternal irrigation overall compared with conventional treatment for subarachnoid haemorrhage ¹³⁻²²	atment for subarachr	noid haemorrhage ¹³⁻²²		
Mortality	317 (3 RCTs, 1 observational)	⊕⊕⊕⊖ Moderate	0.32 (0.13 to 0.79)	171	-109 (-145 to -31)
DCI	70 (1 RCT)	⊕⊖⊖⊖ Very low	0.48 (0.14 to 1.62)	257	-115 (-211 to 102)
Cerebral vasospasm	275 (3 RCTs)	⊕⊖⊖⊖ Very low	0.37 (0.17 to 0.79)	338	-179 (-258 to -51)
DCI, delayed cerebral ischaemis	DCI, delayed cerebral ischaemia; GRADE, Grading of Recommendations, Assessment, Development and Evaluations; RCT, randomised controlled trial.	ns, Assessment, Develop	oment and Evaluations; RCT, rand	omised controlled trial.	

Stroke and Vascular Neurology: first published as 10.1136/svn-2023-003062 on 25 February 2025. Downloaded from https://svn.bmj.com on 20 April 2025 by gues: Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies.

irrigation (OR: 0.32, 95% CI 0.13 to 0.79, p=0.01, GRADE: moderate) (figure 4A, table 1, online supplemental table S5). $^{13 \ 18 \ 23 \ 24}$

The mean rate of favourable outcome following SAH in vasodilatory irrigation was 0.70 (95% CI 0.60 to 0.79).^{13 18 23 24 32-34} This was significantly higher than for conventional treatment; however, there was no statistically significant difference between patients treated with fibrinolytic irrigation and vasodilatory irrigation (online supplemental figure S5). Four studies evaluated the rate of favourable outcome in patients with SAH treated with vasodilatory irrigation. We found no statistically significant evidence in our meta-analysis that vasodilatory irrigation treatment was associated with increased odds for favourable functional outcome in patients with SAH (OR: 2.03, 95% CI 0.97 to 4.26, p=0.06, GRADE: low) (figure 4B, table 1, online supplemental table S5).

The mean rate of DCI following SAH in vasodilatory irrigation was 0.25 (95% CI 0.09 to 0.41).^{24 31–33} This was significantly higher than for fibrinolytic irrigation; however, there was no statistically significant difference between vasodilatory irrigation and conventional treatment (online supplemental figure S6). One study evaluated the rate of DCI in patients treated with vasodilatory irrigation versus fibrinolysis and found no statistically significant effect on the risk of DCI in patients with SAH (OR: 0.48, 95% CI 0.14 to 1.62, p=0.24, GRADE: very low) (table 1, online supplemental table S5).²⁴

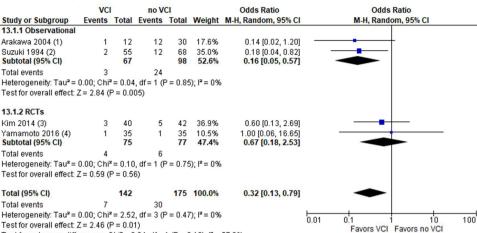
The mean rate of cerebral vasospasm was significantly lower in patients treated with vasodilatory irrigation (0.15, 95% CI 0.09 to 0.21)^{13 18 23 24} than in patients treated with conventional treatment; however, there was no statistically significant difference between fibrinolytic irrigation and vasodilatory irrigation (online supplemental figure S7). Three studies evaluated the effect of vasodilatory irrigation versus no vasodilatory irrigation on the rate of cerebral vasospasm in SAH patients. Our meta-analysis showed a significant reduction in the rate of cerebral vasospasm in patients treated with vasodilatory irrigation (OR: 0.37, 95% CI 0.17 to 0.79, p=0.01, GRADE: very low) (figure 4D, table 1, online supplemental table S5).^{18 23 24}

Irrigation therapy in IVH

For IVH, only two studies evaluated simple irrigation treatment.

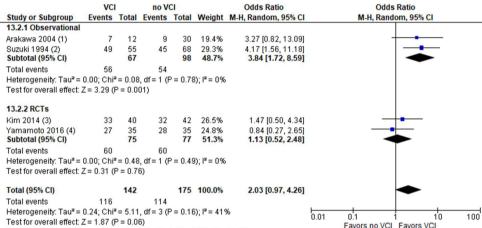
One RCT with 81 patients suffering from IVH, evaluated cisternal irrigation with saline and gentamicin during surgery versus trepanation drainage and found a significantly increased rate of favourable outcome (ADL=good/excellent) in patients treated with cisternal irrigation at 3 months after surgery (92.1% vs 82.5%, p<0.01).³⁵ Another RCT with 21 patients³⁶ evaluated the effect of intraventricular irrigation using the irrigation system IRRAflow,³⁷ using a dual-lumen catheter for automatised fluid exchange based on periodic irrigation and aspiration.³⁸ The study was terminated early, due to safety concerns,³⁶ as they found that the intervention group had a higher rate of catheter occlusion

	Study or Subgroup	Cisternal irrigation Events Total			Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% Cl
A – Mortality	11.2.1 Observational Arakawa 2004 Bissolo 2021	1 12 29 215		30 226	2.6% 24.2%	0.14 [0.02, 1.20] 0.91 [0.53, 1.56]	
	Fistouris 2022 Inagawa 1991	43 221 5 35	57	226 237 26	24.2% 29.0% 6.2%	0.91 [0.53, 1.56] 0.76 [0.49, 1.19] 0.70 [0.18, 2.73]	
	Nakagomi 2011 Roelz 2017	12 214 1 20	17	20 118 60	0.2% 15.3% 2.9%	0.35 [0.16, 0.77] 0.31 [0.01, 0.84]	
	Scheiwe 2023 Yoshikane 2021	3 20	36	223 19	2.9% 6.9% 2.0%	0.92 [0.26, 3.29] 0.42 [0.04, 5.11]	
	Subtotal (95% CI) Total events	758 95		939	89.1%	0.61 [0.41, 0.92]	•
		0.09; Chi ² = 9.77, df =		28%			
	11.2.2 RCTs Kim 2014	6 79	9 5	42	7.2%	0.61 [0.17, 2.13]	
	Yamamoto 2010 Subtotal (95% CI)	4 20) 2	20	3.7% 10.9%	2.25 [0.36, 13.97] 0.98 [0.29, 3.38]	
	Total events Heterogeneity: Tau ² =	10 0.22; Chi ² = 1.35, df =	7 1 (P = 0.25); I ² = 2	26%			
	Test for overall effect: Total (95% CI)	Z = 0.03 (P = 0.98) 857		1001	100.0%	0.65 [0.45, 0.94]	•
	Total events Heterogeneity: Tau ² =	105 0.07; Chi ² = 11.43, df	189 = 9 (P = 0.25); I ² =				
	Test for overall effect:						0.01 0.1 1 10 100 Favors irrigation Favors conventional
		Cisternal irrigation				Odds Ratio	Odds Ratio
B – Functional Outcome	Study or Subgroup 11.1.1 Observational Arakawa 2004	Events Total				M-H, Random, 95% CI	M-H, Random, 95% Cl
	Arakawa 2004 Bissolo 2021 Fistouris 2022	7 12 0 0 131 221	0	30 0 237	4.6% 42.5%	3.27 [0.82, 13.09] Not estimable 1.44 [1.00, 2.09]	
	Inagawa 1991 Nakagomi 2011	131 221 0 0 178 214	0	237 0 118	42.5%	Not estimable 2.09 [1.22, 3.55]	
	Roelz 2017 Scheiwe 2023	12 20	21	60	25.3% 8.0%	2.09 [1.22, 3.55] 2.79 [0.98, 7.88] Not estimable	
	Yoshikane 2023 Subtotal (95% CI)	12 21 488	3	19 464	3.9% 84.3%	7.11 [1.58, 32.06] 2.10 [1.38, 3.21]	
	Total events Heterogeneity: Tau ² =	340	235		011074	2110 [1100; 0121]	·
	Test for overall effect:		4 () = 0.10/,1 = 0	.0.0			
	11.1.2 RCTs Kim 2014	65 79	32	42	10.1%	1.45 [0.58, 3.62]	
	Yamamoto 2010 Subtotal (95% CI)	9 20 99		20 62	5.6% 15.7%	1.23 [0.35, 4.31] 1.37 [0.65, 2.87]	
	Total events Heterogeneity: Tau ² =		40 1 (P = 0.83); I ² = 0	1%			
	Test for overall effect:						
	Total (95% CI) Total events	587 414	275		100.0%	1.83 [1.35, 2.48]	
	Heterogeneity: Tau ² = Test for overall effect:	Z = 3.89 (P < 0.0001)					0.01 0.1 1 10 100 Favors conventional Favors irrigation
	Test for subgroup diff	erences. cnr = 0.97, u					
C – Delayed Cerebral Ischemia	Study or Subgroup 11.3.1 Observational	Cisternal irrigation Events Total	Conventional tr Events		Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% Cl
	Arakawa 2004 Bissolo 2021	0 0		0 226	24.6%	Not estimable 0.40 [0.22, 0.73]	_ _
	Fistouris 2022 Inagawa 1991	0 0	0	0 26	15.3%	Not estimable 1.12 [0.39, 3.22]	
	Nakagomi 2011 Roelz 2017	14 214 3 20		118 60	22.9% 11.6%	0.17 [0.09, 0.34] 0.25 [0.07, 0.93]	
	Scheiwe 2023 Yoshikane 2021	0 20 3 21	46 9	223 19	3.5% 9.7%	0.09 [0.01, 1.57] 0.19 [0.04, 0.85]	· · · · · · · · · · · · · · · · · · ·
	Subtotal (95% CI) Total events	525 50	163	672	87.5%	0.31 [0.17, 0.58]	•
	Heterogeneity: Tau ² = Test for overall effect:		= 5 (P = 0.06); I ² =	52%			
	11.3.2 RCTs Kim 2014	0 0	. 0	0		Not estimable	
	Yamamoto 2010 Subtotal (95% CI)	8 20 20	11	20 20	12.5% 12.5%	0.55 [0.16, 1.91] 0.55 [0.16, 1.91]	
	Total events Heterogeneity: Not ap	8 plicable	11				
	Test for overall effect:			15020			
	Total (95% CI) Total events	545 58	174		100.0%	0.33 [0.19, 0.58]	· · · · ·
	Heterogeneity: Tau² = Test for overall effect: Test for subgroup diff	Z = 3.86 (P = 0.0001)					0.01 0.1 1 10 100 Favors irrigation Favors conventional
	restion subgroup and	oronoco, oni – 0.01,0		- 0 %			
D – Cerebral Vasospasm	Study or Subgroup 11.4.1 Observational	Cisternal irrigation Events Total			Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
	Arakawa 2004 Bissolo 2021	0 0 30 215		0 226	29.8%	Not estimable 0.31 [0.20, 0.50]	
	Fistouris 2022 Inagawa 1991	0 0 28 35	0	220 0 26	9.5%	Not estimable 0.73 [0.19, 2.80]	
	Nakagomi 2011 Roelz 2017	20 33 22 214 5 20	38	118 60	25.7% 11.9%	0.24 [0.13, 0.43] 0.12 [0.04, 0.39]	
	Scheiwe 2023 Yoshikane 2021	0 0 2 21	0	0 19	6.4%	Not estimable 0.18 [0.03, 1.02]	
	Subtotal (95% CI) Total events	505 87	188	449	83.4%	0.27 [0.18, 0.40]	•
	Heterogeneity: Tau ² = Test for overall effect:	0.03; Chi ² = 4.62, df =	4 (P = 0.33); I ² = 1	3%			
	11.4.2 RCTs				10.0		
	Kim 2014 Yamamoto 2010	15 79 0 0	0	0	16.6%	0.75 [0.30, 1.86] Not estimable	
	Subtotal (95% CI) Total events	79 15	10	42	16.6%	0.75 [0.30, 1.86]	
	Heterogeneity: Not ap Test for overall effect:						
	Total (95% CI)	102		491	100.0%	0.32 [0.20, 0.51]	◆
	Total events Heterogeneity: Tau² = Test for overall effect:	102 0.14; Chi ² = 8.78, df = 7 = 4.77 (P < 0.00001)	198 5 (P = 0.12); I ² = 4	13%			0.01 0.1 1 10 100
	Test for overall effect: Test for subgroup diff			= 75.6%			Favors irrigation Favors conventional


Figure 2 Pooled ORs comparing combined cisternal irrigation to conventional therapy. (A) Mortality, (B) functional outcome, (C) delayed cerebral ischaemia and (D) cerebral vasospasm. RCT, randomised controlled trial.

$B = Functional Outcome$ $B = Functional Outcome$ $B = Functional Outcome$ $\frac{F(1)}{121} = \frac{132}{22} = \frac{15}{22} = \frac{33}{22} = \frac{27}{22} = \frac{15}{22} = \frac{33}{22} = \frac{27}{22} = \frac{15}{22} = \frac{15}{22}$		Study or Subgroup	FC Events		Conventional treatm Events		Weight	Odds Ratio M-H, Random, 95% Cl	Odds Ratio M-H, Random, 95% Cl
B - Functional Outcome C - Delayed Cerebral isother N - 	A – Mortality			215	33	226	27.0%	0.91 [0.53, 1.56]	-
b - Functional Outcome C - Delayed Cerebral isotant 0 </td <td></td> <td>Fistouris 2022</td> <td>43</td> <td>221</td> <td>57</td> <td>237</td> <td>32.3%</td> <td>0.76 [0.49, 1.19]</td> <td>_</td>		Fistouris 2022	43	221	57	237	32.3%	0.76 [0.49, 1.19]	_
B – Functional Outcome C – Delayed Cerebral ischem To the		Roelz 2017	1	20	20	60	3.2%	0.11 [0.01, 0.84]	
B - Functional Outcome B - Functional Outcome To the second sec									
C - Delayed Cerebral ischem B - Functional Outcome		Subtotal (95% CI)		711			90.0%	0.64 [0.41, 0.98]	◆
b) C - Delayed Cerebral ischer b) C - Cerebral Vasospam c) - Cerebral Vasospam<		Heterogeneity: Tau ² =	0.09; Ch	ni² = 7.6	1, df = 5 (P = 0.18); l ² =	34%			
B - Functional Outcome C - Delayed Cerebral ischemi 0 </th <th></th> <th></th> <th>3</th> <th>30</th> <th>5</th> <th>42</th> <th>5 9%</th> <th>0.62/0.14/2.771</th> <th></th>			3	30	5	42	5 9%	0.62/0.14/2.771	
A - Punctional Outcome B - Functional Outcome Image: product of the prod		Yamamoto 2010		20		20	4.1%	2.25 [0.36, 13.97]	
b - Functional Outcome b - Functional Outcome To the form the		Total events Heterogeneity: Tau ² =		ni² = 1.1	5, df = 1 (P = 0.28); I ² =		10.0%	1.00 [0.30, 3.03]	
B - Functional Outcome B - Functional Outcome <u>Base of logical productions (S, d) = 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +</u>			2 - 0.09		(3)	945	100.0%	0.68 [0.46, 1.00]	•
B - Functional Outcome C - Delayed Cerebral ischemin 10		Total events							
B - Functional Outcome B - Functional Outcome C - Delayed Cerebral ischemi D - Cerebral Vasosparam D - Cerebral Vasosparam						24%			
B - Functional Outcome Best of laboration the laboration of thelaboration of thelaboration of t		Test for subgroup dif	ferences:	Chi ² =	0.56, df = 1 (P = 0.45),	² = 0%	6		
$\mathbf{B} - \text{Functional Outcome} \qquad \begin{array}{ c c c } \hline \mathbf{P}_{11} & \mathbf{P}_{12} & \mathbf{P}_{12$		Study or Subgroup					Weight		
C - D e lag e f e e e e e e e e	B – Functional Outcome	12.1.1 Observational					weight		m-n, Kandoli, 55% Ci
$ \mathbf{D} - \mathbf{D} = \mathbf{D} =$							43.7%		-
$D - Cerebral Vasospasm$ $D - Cerebral Vasospasm$ $\frac{1}{123} \frac{1}{230} \frac{1}$									
$D - Cerebral Vasospam $ $D - Cerebral Vasospam $ $\frac{1}{122 2 CT} \frac{1}{122 2 CT}$		Scheiwe 2023	0	0	0	0		Not estimable	
$D - Cerebral Vasospam \frac{1}{124 \text{ credit}} \frac{32}{12} \frac{22}{12} \frac{22}{12} \frac{12}{12} \frac{12}{12$			12		3				•
The formation in the formation is the f		Total events							-
C - Delayed Cerebral ischemia D - Cerebral Vasospasm D <t< td=""><td></td><td>Test for overall effect:</td><td></td><td></td><td></td><td>46%</td><td></td><td></td><td></td></t<>		Test for overall effect:				46%			
D - Cerebral Vasospasm D - Cerebral Vasospasm C Commutation Commu			32	39	32	42	8.5%	1.43 [0.48, 4.22]	_ _
The energy is the second seco		Yamamoto 2010		20		20	6.5%	1.23 [0.35, 4.31]	
The derivative function of the set of the s		Total events					10.070	1.54 [0.53, 5.04]	
C - Delayed Cerebral ischemia Bielg estigeren i det Z = 330 g = 0.0001 100 g = 0.0001 100 g = 0.0001 C - Delayed Cerebral ischemia Steps estiger i det Z = 330 g = 0.0001 100 g = 0.0001 0 d = 0.0001 Bielg estigeren i det Z = 130 g = 0.0001 10 g = 0.0001 10 g = 0.0001 0 d = 0.0001 0 d = 0.0001 Pielg estigeren i det Z = 130 g = 0.0001 10 g = 0.0001 10 g = 0.0001 0 d = 0.0001 0 d = 0.0001 Pielg estigeren i det Z = 0.0001 10 g = 0.0001 10 g = 0.0001 10 g = 0.0001 0 d = 0.0001 0 d = 0.0001 Pielg estigeren i det Z = 0.0001 10 g = 0.0001 10 g = 0.0001 10 g = 0.0001 0 d = 0.0001 0 d = 0.0001 0 d = 0.0001 Pielg estigeren i det Z = 0.0001 10 g = 0.0001 10 g = 0.0001 10 g = 0.0001 0 d =						- ~			
betweengenety, Tu ² = 0.02, Ch ² = 0.8, df = 5 (P = 0.3), T = 1% Test for containing differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 1% Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.3), T = 10 (P = 0.2), T = 0.8 (D = 1 (P = 0.3), T = 0.8) Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.0), T = 0.8 (D = 1 (P = 0.2), T = 0.8) Test for subjust differences Ch ² = 0.8, df = 1 (P = 0.0), T = 0.8 (D = 1 (P = 0.2), T = 0.8) Test for ownall difference Ch ² = 0.8, df = 1 (P = 0.0), T = 0.8 (D = 1 (P = 0.2), T = 0.8) Test for ownall difference Ch ² = 0.8, df = 1 (P = 0.0), T = 0.8 (D = 0.0), D = 0.0 (D = 0.0), T = 0.0 (D = 0.0), D =			274		266	496	100.0%	1.80 [1.30, 2.51]	•
C - Delayed Cerebral ischemia Bistor undgreichterst: C+1 = 23, y = 4 0,000 ± 100 = 237, y = 0.5 Faust componentielt weigt in HALRandom, 590 to 065 Raito 170,000 ± 100 ± 20,010 ± 100 ± 100 ± 100,000 ± 100 ± 100,000 ± 100 ± 100,000 ± 100 ± 100,000 ± 100 ± 100,000 ± 100		Heterogeneity: Tau ² =	0.03; Ch	ni² = 5.9	9, df = 5 (P = 0.31); I ² =	17%			
C – Delayed Cerebral ischemia						l² = 0%	6		
D - Cerebral Vasospasm C - Delayed Cerebral ischeminal ^{12,31} Observational ^{12,31} Observational			FC	ī	Conventional treatm	ent		Odds Ratio	Odds Ratio
$D - Cerebral Vasospasm \frac{Flot Origon 2022}{Variande 2011} \frac{1}{22} \frac{1}{24} \frac{1}{32} \frac{1}{24} \frac{1}{32} \frac{1}{22} \frac{1}{25} \frac{1}{$									
D - Cerebral Vasospasm D - Cerebral Vasopa	C – Delayed Cerebral ischemia	12.3.1 Observational	Events	Total	Events	Total	22	M-H, Random, 95% CI	
D - Cerebral Vasospasm Statisfy Subject 2023 0 20 46 223 2.1% 0.08 [0.01; 9.7] Verificiate 2021 2 21 46 983% 0.28 [0.17, 0.39] Verificiate 2021 2 21 46 983% 0.28 [0.17, 0.39] Verificiate 2021 2 21 4 0 0 0 0 1 2 10 2% 0.28 [0.18, 0.42] Verificiate 2021 0 2 0 1 2 2% 0.25 [0.18, 1.61] Verificiate 2021 0 2 0 1 2 2% 0.25 [0.18, 1.61] Verificiate 2021 0 2 0 1 2 2% 0.25 [0.18, 0.42] Verificiate 2021 0 2 0 1 2 2% 0.25 [0.18, 0.42] Verificiate 2021 0 2 0 1 2 2% 0.25 [0.18, 0.42] Verificiate 2025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021	Events I 17	Total 215	Events 40	Total 226	22	M-H, Random, 95% Cl 0.40 [0.22, 0.73]	
$D - Cerebral Vasospasm \begin{array}{c} subtotal (95 + C) & 490 & 646 & 80.8\% & 0.26 [0.17, 0.39] \\ Total events & 37 & 154 \\ Heterogeneth, Tar' = 0.01; Chi + 2.48 (P = 0.40); P = 2.8 \\ Test for overall effect 2 = 0.29; P = 0.0001) \\ \hline 12.2 RCTs \\ Subtotal (95 + C) & 20 & 11 & 20 & 10.2\% \\ Vanamoto 2010 & 8 & 20 & 11 & 20 & 10.2\% \\ Total events & 8 & 11 \\ Heterogeneth; Total = 0.03.0 \\ Total events & 8 & 11 \\ Heterogeneth; Total = 0.03.0 \\ Total events & 5 & 105 \\ Test for overall effect 2 = 0.59; P = 0.30; P = 6\% \\ Total events & 5 & 105 \\ Test for overall effect 2 = 0.50; Chi = 5.3; df = 5(P = 0.20); P = 18.8\% \\ \hline \begin{array}{c} rest for overall effect 2 = 0.50; Chi = 5.3; df = 5(P = 0.20); P = 18.8\% \\ \hline \begin{array}{c} rest for overall effect 2 = 0.50; P = 0.0001) \\ \hline \hline rest for overall effect 2 = 0.50; P = 0.0001) \\ \hline \begin{array}{c} rest for overall effect 2 = 0.50; Chi = 5.3; df = 0.00001) \\ \hline \ rest for overall effect 2 = 0.50; P = 0.00001) \\ \hline \ rest for overall effect 2 = 0.50; P = 0.00001) \\ \hline \ rest for overall effect 2 = 0.50; P = 0.00001) \\ \hline \ rest for overall effect 2 = 0.50; P = 0.00001) \\ \hline \ rest for overall effect 2 = 0.50; P = 0.40; P = 0.05; P = 0.50; P =$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011	Events 17 0 14	Total 215 0 214	40 0 34	226 0 118	39.2% 32.4%	M-H, Random, 95% CI 0.40 [0.22, 0.73] Not estimable 0.17 [0.09, 0.34]	
D - Cerebral Vasospasm	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roelz 2017 Scheiwe 2023	Events 17 0 14 3	Total 215 0 214 20 20	40 0 34 25	226 0 118 60 223	39.2% 32.4% 9.1% 2.1%	M-H, Random, 95% CI 0.40 [0.22, 0.73] Not estimable 0.17 [0.09, 0.34] 0.25 [0.07, 0.93] 0.09 [0.01, 1.57]	
$D - Cerebral Vasospasm$ $\frac{FC}{124.2 RC18} = 0.0001) + \frac{12.3 2 RC18}{10.000} = 0.00001 + \frac{10.000}{10.000} = 0.00001 + \frac{10.000}{10.0000} = 0.00001 + \frac{10.0000}{10.0000} = 0.00001 + \frac{10.0000}{10.0000} = 0.000001 + \frac{10.0000}{10.0000} = 0.000001 + \frac{10.0000}{10.0000} = 0.000001 + \frac{10.00000}{10.0000} = 0.000001 + \frac{10.000000}{10.00000} = 0.000000 + \frac{10.0000000}{10.000000} = 0.000000 + \frac{10.0000000}{10.000000} = 0.0000000 + \frac{10.00000000}{10.0000000} = 0.0000000 + \frac{10.000000000}{10.0000000} = 0.0000000 + \frac{10.000000000}{10.0000000} = 0.0000000 + \frac{10.00000000}{10.00000000} = 0.00000000 + \frac{10.0000000000}{10.000000000} = 0.00000000 + \frac{10.0000000000}{10.0000000000} = 0.00000000 + 10.00000000000000000000000000000000000$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roelz 2017 Scheiwe 2023 Yoshikane 2021	Events 17 0 14 3 0	Total 215 0 214 20 20 21	Events 40 0 34 25 46	Total 226 0 118 60 223 19	39.2% 32.4% 9.1% 2.1% 7.1%	M-H, Random, 95% CI 0.40 [0.22, 0.73] Not estimable 0.17 [0.09, 0.34] 0.25 [0.07, 0.93] 0.09 [0.01, 1.57] 0.19 [0.04, 0.85]	
$D - Cerebral Vasospasm$ $\frac{Vm 2014}{Vm amoto 2010} \frac{0}{20} \frac{0}{20} \frac{1}{20} \frac{0}{10.2\%} \frac{0}{20} \frac{1}{20} \frac{1}{10.2\%} \frac{0}{0.55} \frac{1}{0.55} \frac{1}{0.15} \frac{1}{0.15} \frac{1}{0.01} \frac{1}{0.01}$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roelz 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events	Events 17 0 14 3 0 3 37	Total 215 0 214 20 20 21 490	40 0 34 25 46 9	226 0 118 60 223 19 646	39.2% 32.4% 9.1% 2.1% 7.1%	M-H, Random, 95% CI 0.40 [0.22, 0.73] Not estimable 0.17 [0.09, 0.34] 0.25 [0.07, 0.93] 0.09 [0.01, 1.57] 0.19 [0.04, 0.85]	
$D - Cerebral Vasospasm$ $\frac{Vanamoto 2010}{1000000000000000000000000000000000$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roelz 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity: Tau [#] = Test for overall effect	Events 17 0 14 3 0 3 37 : 0.01; Ch	Total 215 0 214 20 21 490 ni ² = 4.0	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); I ^p =	226 0 118 60 223 19 646	39.2% 32.4% 9.1% 2.1% 7.1%	M-H, Random, 95% CI 0.40 [0.22, 0.73] Not estimable 0.17 [0.09, 0.34] 0.25 [0.07, 0.93] 0.09 [0.01, 1.57] 0.19 [0.04, 0.85]	
$D - Cerebral Vasospasm$ $\frac{FCI}{1041} = \frac{Correction 1}{1022} = \frac{10}{102} = 10$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagorni 2011 Rotez 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneiky, Tay ² Test for overall effect 12.3.2 RCTs	Events 17 0 14 3 0 3 3 7 5 0.01; Ch Z = 6.42	Total 215 0 214 20 21 490 hi ² = 4.0 (P < 0.0	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001)	Total 226 0 118 60 223 19 646 2%	39.2% 32.4% 9.1% 2.1% 7.1%	M-H, Random, 95% Cl 0.40 [0.22, 0.73] Not estimable 0.17 [0.09, 0.34] 0.25 [0.07, 0.93] 0.09 [0.01, 1.57] 0.19 [0.04, 0.85] 0.26 [0.17, 0.39]	
$D - Cerebral Vasospasm$ $\frac{5tdy or Subgroup Events}{122 + 61.6} + 51.0 + 62.03), F = 63}, F = 63.0, F = 23.0, F = $	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagorni 2011 Rotez 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneiky, Tau* = Test for overall effect 12.3.2 RCTs Kim 2014 Yarnamoto 2010	Events 17 0 14 3 0 3 3 5 0.01; Ch Z = 6.42	Total 215 0 214 20 20 21 490 $hi^2 = 4.0$ (P < 0.0) 0 20 20 21 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001)	Total 226 0 118 60 223 19 646 2% 0 20	39.2% 32.4% 9.1% 2.1% 7.1% 89.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.67) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91)	
$ \textbf{D} - \textbf{Cerebral Vasospasm} \\ \textbf{Total events} & \frac{45}{102} & \frac{165}{102} \\ \textbf{Test for overall effect Z = 6.16 (P + 0.00001)} \\ \textbf{Test for subgroup differences: Ch2 = 1.23, df = 1 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 6.16 (P + 0.00001)} \\ \textbf{Test for subgroup differences: Ch2 = 1.23, df = 1 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.27), P = 18.8\% \\ \textbf{Test for overall effect Z = 0.50 (P = 0.52) \\ \textbf{Total events} = 0.00 (P = 0.23), P = 0.0001) \\ \textbf{Test for overall effect Z = 0.50 (P = 0.52) \\ \textbf{Total events} = 0.00 (P = 0.23), P = 0.000 (P = 0.23), P = 0.0000 (P = 0.0000) \\ \textbf{Test for overall effect Z = 0.55 (P = 0.52) \\ \textbf{Total events} = 0.50 (P = 0.52) \\ \textbf{Total events} = 0.50 (P = 0.52) \\ \textbf{Total events} = 0.50 (P = 0.23), P = 2.0\% \\ Test for overall effect Z = 0.55 (P = 0.50) \\ \textbf{Test for overall effect Z = 0.55 (P = 0.50) \\ \textbf{Test for overall effect Z = 0.55 (P = 0.50) \\ \textbf{Test for overall effect Z = 0.55 (P = 0.50) \\ \textbf{Test for overall effect Z = 0.55 (P = 0.50) \\ \textbf{Test for overall effect Z = 0.55 (P = 0.50) \\ \textbf{Test for overall eff$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau ² Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Not aj	Events 1 17 0 14 3 0 3 37 0.01; Ch Z = 6.42 0 8 oplicable	Total 215 0 214 20 21 490 ni ² = 4.0 (P < 0.0 0 20 20 20 20 20 20 21 490 0 21 20 21 20 21 20 21 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 21 4 20 20 20 20 20 20 20 20 20 20	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11	Total 226 0 118 60 223 19 646 2% 0 20	39.2% 32.4% 9.1% 2.1% 7.1% 89.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.67) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91)	
$ \begin{array}{c} Test \mbox{ for overall effect} Z = 6.16 (P + 0.0001) \\ Test \mbox{ for subgroup differences:} C = 0.0001 \\ Test \mbox{ for subgroup differences:} Test for sub$	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Taraj Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nataj Test for overall effect	Events 1 17 0 14 3 0 3 37 0.01; Ch Z = 6.42 0 8 oplicable	Total 215 0 214 200 21 490 $hi^2 = 4.0$ (P < 0.0) 0 20 20 (P = 0.3)	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11	Total 226 0 118 60 223 19 646 2% 0 20 20 20	39.2% 32.4% 9.1% 2.1% 7.1% 89.8% 10.2% 10.2%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91] 0.55 (0.16, 1.91]	
Study or subgroup Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI 12.4.1 Observational Bissiol 2021 30 215 77 226 38.5% 0.31 (0.20, 0.50) • Nakagomi 2011 22 214 39 116 31.0% 0.23 (0.13, 0.42) • Nakagomi 2011 22 214 39 118 31.0% 0.23 (0.13, 0.42) • Schelwe 2023 0 0 0 0 Notestimable • • Vothkane 2021 2 21 7 19 5.8% 0.31 (0.04, 0.39) • Total events 53 167 Heterogeneity: Tau*= 0.00; Chi#= 2.56, df = 3 (P = 0.46); P = 0% Test for overall effect Z = 7.80 (P < 0.00001)	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogenetity, Tau*= Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogenetity. Nota Heterogenetity. Nota Total events Heterogenetity. Nota	Events 17 0 14 3 37 0.01; Charles Z = 6.42 0 8 soplicable Z = 0.95 45	Total 215 0 214 20 20 20 21 490 $(P < 0.0)^{1/2} = 4.0.0$ 0 20 20 20 20 20 20 20 20 510 510	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 11 14)	Total 226 0 118 60 223 19 646 2% 0 20 20 666	39.2% 32.4% 9.1% 2.1% 7.1% 89.8% 10.2% 10.2%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91] 0.55 (0.16, 1.91]	
Study or subgroup Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI 12.4.1 Observational Bissiol 2021 30 215 77 226 38.5% 0.31 (0.20, 0.50) • Nakagomi 2011 22 214 39 116 31.0% 0.23 (0.13, 0.42) • Nakagomi 2011 22 214 39 118 31.0% 0.23 (0.13, 0.42) • Schelwe 2023 0 0 0 0 Notestimable • • Vothkane 2021 2 21 7 19 5.8% 0.31 (0.04, 0.39) • Total events 53 167 Heterogeneity: Tau*= 0.00; Chi#= 2.56, df = 3 (P = 0.46); P = 0% Test for overall effect Z = 7.80 (P < 0.00001) • 12.4.2 RCTs Kim 2014 7 39 10 42 13.1% 0.70 (0.24, 2.07) Yamamota 2010 0 0 0 0 0 0 0 0 • • Subtotal (95% CI) 39 42 13.1% 0.70 (0.24, 2.07) • • • • •<	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Bissolo 2021 Pistouris 2022 Nakagomi 2011 Rolez 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity: Tau*= Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity: Not ar Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect	Events 1 17 0 14 3 0 3 7 0.01; Ch Z = 6.42 0 8 pplicable Z = 0.95 45 5 0.02; Ch Z = 6.16	Total 215 0 214 20 201 20 201 20 201 20 201 20 200 20 200 20 201 20 201 20 202 20 203 20 204 20 205 20 206 20 207 20 208 20 209 20 200 20 201 20 202 20 203 20 204 20 205 20 207 20 208 20 209 20 200 20 201 20 202 20 203 20 204 20 205 20 2	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P =	Total 226 0 118 60 223 19 646 2% 0 20 20 666 6%	39.2% 32.4% 9.1% 2.1% 7.1% 89.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91] 0.55 (0.16, 1.91]	M-H, Random, 95% Cl
Bissolo 2021 30 215 77 226 38.5% 0.31 [0.20,0.50] Fistolus 2022 0 0 0 0 0 Notestimable Nakagom 2011 22 214 39 118 31.0% 0.23 [0.13,0.42] Roelz 2017 2 21 7 19 5.8% 0.23 [0.12 [0.04,0.39] Scheiwe 2023 0 0 0 0 Notestimable Yoshikane 2021 2 21 7 19 5.8% 0.18 [0.03, 1.02] Subtotal (95% CI) 470 423 86.9% 0.25 [0.18, 0.36] Total events 59 167 Heterogeneity: Tau ²⁺ 0.00; Ch ²⁺ 2.56, df 3 (P = 0.46); P = 0% Test for overall effect Z = 7.80 (P < 0.00001) 12.4.2 RCTs Kim 2014 7 39 10 42 13.1% 0.70 [0.24, 2.07] Total events 7 10 Heterogeneity: Tau ²⁺ 0.07; Ch ² = 5.61, df = 4 (P = 0.23); P = 29% Total events 7 10 Heterogeneity: Tau ²⁺ 0.07; Ch = 5.61, df = 4 (P = 0.23); P = 29% Total events 66 177 Heterogeneity: Tau ²⁺ 0.07; Ch = 5.61, df = 4 (P = 0.23); P = 29% Test for overall effect Z = 5.84 (P < 0.0001)	C – Delayed Cerebral ischemia	12.3.1 Observational Bissolo 2021 Bissolo 2021 Pistouris 2022 Nakagomi 2011 Rolez 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity: Tau*= Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity: Not ar Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect	Events 17 0 14 3 0 3 37 0.01; Ch Z = 6.42 0 8 pplicable Z = 0.95 45 : 0.02; Ch Z = 6.16 ferences:	Total 215 0 214 20 201 21 490 0 $(P < 0.1)^2 = 4.0.0$ 0 20 20 20 20 20 20 510 510 $h^2 = 5.3$ (P < 0.1 °C) Chi² = 510	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1, 23, df = 1 (P = 0.27),	Total 2226 0 118 60 223 19 646 2% 0 20 20 666 6% P = 18	39.2% 32.4% 9.1% 2.1% 7.1% 89.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42)	M-H, Random, 95% Cl
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneiky. Nat ag- test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneiky. Nat ag- Test for overall effect Total (95% CI) Total events Heterogeneiky. Nat ag- Test for overall effect Test for overall effect Test for overall effect Test for subgroup diffect Test for subgroup diffect	Events 17 17 0 144 3 0 3 3 77 0.01; Ch 2 0 8 9 10 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 3 2 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 215 0 214 20 201 20 201 20 ρ^{μ} = 4.0.0 0 20 20 20 20 (P = 0.3) 510 ρ^{μ} = 5.33 (P < 0.6 Chi ² = 1 1	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 1.23, df = 1 (P = 0.27), Conventional treatm	Total 2226 0 118 60 223 23 646 2% 0 20 20 666 6% ² = 18 ent	39.2% 32.4% 9.1% 7.1% 89.8% 10.2% 10.2% 100.0%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.67) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91] 0.55 (0.16, 1.91] 0.28 (0.18, 0.42] Odds Ratio	M-H, Random, 95% CI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.3.1 Observational Bissolo 2021 Pistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau* Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Not aj Test for overall effect Total (95% CI) Total events Heterogeneity, Not aj Test for overall effect Test for subgroup dit Test for subgroup 12.4.1 Observational Study of Subgool 2014 Study of Subgool 2015	Events 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 0 8 8 9	Total 215 0 0 214 20 20 21 490 0 21 490 0 0 20 20 20 20 20 510 h^{μ} = 5.33 (P < 0.6 Chi ² = 1 Total 215 215	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77	Total 226 0 0 118 60 223 19 646 2% 0 200 20 666 6% I* = 18 ent Total 226	39.2% 32.4% 9.1% 7.1% 89.8% 10.2% 10.2% 10.2%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91] 0.55 (0.16, 1.91] 0.28 (0.18, 0.42] Odds Ratio M.H, Random, 95% CI	M-H, Random, 95% CI
Yoshikane 2021 2 21 7 19 5.8% 0.18 (0.03, 1.02) Subtatal (95% CI) 470 423 86.9% 0.25 [0.18, 0.36] Total events 59 167 Heterogeneity: Tau ² = 0.00; Ch ² = 2.56, df = 3 (P = 0.46); I ² = 0% Testfor overall effect Z = 7.80 (P < 0.00001) 12.4.2 RCTs Kim 2014 7 39 10 42 13.1% 0.70 [0.24, 2.07] Yamamoto 2010 0 0 0 Not estimable Subtotal (95% CI) 39 42 13.1% 0.70 [0.24, 2.07] Total events 7 10 Heterogeneity: Not applicable Test for overall effect Z = 0.85 (P = 0.52) Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total events 66 177 Heterogeneity: Tau ² = 0.07; Ch ² = 5.1, df = 4 (P = 0.23); I ² = 29% Total events FGI = 5.01, df = 4 (P = 0.23); I ² = 29% Test for overall effect Z = 5.84 (P < 0.0001)		12.3.1 Observational Bissole 2021 Fistouris 2022 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Taraf Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nataf Test for overail effect Total (95% CI) Total events Heterogeneity, Nataf Test for subgroup diff	Events 17 17 0 14 3 0 14 3 0 14 3 3 37 17 17 10 14 33 37 15 16 17 17 17 17 17 17 17 17 17 17 17 17 11 12 12 14 15 16 17 18 19 10 10	$\begin{array}{c} \hline {\bf Total} \\ 215 \\ 0 \\ 0 \\ 20 \\ 20 \\ 21 \\ 4 \\ 20 \\ 20 \\ 10^{12} = 4.0 \\ 0 \\ 20 \\ 20 \\ {\bf 0} \\ $	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11 11 14 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 0 0 0 17 0	Total 226 0 118 60 223 19 646 2% 0 20 20 666 6% ² = 18 ent Total 226 0 20 20 20 60 60 20 20 20 20 20 20 20 20 20 2	39.2% 32.4% 9.1% 2.1% 7.1% 89.8% 10.2% 10.2% 100.0% 88%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91] 0.55 (0.16, 1.91] 0.28 (0.18, 0.42) Odds Ratio M.H, Random, 95% CI 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42)	M-H, Random, 95% CI
Total events 5 9 167 Heterogeneity. Tau ² = 0.00; Chi ² = 2.56, df = 3 (P = 0.46); P = 0.% Test for overall effect Z = 7.80 (P < 0.0001) 12.4.2 RCTS Kim 2014 7 39 10 42 13.1% 0.70 [0.24, 2.07] Variamento 2010 0 0 0 0 Not estimable Subtotal (95% Cl) 39 42 13.1% 0.70 [0.24, 2.07] Total events 7 10 Heterogeneity. Not applicable Test for overall effect Z = 0.65 (P = 0.52) Total (95% Cl) 509 465 100.0% 0.28 [0.18, 0.42] Total events 66 177 Heterogeneity. Tau ² = 0.07; Chi ² = 5.61, df = 4 (P = 0.23); P = 29% Test for overall effect Z = 5.84 (P < 0.0001)		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau*= Kim 2014 Yarnamoto 2010 Subtoal (95% CI) Total events Heterogeneity, Tau*= Test for overall effect Total (95% CI) Total events Heterogeneity, Tau*= Test for overall effect Test for subgroup di Study or Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2017	Events 17 17 0 17 0 14 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 4 5 0.01; Ch Ch 45 0.02; Ch 45 0.02; Ch Ferences: 10 30 0 22 25	Total 215 0 0 214 400 20 201 20 201 20 201 20 200 20 200 20 510 $P = 0.3$ $P = 5.3$ $P = 5.3$ $P = 5.3$ $P = 0.0$ </td <td>Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 1, df = 5 (P = 0.38); P = 1, 23, df = 1 (P = 0.27), Conventional treatme Events 77 0 39 44</td> <td>Total 226 0 118 60 223 19 646 2% 2% 0 20 20 666 6% I* = 18 ent Total 226 0 118 226 0 118 60</td> <td>39.2% 32.4% 2.1% 2.1% 7.1% 89.8% 10.2% 100.0%</td> <td>M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50)</td> <td>M-H, Random, 95% CI</td>	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 1, df = 5 (P = 0.38); P = 1, 23, df = 1 (P = 0.27), Conventional treatme Events 77 0 39 44	Total 226 0 118 60 223 19 646 2% 2% 0 20 20 666 6% I* = 18 ent Total 226 0 118 226 0 118 60	39.2% 32.4% 2.1% 2.1% 7.1% 89.8% 10.2% 100.0%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50)	M-H, Random, 95% CI
Heterogeneity: Tau ² = 0.00; Ch ² = 2.56, df = 3 (P = 0.46); P = 0% Test for overall effect Z = 7.80 (P < 0.00001) 12.4.2 RCTs Kim 2014 7 39 10 42 13.1% 0.70 [0.24, 2.07] Yamamoto 2010 0 0 0 0 Not estimable Subtotal (95% CI) 39 42 13.1% 0.70 [0.24, 2.07] Total events 7 10 Heterogeneity: Not applicable Test for overall effect Z = 0.65 (P = 0.52) Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total events 66 177 Heterogeneity: Tau ² = 0.07; Ch ² = 5.61, df = 4 (P = 0.23); P = 29% Test for overall effect Z = 5.84 (P < 0.0001)		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau*= Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Tau*= Test for overall effect Total events Heterogeneity, Tau*= Test for overall effect Total events Heterogeneity, Tau*= Test for overall effect Total events Heterogeneity, Tau*= Test for subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rolez 2017 Scheiwe 2023 Yoshikare 2011	Events 1 17 0 14 3 37 38 391 201; Ch.4 0 8 applicable 2 0.05; Ch.2 6:ferences: FC Events 30 0 22 5 00 22 5 0	Total 215 0 0 214 20 20 20 0 0 21 490 0 0 20 0 20 20 0 0 20 0 20 510 510 01 ² = 5.3 (P < 0.0	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P= 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P= 00001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0	Total 226 0 118 60 223 19 646 2% 0 20 20 20 666 6% 6% 6% 6% 1° = 18 ent Total 226 0 20 20 20 20 20 20 20 20 20	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.32 (0.13, 0.42) 0.12 (0.04, 0.39) Not estimable 0.18 (0.04, 0.31) Not estimable	M-H, Random, 95% CI
Kim 2014 7 39 10 42 13.1% 0.70 [0.24, 2.07] Yaramato 200 0 0 0 Not estimable Subtolat (95% CI) 39 42 13.1% 0.70 [0.24, 2.07] Total events 7 10 Heterogeneity: Not applicable Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] \bullet Total events 6 177 174 176 100 101 101 100 100 Total events 6.6 177 174 184 (P = 0.23); P = 29% 101 0.1 1 100 100 Test for overall effect Z = 5.84 (P < 0.00001)		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rolz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneily: Tau ² = Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneily: Not ar Test for overall effect Total events Heterogeneily: Tau ² = Test for overall effect Test for overall effect Test for overall effect Test for overall effect Test for subgroup diff Study or Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rock 2017 Scheiwe 2023 Yoshikane 2021 Subtota (95% CI)	Events 17 17 0 14 33 0 3 0 2 001; Ch 002; Ch 002; Ch 645 5 0.02; Ch FCC Events 100 22 5 0.02; Ch 0 0 22 5 0 2 2 5 0.02; Ch 0 0 22 5 0 0 2 5 0 2	$\begin{array}{c} \hline {\bf Total} \\ \hline {\bf 215} \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ 0 \\ 1490 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 00001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7	Total 226 0 118 60 223 19 646 2% 0 20 20 20 666 6% 6% 6% 6% 1° = 18 ent Total 226 0 20 20 20 20 20 20 20 20 20	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.32 (0.13, 0.42) 0.12 (0.04, 0.39) Not estimable 0.18 (0.04, 0.31) Not estimable	M-H, Random, 95% CI
Yamamoto 2010 0 0 0 Notestimable Subbotal (95% CI) 39 42 13.1% 0.70 [0.24, 2.07] Total events 7 10 Heterogeneity: Not applicable 66 100.0% 0.28 [0.18, 0.42] Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total events 66 177 10 10 10 10 10 Total events 66 177 164 160.0% 0.28 [0.18, 0.42] 100		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rolz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity: Not aj Test for overall effect Subtotal (95% CI) Total events Heterogeneity: Not aj Test for overall effect Total events Heterogeneity: Not aj Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect Total events Heterogeneity: Tau*= Test for subgroup diffect Study of Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity, Tau*=	Events 1 17 0 17 0 17 0 17 17 17 17 17 17 17 17 11 13 33 33 34 5 00 22 55 00 2 55 00 2 55 00 2 55 00 2 59 00 2 59 00 2 59 00 2 59 00 2 59 00 2 59 00 <td>Total 215 0 214 20 201 20 201 490 11² = 4.0.2 20 200 20 200 20 (P = 0.3.3 510 510 3.510 Chi² = 5.32 1 Total 215 214 20 0 214 215 0 214 20 0 0 214 400 0 21 470 11² = 2.5</td> <td>Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 10001) 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 5, df = 3 (P = 0.46); P =</td> <td>Total 226 0 118 60 223 19 646 2% 0 20 20 666 6% P² = 18 ent Total 226 0 118 60 0 118 60 0 20 20 20 20 20 20 20 20 20</td> <td>39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8%</td> <td>M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.32 (0.13, 0.42) 0.12 (0.04, 0.39) Not estimable 0.18 (0.04, 0.31) Not estimable</td> <td>M-H, Random, 95% CI</td>	Total 215 0 214 20 201 20 201 490 11 ² = 4.0.2 20 200 20 200 20 (P = 0.3.3 510 510 3.510 Chi ² = 5.32 1 Total 215 214 20 0 214 215 0 214 20 0 0 214 400 0 21 470 11 ² = 2.5	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 10001) 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 5, df = 3 (P = 0.46); P =	Total 226 0 118 60 223 19 646 2% 0 20 20 666 6% P ² = 18 ent Total 226 0 118 60 0 118 60 0 20 20 20 20 20 20 20 20 20	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8%	M.H, Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.32 (0.13, 0.42) 0.12 (0.04, 0.39) Not estimable 0.18 (0.04, 0.31) Not estimable	M-H, Random, 95% CI
Total events 7 10 Heterogeneity: Not applicable Testfor overall effect Z = 0.65 (P = 0.52) Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total events 6 177 Heterogeneity: Tau ^{2*} = 0.07; Chi ^{2*} = 5.61; df = 4 (P = 0.23); P = 29% 0.1 0.1 1 10 100 Testfor overall effect Z = 5.84 (P < 0.00001)		12.3.1 Observational Bissole 2021 Fistouris 2022 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity, Tau ² Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nata Test for overall effect Test for overall effect Test for subgroup diff Study or Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rodiz 2017 Scheiwe 2023 Yoshikane 2021 Yoshikane 2023 Yoshikane 2023 Heterogeneity: Tau ² Test for overail effect Total events Heterogeneity: Tau ² Test for overail effect Total events Heterogeneity: Tau ² Test for overail effect Total events Heterogeneity: Tau ²	Events 17 17 0 17 0 17 0 17 17 17 17 17 17 17 17 17 11 11 12 13 13 14 12 12 13 13 14 14 15 16 17 <td>Total 215 0 0 214 20 214 20 214 490 0 20 20 20 20 20 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 1 Total 1 Total 214 20 210 214 20 210 0 0 214 20 2170 470 470 470</td> <td>Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 167 6, df = 3 (P = 0.46); P = 0001)</td> <td>Total 226 0 118 60 223 646 2% 0 666 6% P=18 ent Total 226 0 118 800 0 123 200 666 6% P=18 ent Total 226 0 118 800 0 123 0%</td> <td>39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%</td> <td>M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.67) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) 0.26 (0.17, 0.39) 0.25 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.33 (0.3, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36]</td> <td>M-H, Random, 95% CI</td>	Total 215 0 0 214 20 214 20 214 490 0 20 20 20 20 20 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 1 Total 1 Total 214 20 210 214 20 210 0 0 214 20 2170 470 470 470	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 167 6, df = 3 (P = 0.46); P = 0001)	Total 226 0 118 60 223 646 2% 0 666 6% P=18 ent Total 226 0 118 800 0 123 200 666 6% P=18 ent Total 226 0 118 800 0 123 0%	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.99 (0.01, 1.67) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) 0.26 (0.17, 0.39) 0.25 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.33 (0.3, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36]	M-H, Random, 95% CI
Heterogeneity: Not applicable Test for overall effect: Z = 0.65 (P = 0.52) Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total events 66 177 Heterogeneity: Tau ² = 0.7; Ch ² = 5.61, df = 4 (P = 0.23); l ² = 29% 10, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rolz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity: Tau*= Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity: Tau*= Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect Total events Heterogeneity: Tau*= Test for overall effect Test for subgroup dif Study or Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roteiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity: Tau*= Test for overall effect Test for overall effect 12.4.2 RCTs Kim 2014 Yamamoto 2010	Events 17 17 01 17 01 17 01 17 01 17 17 17 17 17 17 11 11 11 11 12 11 12 11 12 12 13 13 14 15 15 15 16 17 17 17 17 17 17 17	$\begin{array}{c} \hline {\bf Total} \\ \hline 215 \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 38 44 0 7 5, df = 3 (P = 0.46); P = 10001)	Total 226 0 0 118 60 223 138 60 2% 0 6666 6% 67 118 6666 0 18 60 0 19 423 0%	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.25 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable	M-H, Random, 95% CI
Total (95% CI) 509 465 100.0% 0.28 [0.18, 0.42] Total events 6 177 Heterogeneity: Tau ^{2*} = 0.07; Chi ^{2*} = 5.61; df = 4 (P = 0.23); l ^{2*} = 29% 0.01 0.1 1 1 0 100 Test for overall effect Z = 5.84 (P < 0.00001)		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity. Tau ² = Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity. Nata Test for overall effect Total (95% CI) Total events Heterogeneity. Tau ² = Test for subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity. Tau ² = Test for overall effect Test for subgroup dit Study or Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity. Tau ² = Test for overall effect 12.4.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI)	Events 17 17 10 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 45 15 45 1002 22 16 FCC Events 1 30 0 22 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02 50 0.02	$\begin{array}{c} \hline {\bf Total} \\ \hline 215 \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 105 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 5, df = 3 (P = 0.46); P = 10001)	Total 226 0 0 118 60 223 138 60 2% 0 6666 6% 67 118 6666 0 18 60 0 19 423 0%	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.25 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable	M-H, Random, 95% CI
Total events 177 Heterogeneity: Tau ²⁺ = 0.07; Chi ²⁺ = 5.61; df = 4 (P = 0.23); P = 29% 0.01 0.1 1 10 100 Test for overall effect Z = 5.84 (P < 0.00001)		12.3.1 Observational Bissolo 2021 Pistouris 20221 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau* Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nat aj Test for overall effect Total (95% CI) Total events Heterogeneity, Nat aj Test for subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roetz 2017 Subtotal (95% CI) Total events Heterogeneity, Tau*= Test for subgroup diff Study of Subtotal (95% CI) Total events Heterogeneity, Tau*= Test for subgroup alth Kime 2021 Subtotal (95% CI) Total events Heterogeneity, Tau*= Heterogeneity, Tau* Heterogeneity, T	Events 1 17 0 17 0 17 17 17 17 17 17 17 11 11 12 13 14 30 17 17 17 17 17 18 18 19 12 12 12 12 12 12 12 12 130 132 130 131 132 133 130 131 132 133 130 131 132 133 130 130 132 1	Total 215 0 214 200 214 200 214 200 201 0 0 00 200 200 200 200 200 200 200 201# 1 Total 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <td>Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 105 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 6, df = 3 (P = 0.46); P = 10001 10 10</td> <td>Total 226 0 0 118 60 223 138 60 2% 0 6666 6% 67 118 6666 0 18 60 0 19 423 0%</td> <td>39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%</td> <td>M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.25 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable</td> <td>M-H, Random, 95% CI</td>	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 105 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 6, df = 3 (P = 0.46); P = 10001 10 10	Total 226 0 0 118 60 223 138 60 2% 0 6666 6% 67 118 6666 0 18 60 0 19 423 0%	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.25 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable	M-H, Random, 95% CI
Heterogeneity: Tau ² = 0.07; Chi ² = 5.61, df = 4 (P = 0.23); I ² = 29% 0.01 0.1 1 1 0 100 Test for overall effect: Z = 5.84 (P < 0.00001) Eavors ECL Eavors Conventional		12.3.1 Observational Bissolo 2021 Pistouris 20221 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau* Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nat aj Test for overall effect Total (95% CI) Total events Heterogeneity, Nat aj Test for subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Roetz 2017 Subtotal (95% CI) Total events Heterogeneity, Tau*= Test for subgroup diff Study of Subtotal (95% CI) Total events Heterogeneity, Tau*= Test for subgroup alth Kime 2021 Subtotal (95% CI) Total events Heterogeneity, Tau*= Heterogeneity, Tau* Heterogeneity, T	Events 1 17 0 17 0 17 17 17 17 17 17 17 11 11 12 13 14 30 17 17 17 17 17 18 18 19 12 12 12 12 12 12 12 12 130 132 130 131 132 133 130 131 132 133 130 131 132 133 130 130 132 1	Total 215 0 0 214 200 214 200 214 200 200 0 0 200 200 510 30 0 17 16 16 17 16 18 215 0 214 200 20 214 200 214 200 214 200 214 200 314 214 200 314 470 314 39 39 39 39	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 0 11 11 14) 105 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 6, df = 3 (P = 0.46); P = 10001 10 10	Total 226 0 0 118 60 223 138 60 2% 0 6666 6% 67 118 6666 0 18 60 0 19 423 0%	39.2% 32.4% 9.1% 2.1% 2.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 86.9%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.25 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.23 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable	M-H, Random, 95% CI
Test for overall effect: 2 = 5.84 (P < 0.00001) Eavors ECL Eavors conventional		12.3.1 Observational Bissolo 2021 Pistouris 2022 Nakagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity, Tau*= Test for overall effect 12.3.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nat ar Test for overall effect Total events Heterogeneity, Nat ar Test for subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotz 2021 Study or Subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Noskagomi 2011 Rotz 2017 Scheiwe 2023 Yoshikane 2021 Subtotal (95% CI) Total events Heterogeneity. Tau*= Test for overall effect 12.4.2 RCTs Kim 2014 Yamamoto 2010 Subtotal	Events 17 17 10 14 30 31 32 50.01; Ch 60.01; Ch 2 60.02; Ch 60.02; Ch 2 60:02; Ch 10:02; Ch 11:02; Ch </td <td>$\begin{array}{c} \hline {\bf Total} \\ \hline {\bf 215} \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ {\bf 20} \\ {\bf 0} \\$</td> <td>Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 6, df = 3 (P = 0.46); P = 100 10 10 10 10 10</td> <td>Total 226 0 118 600 223 646 2% 0 200 666 6% P = 18 600 118 600 118 600 0 118 600 0 118 600 0 128 000 422 0 422</td> <td>39.2% 32.4% 9.1% 2.1% 2.1% 7.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 5.8% 86.9% 13.1%</td> <td>M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.31 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable 0.70 (0.24, 2.07)</td> <td>M-H, Random, 95% CI</td>	$\begin{array}{c} \hline {\bf Total} \\ \hline {\bf 215} \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ {\bf 20} \\ {\bf 0} \\ $	Events 40 0 34 25 46 9 154 8, df = 4 (P = 0.40); P = 00001) 0 11 11 11 14) 165 1, df = 5 (P = 0.38); P = 10001) 1.23, df = 1 (P = 0.27), Conventional treatm Events 77 0 39 44 0 7 6, df = 3 (P = 0.46); P = 100 10 10 10 10 10	Total 226 0 118 600 223 646 2% 0 200 666 6% P = 18 600 118 600 118 600 0 118 600 0 118 600 0 128 000 422 0 422	39.2% 32.4% 9.1% 2.1% 2.1% 7.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 5.8% 86.9% 13.1%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.31 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable 0.70 (0.24, 2.07)	M-H, Random, 95% CI
		12.3.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau ² = Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Nata Test for overall effect Total (95% CI) Total events Heterogeneity, Tau ² = Test for subgroup 12.4.1 Observational Bissolo 2021 Fistouris 2022 Nakagomi 2011 Rotez 2017 Scheiwe 2023 Yoshikare 2021 Subtotal (95% CI) Total events Heterogeneity, Tau ² = Test for overall effect 12.4.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Tau ² = Test for overall effect 12.4.2 RCTs Kim 2014 Yamamoto 2010 Subtotal (95% CI) Total events Heterogeneity, Tau ² = Test for overall effect Total events Heterogeneity, Tau ² =	Venents 1 17 0 17 0 17 0 14 3 3 0 14 3 0 17 0 14 3 1 3 0 14 3 0 0 14 3 0 1 2 0 0 2 2 2 5 1 30 0 2 2 5 1 30 0 2 2 5 0 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 <td< td=""><td>$\begin{array}{c} \hline {\bf Total} \\ \hline {\bf 215} \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ {\bf 20} \\ {\bf 0} \\ {\bf 1} \\ {\bf 1} \\ {\bf Total} \\ {\bf 1} \\ {\bf 1} \\ {\bf Total} \\ {\bf 1} \\ {\bf 1} \\ {\bf 0} \\$</td><td>Events 40 0 34 25 46 9 154 9 11 11 14) 165 1, off = 5 (P = 0.38); P = 00001) 1.23, off = 1 (P = 0.27), Conventional treatm 77 0 39 44 0 7 167 6, off = 3 (P = 0.46); P = 10 10 10 10 10 10 10 10</td><td>Total 226 0 118 600 223 19 646 2% 00 20 6666 6% P = 18 00 118 00 118 00 118 00% 423 00% 422 465</td><td>39.2% 32.4% 9.1% 2.1% 2.1% 7.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 5.8% 86.9% 13.1%</td><td>M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.31 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable 0.70 (0.24, 2.07)</td><td>M-H, Random, 95% CI</td></td<>	$\begin{array}{c} \hline {\bf Total} \\ \hline {\bf 215} \\ 0 \\ 0 \\ 214 \\ 20 \\ 0 \\ 20 \\ {\bf 20} \\ {\bf 0} \\ {\bf 1} \\ {\bf 1} \\ {\bf Total} \\ {\bf 1} \\ {\bf 1} \\ {\bf Total} \\ {\bf 1} \\ {\bf 1} \\ {\bf 0} \\ $	Events 40 0 34 25 46 9 154 9 11 11 14) 165 1, off = 5 (P = 0.38); P = 00001) 1.23, off = 1 (P = 0.27), Conventional treatm 77 0 39 44 0 7 167 6, off = 3 (P = 0.46); P = 10 10 10 10 10 10 10 10	Total 226 0 118 600 223 19 646 2% 00 20 6666 6% P = 18 00 118 00 118 00 118 00% 423 00% 422 465	39.2% 32.4% 9.1% 2.1% 2.1% 7.1% 89.8% 10.2% 100.0% 88% Weight 38.5% 31.0% 5.8% 5.8% 86.9% 13.1%	M.H., Random, 95% CI 0.40 (0.22, 0.73) Not estimable 0.17 (0.09, 0.34) 0.25 (0.07, 0.93) 0.09 (0.01, 1.57) 0.19 (0.04, 0.85) 0.26 (0.17, 0.39) Not estimable 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.55 (0.16, 1.91) 0.28 (0.18, 0.42) 0.28 (0.18, 0.42) 0.31 (0.20, 0.50) Not estimable 0.31 (0.13, 0.42) 0.31 (0.20, 0.50) Not estimable 0.18 (0.03, 1.02) 0.25 (0.18, 0.36) 0.70 (0.24, 2.07) Not estimable 0.70 (0.24, 2.07)	M-H, Random, 95% CI

Figure 3 Pooled ORs comparing fibrinolytic cisternal irrigation to conventional therapy. (A) Mortality, (B) functional outcome, (C) delayed cerebral ischaemia and (D) cerebral vasospasm. FCI, fibrinolytic cisternal irrigation; RCT, randomised controlled trial.


A – Mortality

6

Test for subgroup differences: Chi² = 2.34, df = 1 (P = 0.13), l² = 57.2%

Test for subgroup differences: Chi² = 4.54, df = 1 (P = 0.03), I² = 78.0%

C - Cerebral Vasospasm

	VCI		no V	CI		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl	
13.4.1 Observational								
Arakawa 2004 (1)	0	0	0	0		Not estimable		
Suzuki 1994 (2)	6	55	20	68	34.9%	0.29 [0.11, 0.80]		
Subtotal (95% CI)		55		68	34.9%	0.29 [0.11, 0.80]		
Total events	6		20					
Heterogeneity: Not appl	licable							
Test for overall effect: Z	= 2.41 (F	P = 0.02	2)					
13.4.2 RCTs								
Kim 2014 (3)	8	40	10	42	32.8%	0.80 [0.28, 2.29]		
Yamamoto 2016 (4)	7	35	19	35	32.3%	0.21 [0.07, 0.61]		
Subtotal (95% CI)		75		77	65.1%	0.41 [0.11, 1.52]		
Total events	15		29					
Heterogeneity: Tau ² = 0	.60; Chi ²	= 3.07	, df = 1 (F	P = 0.08	3); I ² = 679	8		
Test for overall effect: Z	= 1.33 (F	P = 0.18	3)					
Total (95% CI)		130		145	100.0%	0.37 [0.17, 0.79]	◆	
Total events	21		49					
Heterogeneity: Tau ² = 0	.19; Chi ²	= 3.36	, df = 2 (F	P = 0.19	3); I ² = 409	%		
Test for overall effect: Z	= 2.54 (F	P = 0.01	1)				0.01 0.1 1 10 1 Favors VCI Favors no VCI	100
Test for subgroup differ	ences: C	hi² = 0	.16, df =	1 (P = 0	0.69), I ² =	0%	Favors VCI Favors no VCI	
Footnotes								
(1) vs. conventional trea	atment							
(2) vs. simple irrigation								
(3) vs. conventional trea								

Figure 4 Pooled ORs comparing vasodilatory cisternal irrigation to treatment without vasodilatory cisternal irrigation. (A) Mortality, (B) functional outcome, (C) cerebral vasospasm. RCT, randomised controlled trial; VCI, vasodilatory cisternal irrigation. (HR: 4.4, 95% CI 0.6 to 31.2, p=0.14). They did not find any statistically significant difference in mortality or functional outcome between the intervention and control group.

DISCUSSION

In this review and meta-analysis, we evaluated the existing evidence on cisternal irrigation treatment for SAH and IVH. Concerning irrigation treatment in SAH, we found that fibrinolytic irrigation significantly reduced the mortality rate and improved functional outcome compared with conventional treatment. These findings could be mediated by the reduced risks of radiographic DCI and cerebral vasospasm. Our meta-analysis showed that vasodilatory irrigation also resulted in a significant reduction in mortality and a reduced risk of cerebral vasospasm in SAH patients, compared with no vasodilatory irrigation. However, the analyses did not support improvements in functional outcome or the rate of DCI in patients for this intervention. The evidence on irrigation in patients with IVH was very limited and one study raised safety concerns with the methodology, although the majority of adverse events were related to design features of the irrigation technology.³⁶ While another study pointed to beneficial outcomes in IVH patients treated with irrigation, it is important to consider the safety of the methods and technology used and thus the potential of the treatment remains unclarified.

When comparing any kind of cisternal irrigation to conventional therapy in SAH, our meta-analysis showed significant positive results for all outcomes. However, due to the sparse and heterogenic evidence of both vasodilatory irrigation and irrigation with only electrolyte solution, these results may be driven primarily by the effects of fibrinolytic irrigation.

Obstructive hydrocephalus, DCI and cerebral vasospasm are major contributors to the high morbidity and mortality in patients with SAH and IVH and are caused in part by blood coagulation and blood degradation products.⁴ Fibrinolytic irrigation represents a rational treatment option that could prevent secondary injuries by accelerating clot clearance and washing out blood degradation products.^{39 40}

Despite promising indications, the current evidence on irrigation therapy for SAH and IVH is sparse, and most of the existing studies are observational retrospective studies or case reports. While some studies included in this systematic review and meta-analysis found no statistically significant difference between treatments, none of the included studies reported worse outcomes in patients treated with irrigation therapy compared with no irrigation, suggesting that irrigation therapy overall is safe and feasible; however, we did not investigate safety outcomes in this study. To conclusively verify the effect of fibrinolytic or vasodilatory cisternal irrigation, it seems justified to perform a large, randomised trial.

Limitations

There was substantial heterogeneity in the surgical methodologies and irrigation interventions used in the included studies, which complicated study stratification. A high heterogeneity score is expected with the number of observational studies included, however, pooling studies may have resulted in substantial increase in heterogeneity, since including different combinations of fibrinolytic irrigation and vasodilatory irrigation treatment may be a significant driver for the high heterogeneity. Furthermore, the evidence quality was compromised for some outcomes, due to sparse literature, inclusion of observational studies without control groups, and substantial variations in the time points of outcome registration. For IVH, the evidence quality was compromised by few studies and low sample size. Finally, the funnel plots did not raise concern regarding publication bias, however, publication bias could result in non-publication of data showing neutral or negative results of irrigation therapy and cannot be ruled out. Moreover, the results for vasodilatory cisternal irrigation compared with other treatments revealed a discrepancy between randomised controlled trial and observational studies.

CONCLUSION

Cisternal irrigation may be associated with improved prognosis in patients with SAH when compared with conventional therapy. Fibrinolytic irrigation reduced mortality and improved functional outcome; effects that were also reflected in reduced risks of DCI and cerebral vasospasm. Vasodilatory cisternal irrigation may be a safe and feasible treatment for cerebral vasospasm; however, the current evidence is sparse, and future randomised studies are required to assess the treatment efficacy. We found no evidence to support irrigation therapy in patients with IVH.

Contributors Guarantor: ARK, Concept and design: ARK, MH. Acquisition, analysis or interpretation of data: ARK, ANRL, MGK, MH. Drafting of the manuscript: ANRL, MGK, ARK. Critical revision of the manuscript for important intellectual content: ARK, ANRL, MGK, JBV, MH, SD, MR, CZS. Final approval of the manuscript version to be published: ARK, ANRL, MGK, JBV, MH, SD, MR, CZS. Statistical analyses: ANRL, ARK, JBV.

Funding ARK is supported by grants from the Danish Cancer Society (R304-A17698-B5570 and R295-A16770), the Lundbeck Foundation (R325-2019-1490) and the Independent Research Fund Denmark (903900307B) unrelated to this study. MR is supported by a grant from The Health Research Fund of Central Denmark Region unrelated to this study. CZS is supported by grants from The Health Research Fund of Central Region Denmark and the Novo Nordisk Foundation unrelated to this study.

Competing interests ARK reports grants from IRRAS AB to Aarhus University Hospital to support the ACTIVE study and personal fees from IRRAS AB for a presentation at a scientific symposium describing his experiences with the IRRAflow technology during the conduct of the study; grants from IRRAS AB to Aarhus University Hos-pital to support the development of a neuromonitoring technology related to IRRAflow outside the submitted work; in addition, ARK has a patent for a neuromonitoring technology pending with relation to the IRRAflow technology. The remaining authors have no conflicts of interest to declare. **Patient consent for publication** Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Allice Nyborg Rosenkrans Lind http://orcid.org/0000-0001-6385-2356

REFERENCES

- Coppadoro A, Citerio G. Subarachnoid hemorrhage: an update for the Intensivist. *Minerva Anestesiol* 2011;77:74–84.
- 2 Qureshi Al, Tuhrim S, Broderick JP, et al. Spontaneous intracerebral hemorrhage. N Engl J Med 2001;344:1450–60.
- 3 Hanley DF, Lane K, McBee N, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet 2017;389:603–11.
- 4 Budohoski KP, Guilfoyle M, Helmy A, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014;85:1343–53.
- 5 Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American heart Association/American stroke Association. Stroke 2012;43:1711–37.
- 6 Haldrup M, Miscov R, Mohamad N, et al. Treatment of Intraventricular hemorrhage with external ventricular drainage and fibrinolysis: a comprehensive systematic review and meta-analysis of complications and outcome. World Neurosurg 2023;174:183–96.
- 7 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Rev Esp Cardiol (Engl Ed)* 2021;74:790–9.
- 8 Innovation VH. Covidence Systematic Review Software. Melbourne, Australia: Veritas Health Innovation,
- 9 GDT G. Gradepro guideline development tool [software]. McMaster University and Evidence Prime,: GRADEpro GDT; 2023. Available: https://www.gradepro.org/
- 10 Sterne JA, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355:i4919.
- 11 Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. *BMJ* 2019;366:I4898.
- 12 The Cochrane Collaboration. Review manager (Revman) [computer program]. version 5.4. The Cochrane collaboration. *The Cochrane Collaboration*; 2020.
- 13 Arakawa Y, Kikuta K, Hojo M, et al. Milrinone reduces cerebral vasospasm after subarachnoid hemorrhage of WFNS grade IV or V. Neurol Med Chir (Tokyo) 2004;44:393–400; .
- 14 Scheiwe C, Grauvogel J, Csók I, *et al.* Cisterno-ventricular Lavage after aneurysm Clipping for the prevention of delayed infarction in patients with subarachnoid hemorrhage. *Neurosurgery Practice* 2023;4.
- 15 Bissolo M, Scheiwe C, Csók I, et al. Introduction of cisternal lavage leads to avoidance of induced hypertension and reduced cardiovascular complications in patients with subarachnoid hemorrhage. J Clin Neurosci 2021;94:286–91.
- 16 Fistouris P, Scheiwe C, Grauvogel J, et al. Mitigation of blood load impact in patients with subarachnoid hemorrhage by cisternal lavage. Cerebrovasc Dis 2022;51:499–505.
- 17 Inagawa T, Kamiya K, Matsuda Y. Effect of continuous cisternal drainage on cerebral vasospasm. *Acta Neurochir (Wien)* 1991;112:28–36.
- 18 Kim JH, Yi HJ, Ko Y, *et al.* Effectiveness of Papaverine Cisternal irrigation for cerebral vasospasm after aneurysmal subarachnoid

hemorrhage and measurement of biomarkers. *Neurol Sci* 2014;35:715–22.

- 19 Nakagomi T, Furuya K, Nagashima H, et al. Surgical procedure and results of cisternal washing therapy for the prevention of cerebral vasospasm following SAH. Acta Neurochir Suppl 2011;110:105–9.
- 20 Roelz R, Coenen VA, Scheiwe C, et al. Stereotactic catheter ventriculocisternostomy for clearance of subarachnoid hemorrhage: a matched cohort study. Stroke 2017;48:2704–9.
- 21 Yamamoto T, Esaki T, Nakao Y, et al. Efficacy of low-dose tissueplasminogen activator Intracisternal administration for the prevention of cerebral vasospasm after subarachnoid hemorrhage. World Neurosurg 2010;73:675–82.
- 22 Yoshikane T, Miyazaki T, Yasuda S, et al. Aggressive intraoperative cisternal clot removal after clipping aneurismal subarachnoid hemorrhage in elderly patients. World Neurosurg 2021;147:e482–90.
- 23 Suzuki S, Ogane K, Souma M, et al. Efficacy of steroid hormone in solution for intracranial irrigation during aneurysmal surgery for prevention of the vasospasm syndrome. Acta Neurochir (Wien) 1994;131:184–8.
- 24 Yamamoto T, Mori K, Esaki T, *et al.* Preventive effect of continuous cisternal irrigation with magnesium sulfate solution on angiographic cerebral vasospasms associated with aneurysmal subarachnoid hemorrhages: a randomized controlled trial. *J Neurosurg* 2016;124:18–26.
- 25 Kodama N, Matsumoto M, Sasaki T, *et al.* Cisternal irrigation therapy with urokinase and ascorbic acid for prevention of vasospasm. *Acta Neurochir Suppl* 2001;77:171–4.
- 26 Matsukawa H, Tanikawa R, Kamiyama H, *et al.* Effects of clot removal by meticulous irrigation and continuous low-dose intravenous nicardipine on symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage treated by Clipping. *World Neurosurg* 2015;84:1798–803.
- 27 Ota N, Matsukawa H, Kamiyama H, et al. Preventing cerebral vasospasm after aneurysmal subarachnoid hemorrhage with aggressive cisternal clot removal and nicardipine. World Neurosurg 2017;107:630–40.
- 28 Roelz R, Grauvogel J, Scheiwe C, et al. Cisternal lavage via third ventriculostomy through the fenestrated lamina terminalis after aneurysm clipping: technical NOTE. J Clin Neurosci 2019;64:283–6.
- 29 Sasaki T, Kodama N, Kawakami M, et al. Urokinase cisternal irrigation therapy for prevention of symptomatic vasospasm after aneurysmal subarachnoid hemorrhage: a study of urokinase concentration and the fibrinolytic system. Stroke 2000;31:1256–62.
- 30 Jito J, Nakasu Y, Nakasu S, et al. Tissue plasminogen activator levels after single intracisternal injection in patients with subarachnoid hemorrhage. *Neurol Med Chir (Tokyo)* 2004;44:55–60; .
- 31 Roelz R, Scheiwe C, Grauvogel J, et al. Early cisternal fibrinolysis is more effective than rescue spasmolysis for the prevention of delayed infarction after subarachnoid haemorrhage. *Stroke Vasc Neurol* 2022;7:108–13.
- 32 Hänggi D, Beseoglu K, Turowski B, et al. Feasibility and safety of intrathecal nimodipine on posthaemorrhagic cerebral vasospasm refractory to medical and endovascular therapy. *Clin Neurol Neurosurg* 2008;110:784–90.
- 33 Mori K, Yamamoto T, Nakao Y, et al. Initial clinical experience of vasodilatory effect of intra-cisternal infusion of magnesium sulfate for the treatment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 2009;49:139–44;
- 34 Roelz R, Scheiwe C, Coenen VA, et al. A novel rescue therapy for cerebral vasospasm: cisternal nimodipine application via stereotactic catheter ventriculocisternostomy. J Clin Neurosci 2019;63:244–8.
- 35 Ding HT, Han Y, Sun DK, et al. Efficacy and safety profile of Neuroendoscopic Hematoma evacuation combined with Intraventricular Lavage in severe Intraventricular hemorrhage patients. *Brain Behav* 2020;10:e01756.
- 36 Haldrup M, Rasmussen M, Mohamad N, et al. Intraventricular Lavage vs external ventricular drainage for Intraventricular hemorrhage: a randomized clinical trial. JAMA Netw Open 2023;6:e2335247.
- 37 Irras. Irraflow® 2023. 2023. Available: https://irras.com/product/ introducing-irraflow
- 38 Mette H, Mojtaba N, Chenghao G, et al. Reliability and performance of the Irraflow® system for intracranial Lavage and evacuation of hematomas - a technical NOTE. medRxiv 2023;2023.
- 39 Masomi-Bornwassser J, Freguia F, Müller-Werkmeister H, et al. Effect of irrigation on fibrinolytic rtPA therapy in a clot model of intracerebral haemorrhage: a systematic in vitro study. Acta Neurochir (Wien) 2018;160:1159–65.
- 40 Regula JU, Schill J, Ringleb PA, et al. Cerebral vasospasm and delayed cerebral ischemia in intraventricular hemorrhage. *Neurocrit Care* 2014;20:460–5.