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ABSTRACT
Background  Degenerative cervical myelopathy (DCM) is 
the most common form of atraumatic spinal cord injury 
globally. Clinical guidelines regarding surgery for patients 
with mild DCM and minimal symptoms remain uncertain. 
This study aims to identify imaging and clinical predictors 
of neurological deterioration in mild DCM and explore 
pathophysiological correlates to guide clinical decision-
making.
Methods  Patients with mild DCM underwent advanced 
MRI scans that included T2-weighted, diffusion tensor 
imaging and magnetisation transfer (MT) sequences, along 
with clinical outcome measures at baseline and 6-month 
intervals after enrolment. Quantitative MRI (qMRI) metrics 
were derived above and below maximally compressed 
cervical levels (MCCLs). Various machine learning (ML) 
models were trained to predict 6 month neurological 
deterioration, followed by global and local model 
interpretation to assess feature importance.
Results  A total of 49 patients were followed for a 
maximum of 2 years, contributing 110 6-month data 
entries. Neurological deterioration occurred in 38% of 
cases. The best-performing ML model, combining clinical 
and qMRI metrics, achieved a balanced accuracy of 83%, 
and an area under curve-receiver operating characteristic 
of 0.87. Key predictors included MT ratio (demyelination) 
above the MCCL in the dorsal and ventral funiculi and 
moderate tingling in the arm, shoulder or hand. qMRI 
metrics significantly improved predictive performance 
compared to models using only clinical (bal. acc=68.1%) 
or imaging data (bal. acc=57.4%).
Conclusions  Reduced myelin content in the dorsal and 
ventral funiculi above the site of compression, combined 
with sensory deficits in the hands and gait/balance 
disturbances, predicts 6-month neurological deterioration 
in mild DCM and may warrant early surgical intervention.

INTRODUCTION
Degenerative cervical myelopathy (DCM) is 
the most common form of atraumatic cervical 

spinal cord injury.1 2 DCM is an umbrella term 
for several degenerative changes in the spinal 
column that cause progressive compression 
of the cervical spinal cord. These underlying 
changes may include cervical spondylosis, 
ossification of the posterior longitudinal 
ligament, ossification of the ligamentum 
flavum and degenerative disc disease.1 
Typical symptoms include gait imbalance, 
dexterity impairment in the hands, upper 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Mild degenerative cervical myelopathy (DCM) pres-
ents a challenge in clinical management due to its 
unpredictable natural history. This is caused by a 
lack of reliable prognostic indicators of neurological 
deterioration, leading to a lack of consensus on when 
to recommend surgical intervention for patients with 
minimal symptoms but who may deteriorate.

WHAT THIS STUDY ADDS
	⇒ This study demonstrates that combining quantita-
tive MRI (qMRI) metrics, particularly magnetisation 
transfer (MT) ratios, with clinical outcome measures 
significantly enhances the ability to predict early 
neurological deterioration in mild DCM.

	⇒ Our single-centre study comprises one of few lon-
gitudinal, multiyear cohorts of patients with non-
operative mild DCM.

	⇒ Demyelination in the dorsal and ventral spinal cord 
regions above the level of compression was found 
to be a key marker of deterioration within patients.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Incorporating qMRI methods, such as tract-specific 
MT ratio, may allow for better-informed surgical 
decision-making and early intervention in individual 
patients with mild DCM.
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and lower extremity numbness and sphincter dysfunc-
tion.3 Currently, the most widely accepted method of 
classifying DCM severity is through the clinician-reported 
modified Japanese Orthopaedic Association (mJOA) 
scale. The mJOA scale assesses upper and lower extremity 
motor dysfunction, upper extremity sensory dysfunction 
and sphincter dysfunction.4 Scores are stratified into 
mild (mJOA 15–18), moderate (mJOA 12–14) and severe 
(mJOA<12) DCM.5 The minimum clinically important 
difference, for patients with mild, moderate and severe 
DCM with a change in mJOA of 1, 2 or 3 points across 
time, respectively.6

Surgery is currently the only effective treatment for 
DCM, yet clinical guidelines remain unclear on its effec-
tiveness for patients with mild disease.7 Likewise, an inter-
national survey of 699 surgeons, physicians and academics 
found no consensus on the management of mild DCM.8 
A cost-utility analysis study suggested that early surgery 
for patients with mild DCM was cost-effective for the 
Canadian healthcare system, being associated with life-
time gains in health-related quality of life (HRQOL).9 
However, if an individual patient is minimally affected 
by symptoms and their risk of neurological deterioration 
could be reliably estimated as low, then surgical treatment 
would be unlikely to be superior to the natural history.

The widespread adoption of MRI has allowed for the 
confirmation of DCM diagnosis and the development of 
sophisticated treatment plans.10 Conventional MRI acqui-
sitions typically include T2-weighted series in the sagittal 
and axial plane which provide sharp contrast between the 
spinal cord, cerebrospinal fluid and surrounding struc-
tures.11 Support in the literature has grown with respect 
to quantitative and advanced MRI techniques capable of 
capturing metrics of axon integrity and spinal cord demy-
elination. A systematic review of clinical studies suggested 
the importance of diffusion tensor imaging (DTI) and 
magnetisation transfer (MT) sequences in improving 
the diagnosis and treatment of DCM.12 DTI measures 
the directional diffusivity of water per voxel; thus, axon 
integrity metrics could be derived and could predict func-
tional impairment in mild-to-moderate DCM.13 MT scans 
provide a measure of myelin content through the exci-
tation of protons in water molecules bound to macromol-
ecules and can ultimately be represented as a ratio (MT 
ratio (MTR)).14 However, the inclusion of quantitative 
MRI (qMRI) protocols requires advanced analytical tech-
niques that are not implemented routinely.15

The use of semi-automated machine learning (ML) 
based systems is one means of integrating qMRI metrics 
into a clinical decision-making framework. Currently, 
predictive modelling of neurological deterioration in 
patients with mild DCM is inaccurate, unreliable and 
rarely seen in the literature. One study was able to predict 
changes in the Short Form-36 HRQOL measure with an 
area under curve (AUC) of 0.77–0.78 in 193 patients with 
mild DCM.16 The study did not include qMRI metrics 
within its modelling pipeline. While showing promise, no 
ML models have been published that predict neurological 

deterioration in non-operative patients with mild DCM. 
Furthermore, existing mild DCM ML models lack the 
inclusion of comprehensive qMRI-derived metrics, such 
as fractional anisotropy (FA) and MTR.

In this study, we developed supervised ML models aimed 
at predicting neurological deterioration among patients 
with non-operative mild DCM who were enrolled in our 
observational study. We observed patients from the time 
of diagnosis and at 6-month intervals after enrolment with 
clinical outcome measures and qMRI metrics focussing on 
axonal integrity (DTI-derived) and demyelination (MT-de-
rived). We also explored pathophysiological correlates that 
may offer clinicians insight to help guide decision-making.

METHODS
Study subjects
As of January 2023, 508 patients with a diagnosis of DCM 
were enrolled in the Canadian Spine Outcomes Research 
Network Registry through the University of Calgary 
Spine Program. A subset of these patients were enrolled 
in concurrent longitudinal studies titled ‘Personalized 
decision making after a diagnosis of cervical myelopathy: 
quantitative MRI within an artificial intelligence frame-
work’ and ‘Natural History of Mild Degenerative Cervical 
Myelopathy: an observational study’. These longitudinal 
studies included the collection of an advanced MRI and 
clinical metric protocol. Exclusion criteria for this study 
included patients with other confounding neurological 
conditions (ie, Parkinson’s disease), patients with other 
compressive spinal cord pathologies (ie, spinal cord 
tumours) and patients who did not fall within the mild 
mJOA severity class.

For this study, we identified 49 consecutive patients 
with non-operative mild DCM whose data was collected 
for up to 2 years using 6-month intervals. All collected 
data was de-identified and stored in a Brain Imaging Data 
Structure format before analysis.17

Patient and public involvement
No patient and public involvement.

Clinical metrics data collection
The mJOA was collected at baseline and the changes in 
mJOA after 6 months were used as the primary outcome in 
this study.4 Deterioration was considered as a loss of 1 or 
more points on mJOA over the study period. Other clinical 
metrics collected include gait and balance function (30-
metre walk test and the Berg Balance Scale),18 hand func-
tion (grip strength test and quick disabilities of the arm, 
shoulder and hand (quickDASH) test)19 and global func-
tion (Myelopathy Disability Index).20 We also collected 
included age, sex, body mass index (BMI), smoking status 
and the presence or absence of a Hoffman sign.

MRI data collection
Advanced imaging protocol
All MRI data was acquired on the same 3T GE scanner. 
A T2-weighted acquisition was acquired as follows: 

B
M

J N
eurology O

pen: first published as 10.1136/bm
jno-2024-000940 on 31 January 2025. D

ow
nloaded from

 https://neurologyopen.bm
j.com

 on 21 A
pril 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.



3Al-Shawwa A, et al. BMJ Neurol Open 2025;7:e000940. doi:10.1136/bmjno-2024-000940

Open access

FIESTA-C sequence (T2-weighted); 512×512, NEX 
1.0, FOV 200 mm, slice thickness 0.4 mm; resulting 
in a voxel size of 0.4×0.4 × 0.4 mm3, collected in the 
coronal plane. MRI records also contained sequences 
suggested in the spine-generic protocol, namely: DTI 
and MT image acquisitions, each with 13 axial slices 
across the C1–C7 vertebrae, using a variable gap to 
alternate between bone and intervertebral discs. DTI 
used spin-echo single-shot echo planar imaging with 
three acquisitions averaged offline, b=800 s/mm2 in 25 
directions, 5 images with b=0 s/mm2 and resolution of 
1×1 × 5 mm3 (7 min total). MT used two-dimensional 
spoiled gradient echo with/without MT pre-pulse 
(offset=1.2 kHz), with 1×1 × 5 mm3 voxels, for 8 min 
total. Total imaging time for all acquisitions together 
came to approximately 30 min after accounting for 
patient positioning, slice prescription and high-order 
shimming.

Atlas-based spinal cord analysis
DTI and MT-derived metrics were used to quantitatively 
assess spinal cord axon integrity and demyelination 
respectively. Quantitative metrics were derived using the 
Spinal Cord Toolbox (SCT), an all-in-one open-source 
spinal cord specific Python package designed to analyse 
and derive metrics of the spinal cord.21 Initially, the spinal 
cord was segmented on T2-weighted images,22 followed by 
semi-automated vertebral level labelling.23 The vertebral 

levels were then resampled in the DTI/MT space. This 
allowed for a more accurate estimation of the vertebral 
levels using the anatomical contrast advantages of T2-
weighted images. Next, the PAM50 template24 was regis-
tered to the DTI/MT space and the white matter atlas25 
was warped to fit the image appropriately. Quality control 
inspection of the final warped atlas and vertebral levels 
was done by a graduate student with 5 years of MRI anal-
ysis experience.

DTI metrics, including FA, axial diffusivity, medial 
diffusivity, radial diffusivity, along with MT metrics such 
as MTR were derived from one vertebral level above 
and below the maximally compressed cervical level 
(MCCL). DTI/MT metrics were collected in this way 
due to poor quality control of SCT metrics at the levels 
of severe compression and consistent analysis failure. 
The MCCL was determined individually by a graduate 
student focused on DCM research with 5 years of expe-
rience in MRI analysis and a neurosurgery-trained 
spine fellow on all collected MRI scans. MCCL was 
established as a consensus between both raters. Using 
the SCT atlas-based analysis, DTI and MT metrics were 
derived as described for the entire spinal cord, white 
matter tracts collectively, grey matter tracts collec-
tively, the ventral funiculi, dorsal funiculi and lateral 
funiculi (figure 1). A complete list of derived metrics 
can be found in online supplemental appendix A.

Figure 1  Representation of collected metrics above and below MCCL. Subplot A shows the T2w sagittal image of a patient 
with mild DCM with focal cord compression at the C4/C5 disc level. Subplot B contains axial images of the DTI FA map and 
MTR map above the level of MCCL. Subplot C contains segmentation and atlas examples of the regions collected for data 
extraction with the study. DCM, degenerative cervical myelopathy; DTI, diffusion tensor imaging; FA, fractional anisotropy; GM, 
grey matter; MCCL, maximally compressed cervical level; MTR, magnetisation transfer ratio; WM, white matter.
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Manually derived MRI metrics
Each T2-weighted scan underwent manual analysis of 
cord compression and spinal canal diameter measure-
ment in both the axial and sagittal plane. This consisted of 
evaluating the C2-T1 disc levels as either having cerebro-
spinal fluid present, minimal cord compression or severe 
cord compression. Furthermore, at each vertebral level 
spinal canal diameter was measured between the middle 
of the dorsal surface of the vertebral body to the middle 
of the ventral surface of the lamina. This methodology 
was followed based on previous work aimed at identifying 
neurological deterioration in patients with non-operative 
DCM.26

A subset of 50 randomly selected scans underwent 
repeat evaluations by a neurosurgery fellow with a subspe-
cialty focus in spine surgery to validate assessment reli-
ability. This was done through the use of the Cohen kappa 
statistic and via two-way random effect, single random 
rater intraclass correlation testing between the two raters.

ML approach
Data preprocessing
All data preprocessing was done using the SciKit-Learn 
python package. Data preprocessing included splitting 
the data into 80% training data and 20% testing data. 
This was followed by data imputation of missing data 
using a linear regression iterative imputer for continuous 
variables and a mode-based imputer for categorical vari-
ables. Data scaling included minimum–maximum scaling 
for continuous variables and one hot encoding for cate-
gorical variables. Recursive feature elimination with 
cross-validation (RFECV) was used to eliminate redun-
dant features, followed by Principal Component Analysis 
(PCA) to reduce the dimensionality of the feature set. This 
dimensionality reduction is intended to combat model 
overfitting and improve model generalisability. Following 
this reduction, Synthetic Minority Over-Sampling was 
implemented to combat the data set imbalance.

Hyperparameter tuning and model evaluation
Logistic regression (LR), random forest classifier (RFC) 
and support vector classifier (SVC) models were all tuned 
and evaluated to determine the best-fit model. These were 
chosen based on previous evidence suggesting their effi-
cacy within a DCM population.27 Hyperparameter tuning 
was done through a fivefold, 10-repetition stratified cross-
validated grid search aimed at maximising the model’s 
balanced accuracy score. A complete list of tested hyper-
parameters is included in online supplemental appendix 
B. The tuned model was then evaluated on the testing set 
and evaluated for balanced accuracy, F1 score (harmonic 
mean of precision and recall), receiver operating char-
acteristic-AUC (ROC-AUC), sensitivity and specificity. 
Shapley Additive Explanations (SHAP), a game theo-
retic approach to explain ML model predictions, was 
employed on the best-performing model to evaluate 
global model feature importance.28 Local Interpretable 
Model-agnostic Explanations (LIME) were employed on 

the most reliably predicted cases in each of the deterio-
rate and non-deteriorate cohorts to evaluate local model 
feature importance.29

RESULTS
Patient characteristics
Initially, 74 patients with a diagnosis of mild DCM were 
enrolled in our longitudinal studies. 25 patients were 
excluded from this analysis as the patient and surgeon 
elected for operative treatment rather than an observa-
tional treatment plan or the patient was missing their 
6-month mJOA data. Ultimately, there were 110 included 
scans from 49 unique patients. 42 scans correspond to 
patients who experienced neurological deterioration 
within 6 months and 68 scans correspond to patients for 
whom the mJOA remained stable or improved across 
6 months (figure 2). The longitudinal nature of the study 
meant that each unique patient underwent multiple 
assessments and each assessment was used as an indepen-
dent data point within the model (figure 3).

The mean baseline mJOA of the patient group was 
16.7±1.0. The mean change in mJOA over 6 months was 
1.4±0.8 and 0.4±0.7 for patients who deteriorated and 
did not deteriorate, respectively. The mean overall age of 
the participants was 58.7±12.9 and the average BMI was 
26.5±4.8. A minority of patients (14.5%) smoked ciga-
rettes. The C5/C6 disc level was the most common MCCL 
for both patients who deteriorate (43%) and those who 
do not deteriorate (41%). A summary of patient demo-
graphics between the deterioration and non-deterioration 
cohorts can be seen in table 1.

Model performance
The best-performing model, as measured by average 
balanced accuracy, contained the data set with a combi-
nation of qMRI-derived metrics and clinical metrics 
(table 2). The ML models containing only imaging-based 
metrics had the greatest range of accuracy with a∼30% 
difference between the tuned LR model and the SVC 
model. The best imaging-only model (0.643) and clinical-
only model (0.732) performed worse than the worst-
performing combination model (0.795). Generally, the 
imaging-only models had lower sensitivity than specificity, 
averaging 0.458 and 0.691, respectively. The combined 
models showed an opposite trend with a mean sensitivity 
of 0.917 and a mean specificity of 0.714. On the other 
hand, the clinical-only model had an average sensitivity 
and specificity of 0.667 and 0.691. When compared across 
data sets, the SVC was the best-performing model type 
with an average balanced accuracy of 0.735 followed by 
RFCs (0.702) and LRs (0.631). The area under the ROC 
curve follows a similar trend with the combined support 
vector classifier model (0.87), outperforming the clinical-
only (0.71) and imaging-only (0.72) models (figure  4). 
The F1-scores in model performance followed the same 
trend with SVC outperforming both LR and RFC models. 
The SVC F1 score for the combined model (0.778) 
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outperformed the clinical-only (0.667) and imaging-only 
(0.533) models.

Model explainability
Following RFECV, the data set was reduced from 171 
unique features to 102, which was further refined to 32 
principal components, which captured 90% of the vari-
ance in the data. From the original feature set, SHAP 

analysis was conducted on the best-performing model 
and highlighted the 20 most important features for model 
performance (figure  5) which includes 13 imaging-
derived metrics and 7 clinical metrics. Of the 13 imaging-
derived, 10 came from DTI/MT images and 3 were 
T2-weighted based metrics. Five of the most important 
qMRI-derived metrics were collected above the MCCL 

Figure 2  Patient enrolment overview. The final included data set contained 49 unique patients totalling in 110 6-month scan 
entries. With data collected every 6 months, many patients were categorised as both patients who deteriorate (n=42) and those 
who do not (n=40). Patients who have been enrolled in the study for a longer duration and contain more data points are more 
likely to have experienced deterioration at some point in their enrolment. Each patient scan was entered within the model as an 
independent data point. Overall, there are more patients who do not deteriorate than those who do, aligning with the expected 
natural history of mild DCM. 18 patients were eliminated due to enrolment within an operative treatment plan. A small number 
of scans (n=2) were eliminated due to poor imaging-derived metrics as a result of poor template registration that could not be 
manually corrected. DCM, degenerative cervical myelopathy; mJOA, modified Japanese Orthopaedic Association.
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Figure 3  Representation of the change in the neurological condition of the uniquely enrolled patients. Each box represents 
an independent 6-month time period, with consecutive boxes representing the consecutive periods of enrolment and data 
collection for a single patient. A blue box means that the patient did not experience a decrease in mJOA, particularly in that 
6-month duration. A red box means that the patient did experience a decrease in mJOA by 1 or more points within the past 
6 months. Consecutive red boxes indicate a repeated decrease in mJOA at multiple data collection sessions. Grey boxes 
indicate missing or incomplete data collection for that 6-month time period. Patients who have been enrolled for longer in the 
study are likely to experience deterioration at some point in their enrolment, with only patients who have been enrolled for 1 
year not experiencing deterioration. While deterioration is described as a decrease in mJOA by 1 or more points, the functional 
and quality of life decline is not captured in this figure. BL, baseline; mJOA, modified Japanese Orthopaedic Association; 6mo, 
6 months; 12mo, 12 months; 18mo, 18 months; 24mo, 24 months.
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and five were collected below the MCCL. The five most 
influential metrics to model performance include MTR 
of the dorsal/ventral funiculi above the MCCL, moderate 
tingling in the arm, shoulder and hand (quickDASH item 

10), the total quickDASH score and MTR of the lateral 
funiculus below the MCCL, respectively. MTR above the 
MCCL of the dorsal funiculus had the most significant 
model impact with a mean model output magnitude of 
0.12 (SHAP value), with the next most important feature 
(MTR above the MCCL of the ventral funiculus) having 
a magnitude of 0.07. These feature importance trends 
are reflected at both the overall and individual patient 
prediction levels (figure 6).

DISCUSSION
For patients with mild DCM, there is uncertainty about 
whether to pursue surgical intervention because symp-
toms are relatively mild and it has been difficult to reli-
ably predict if neurological deterioration will occur. This 
study demonstrated that a combination of clinical and 
qMRI metrics that capture information relevant to the 
pathophysiology of spinal cord injury offer improved 
predictive ability with respect to clinical deterioration 
after a diagnosis of mild DCM. In doing so, this study has 
demonstrated the utility of semi-automated qMRI-derived 
metrics and supports the need for advanced imaging in 
the monitoring and clinical decision-making process for 
patients with mild DCM.

Retrograde degeneration as a marker of early neurological 
deterioration
Our models indicate that MTR may be more sensitive 
for detecting early neurological deterioration than 
DTI-based metrics in mild DCM. MTR metrics account 
for three of the five most important metrics in this ML 
model’s prediction. Furthermore, MTR metrics above and 
below the MCCL were identified as important, suggesting 
the potential usefulness in identifying retrograde and 
anterograde (Wallerian) axonal degeneration. In a novel 
cervical spondylotic myelopathy rat model, evidence of 

Table 1  Characteristics of patients included in the ML 
model data set. There is a balance between patients who 
are male (47%) and female (53%) and the mean age of 
all subjects is 58.7 years. A majority of patients contain a 
negative Hoffman sign. 14% of enrolled patients smoke. 
The most common cervical level of maximal compression is 
the C5/C6 region (41%) followed by the C4/C5 level (31%). 
A majority of patients contain a combination of pathologies 
leading to their DCM, with degenerative disc disease and 
spondylosis being the most common independently and 
most likely to be seen within the same patient

Characteristics
Study subjects 
(n=49)

Age in years 58.7 (12.9)

Sex (male/female) 23/26 (47/53)

BMI (kg/m2) 26.5 (4.8)

Smoking status (yes/no) 7/42 (14/86)

Hoffman sign present (positive/
negative/NA)

19/29/1
(38/60/2)

Six-month change in mJOA score −0.3 (1.2)

Maximally compressed cervical level

 � C3/C4 6 (12)

 � C4/C5 15 (31)

 � C5/C6 20 (41)

 � C6/C7 8 (16)

Data is given as absolute numbers (percentage) or mean (SD).
BMI, body mass index; DCM, degenerative cervical myelopathy; 
mJOA, modified Japanese Orthopaedic Association Scale; ML, 
machine learning; NA, missing data.

Table 2  Tuned ML model testing set performance on differing data set variations. The overall best-performing model based 
on balanced accuracy was the SVC when clinical and imaging metrics were combined (0.830). That model’s sensitivity and 
specificity were 0.875 and 0.786, respectively. The worst-performing model based on balanced accuracy was the logistic 
regression model of imaging-only metrics. A majority of models performed within the 0.6–0.7 balanced accuracy range. The 
RFC of the combined clinical and imaging metrics contained a sensitivity score of 1.000, indicating that it was capable of 
correctly predicting which patients would deteriorate in every case

Data set variation Model type Balanced accuracy F1 score Sensitivity Specificity

Imaging metrics only LR 0.464 0.400 0.500 0.429

RFC 0.616 0.462 0.375 0.857

SVC 0.643 0.533 0.500 0.786

Clinical metrics only LR 0.634 0.556 0.625 0.643

RFC 0.670 0.588 0.625 0.714

SVC 0.732 0.667 0.750 0.714

Combined imaging and clinical metrics LR 0.795 0.737 0.875 0.714

RFC 0.821 0.762 1.000 0.643

SVC 0.830 0.778 0.875 0.786

LR, logistic regression; ML, machine learning; RFC, random forest classifier; SVC, support vector classifier.
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retrograde and Wallerian degeneration, particularly in 
spinal cords facing prolonged compression has been 
shown.30 Furthermore, our ML model highlighted retro-
grade degeneration in the dorsal funiculi as an important 
indicator of neurological deterioration, aligning with 

electrophysiological findings from Kanchiku et al rabbit 
model study.31

Ellingson et al have indicated that a reduction in FA 
values at the site of compression is a strong biomarker 
for differentiating between patients with moderate DCM 

Figure 4  ROC curves for the imaging-only, clinical-only and combined data sets across varying model types. Subplot A 
contains the imaging-only metric models, subplot B contains the clinical metric-only models and subplot C contains the models 
using a combination of clinical and imaging metrics. The AUC of each model is reported in the figure caption. When imaging 
and clinical metrics were combined, the most performed better with AUC scores above 0.8 than when imaging and clinical 
metrics were used independently. The logistic regression model for imaging-only metrics performed worse with an AUC lower 
than random guessing (0.43). AUC, area under curve; LR, logistic regression; RFC, random forest classifier; ROC, receiver 
operating characteristic; SVC, support vector classifier.
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Figure 5  The 20 most important features for model performance are represented through SHAPely values. The represented 
plot comes from the combined clinical and imaging SVC model following tuning, validation and testing. The plot contains the 
20 most important metrics for model performance with 10/20 coming from qMRI metrics. 3/5 most influential metrics for the 
model’s performance were metrics of demyelination as represented through the MTR. The most important clinical metrics were 
Item 10 of the quickDASH scale (tingling and numbness in the arm, shoulder or hand) and the overall quickDASH score of the 
patient. AD, axial diffusivity; CSA, cross-sectional area; CSF: cerebrospinal fluid; DF, dorsal funiculus; FA, fractional anisotropy; 
GM, grey matter; LF, lateral funiculus; MCCL, maximally compressed cervical level; mJOA, modified Japanese Orthopaedic 
Association; MTR, magnetisation transfer ratio; quickDASH, quick disabilities of the arm, shoulder and hand questionnaire; 
qMRI, quantitative MRI; RD, radial diffusivity; SHAP, Shapley Additive Explanations; SVC, support vector classifier; T/F, True/
False; VF, ventral funiciulus; WM, white matter.
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and patients with mild/asymptomatic DCM.13 However, 
the study indicated that FA values could not significantly 
differentiate between patients with no neurological 
impairment and those with mild neurological impair-
ment.13 This is demonstrated in this study in which FA 
was the most important of the DTI metrics with an overall 
feature importance of seventh place.

Clinical and qMRI metrics play complementary roles 
in determining the risk of neurological deterioration. 
When trained on clinical or qMRI metrics independently, 
the ML model’s performance accuracy decreased on 
average by 9%. This indicates that while qMRI metrics are 

important to model performance, the inclusion of clinical 
metrics that symptomatically express spinal cord deterio-
ration can act to improve the model’s predictive capacity. 
Interestingly, the most important clinical metric of the 
model’s performance was the quickDASH score, specifi-
cally a ‘moderate’ score in quickDASH item 10 (moderate 
tingling in the arm, shoulder and hand). This aligns with 
qMRI MTR metrics in the dorsal funiculus which contain 
sensory tracts and were highlighted as the most important 
feature in the model. Ultimately, it appears that early 
myelin breakdown in the spinal cord at regions affecting 
fine sensory function (such as upper extremity sensory 

Figure 6  Model prediction feature importance for the most reliably predicted case in each cohort. The prediction probability of 
the non-deteriorate patient was 0.98 and the prediction probability of the deteriorate patient was 0.92. The original value of the 
metric for the patient is represented through (value). CC, cord compression; DF, dorsal funiculus; LF, lateral funiculus; MCCL, 
maximally compressed cervical level; mJOA, modified Japanese Orthopaedic Association; MTR, magnetisation transfer ratio; 
quickDASH, quick disabilities of the arm, shoulder and hand questionnaire; SHAP, Shapley Additive Explanations; VF, ventral 
funiciulus; WM, white matter.
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function) may be indicative of early neurological deteri-
oration in patients with mild DCM and may warrant early 
surgical intervention. Although, it must be highlighted 
that our target outcome, the mJOA scale, is heavily influ-
enced by hand sensory function and therefore may cause 
sensory clinical metrics to be weighed more significantly 
within the model. Further validation and investigation 
are needed.

DCM pathobiology
There are many pathobiological consequences of 
prolonged and chronic compression of the cervical 
spinal cord.1 The chronic pathobiological consequences 
for patients with mild DCM remain unclear, particularly 
for patients who may face mild compression over many 
years and who are more likely to induce compensatory 
mechanisms within the cord.32 Recent studies have indi-
cated that chronic intraparenchymal ischaemia may 
be the cause of neural degeneration within the spinal 
cord,30 32 inducing a unique immune response.33 Based 
on the feature importance of our ML model, which is 
most strongly affected by demyelination surrogates such 
as MTR and less strongly by axonal markers, we suggest 
that this immune response may impact cord myelination 
more than axon integrity within patients with mild DCM, 
although further investigation is required.

Another study has suggested that neuronal loss and 
demyelination can be explained through spinal cord 
tethering which increases intramedullary pressure.34 
Interestingly, the same study found demyelination to 
begin in the ventral funiculus and progress to the lateral 
and dorsal funiculus.34 This contrasts with our finding 
suggesting a greater emphasis on the dorsal funiculus 
in patients with mild DCM followed by the ventral and 
lateral funiculus. It has been suggested that compensa-
tory mechanisms, particularly supraspinal and ‘cortico-
spinal reserve capacity’ may help to preserve neurological 
function while degeneration takes place.35 36 Similarly, 
our ML model shows low importance to many gross 
motor skills, such as tasks in the Berg Balance Scale, as 
they are likely to remain unchanged in patients with 
mild DCM. Our model did highlight the lower extremity 
motor component of the mJOA score as an important 
metric, even if only mild compromise to stability is seen. 
We speculate that if compromise to gross motor function 
such as walking stability is seen in the early stages of DCM 
progression and is not masked by compensatory mecha-
nisms, spinal tract compromise by way of demyelination 
may already be occurring.

Limitations
The primary limitation of this study is its single-centre 
design which restricts the model’s generalisability. The 
use of 6-month intervals led to multiple scans from the 
same patients, who are monitored more closely than 
typical clinical practice, possibly enhancing the detection 
of minor deterioration compared with broader cohorts. 
Furthermore, the use of only non-operative patients 

may limit the model’s generalisability in the context of 
a broader patient population. Another limitation of this 
study is the lack of inter-rater testing of the collected clin-
ical metrics. The reliance on SHAP and LIME, through 
surrogate-model-based explanations, is a limitation 
as some models lack inherent interpretability making 
complete verification of the identified important features 
challenging. Despite this, the overall trends in feature 
importance are likely robust. The inclusion of numerous 
qMRI and clinical metrics on a limited number of patient 
scans increases model complexity which may lead to over-
fitting and reduced statistical power. We mitigated this 
through PCA, RFECV and cross-validation, but a larger 
data set of unique patients would enhance reliability. This 
study is also limited in SCT’s segmentation algorithm 
capability which currently does not segment at regions 
of severe compression. Future studies with updated SCT 
segmentation algorithms will help to overcome this limita-
tion, allowing for metric collection at the site of maximal 
compression.

CONCLUSION
This study presents a new ML model using qMRI-derived 
and clinical metrics to predict 6-month neurological 
deterioration in patients with non-operative mild DCM, 
achieving 83% peak balanced accuracy. Key imaging 
and clinical metrics identified as potential deterioration 
markers include retrograde MTR in the dorsal and ventral 
funiculus, mild gait imbalance and moderate tingling in 
the arm, shoulder and hand. While these factors reliably 
contribute to the model’s predictions, further investi-
gation and validation are necessary. Future studies plan 
to expand the data set to multicentre patient groups, 
including a wider range of disease severity and work 
toward validating these models for clinical application. 
Furthermore, future studies should work to include a 
more comprehensive set of imaging and clinical metrics, 
including morphological spinal cord features, and test 
advanced ML approaches such as deep learning methods.

Author affiliations
1Hotchkiss Brain Institute, University of Calgary Cumming School of Medicine, 
Calgary, Alberta, Canada
2Combined Orthopaedic and Neurosurgery Spine Program, University of Calgary 
Department of Surgery, Calgary, Alberta, Canada
3Department of Biochemistry and Molecular Biology, University of Calgary Cumming 
School of Medicine, Calgary, Alberta, Canada
4University of Calgary Department of Clinical Neurosciences, Calgary, Alberta, 
Canada
5Section of Orthopaedic Surgery, University of Calgary Department of Surgery, 
Calgary, Alberta, Canada
6Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, 
Canada
7Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
8Functional Neuroimaging Unit, Université de Montréal, Montreal, Quebec, Canada
9Combined Neurosurgical and Orthopaedic Spine Program, The University of British 
Columbia Department of Surgery, Vancouver, British Columbia, Canada
10Division of Neurosurgery, University of Toronto Department of Surgery, Toronto, 
Ontario, Canada

B
M

J N
eurology O

pen: first published as 10.1136/bm
jno-2024-000940 on 31 January 2025. D

ow
nloaded from

 https://neurologyopen.bm
j.com

 on 21 A
pril 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.



12 Al-Shawwa A, et al. BMJ Neurol Open 2025;7:e000940. doi:10.1136/bmjno-2024-000940

Open access�

Contributors  AA-S: data analysis/collection, model creation, study design, 
statistical analysis, manuscript writing and editing, figure creation, final approval; 
MC: data analysis/collection, study design, manuscript writing and editing, figure 
creation, final approval; KO: data analysis, study design, manuscript revision/
editing, final approval; DA: study design, model feedback/revision, manuscript 
editing, final approval; SC: study design, study revision, manuscript editing, final 
approval; WBJ: study design, data collection, manuscript revision/editing, final 
approval; NE: study design, data collection, manuscript revision/editing, final 
approval; ST: study design, data analysis/collection, manuscript revision/editing, 
final approval; JB: data collection, manuscript revision/editing, final approval; PL: 
data collection, manuscript revision/editing, final approval; FN: data collection, 
manuscript revision/editing, final approval; AS: data collection, manuscript 
revision/editing, final approval; GS: data collection, manuscript revision/editing, 
final approval; KCT: data collection, manuscript revision/editing, final approval; 
SdP: data collection, manuscript revision/editing, final approval; MMHY: data 
collection, manuscript revision/editing, final approval; JC-A: study design, model 
revision/design, manuscript revision/editing, final approval; ND: study design, 
data collection, manuscript revision/editing, final approval; JW: study design, 
data collection, manuscript revision/editing, final approval; DWC: study design/
supervision, data collection, manuscript revision/editing, final approval, guarantor.

Funding  This work was supported by the Department of Clinical Neurosciences 
and the Hotchkiss Brain Institute; University of Calgary, Alberta Spine Foundation 
and the Canadian Institutes for Health Research.

Competing interests  No, there are no competing interests.

Patient consent for publication  Not applicable.

Ethics approval  This study involves human participants and was approved by 
University of Calgary, ethics certificate number: REB-15-1332, REB-18-1614 and 
REB-20-0186. Participants gave informed consent to participate in the study before 
taking part.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  No data are available.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Julien Cohen-Adad http://orcid.org/0000-0003-3662-9532
David W Cadotte http://orcid.org/0000-0003-2581-5903

REFERENCES
	 1	 Nouri A, Tetreault L, Singh A, et al. Degenerative Cervical 

Myelopathy: Epidemiology, Genetics, and Pathogenesis. Spine (Phila 
Pa 1976) 2015;40:E675–93. 

	 2	 Fehlings MG, Ibrahim A, Tetreault L, et al. A global perspective on 
the outcomes of surgical decompression in patients with cervical 
spondylotic myelopathy: results from the prospective multicenter 
AOSpine international study on 479 patients. Spine (Phila Pa 1976) 
2015;40:1322–8. 

	 3	 Davies BM, Mowforth OD, Smith EK, et al. Degenerative cervical 
myelopathy. BMJ 2018;360:k186. 

	 4	 Benzel EC, Lancon J, Kesterson L, et al. Cervical laminectomy and 
dentate ligament section for cervical spondylotic myelopathy. J 
Spinal Disord 1991;4:286–95. 

	 5	 Tetreault L, Kopjar B, Nouri A, et al. The modified Japanese 
Orthopaedic Association scale: establishing criteria for mild, 
moderate and severe impairment in patients with degenerative 
cervical myelopathy. Eur Spine J 2017;26:78–84. 

	 6	 Tetreault L, Nouri A, Kopjar B, et al. The Minimum Clinically Important 
Difference of the Modified Japanese Orthopaedic Association Scale 
in Patients with Degenerative Cervical Myelopathy. Spine (Phila Pa 
1986) 2015;40:1653–9. 

	 7	 Fehlings MG, Tetreault LA, Riew KD, et al. A Clinical Practice 
Guideline for the Management of Patients With Degenerative Cervical 
Myelopathy: Recommendations for Patients With Mild, Moderate, 
and Severe Disease and Nonmyelopathic Patients With Evidence of 
Cord Compression. Global Spine J 2017;7:70S–83S. 

	 8	 Brannigan JFM, Davies BM, Mowforth OD, et al. Management of 
mild degenerative cervical myelopathy and asymptomatic spinal cord 
compression: an international survey. Spinal Cord 2024;62:51–8. 

	 9	 Malhotra AK, Shakil H, Harrington EM, et al. Early surgery compared 
to nonoperative management for mild degenerative cervical 
myelopathy: a cost-utility analysis. Spine J 2024;24:21–31. 

	10	 Al-Mefty O, Harkey LH, Middleton TH, et al. Myelopathic cervical 
spondylotic lesions demonstrated by magnetic resonance imaging. J 
Neurosurg 1988;68:217–22. 

	11	 Nouri A, Martin AR, Mikulis D, et al. Magnetic resonance imaging 
assessment of degenerative cervical myelopathy: a review of 
structural changes and measurement techniques. Neurosurg Focus 
2016;40:E5. 

	12	 Martin AR, Aleksanderek I, Cohen-Adad J, et al. Translating state-
of-the-art spinal cord MRI techniques to clinical use: A systematic 
review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. 
Neuroimage Clin 2016;10:192–238. 

	13	 Ellingson BM, Salamon N, Grinstead JW, et al. Diffusion tensor 
imaging predicts functional impairment in mild-to-moderate cervical 
spondylotic myelopathy. Spine J 2014;14:2589–97. 

	14	 Grossman RI, Gomori JM, Ramer KN, et al. Magnetization transfer: 
theory and clinical applications in neuroradiology. Radiographics 
1994;14:279–90. 

	15	 Martin AR, Tadokoro N, Tetreault L, et al. Imaging Evaluation of 
Degenerative Cervical Myelopathy: Current State of the Art and 
Future Directions. Neurosurg Clin N Am 2018;29:33–45. 

	16	 Khan O, Badhiwala JH, Witiw CD, et al. Machine learning 
algorithms for prediction of health-related quality-of-life after 
surgery for mild degenerative cervical myelopathy. Spine J 
2021;21:1659–69. 

	17	 Gorgolewski KJ, Alfaro-Almagro F, Auer T, et al. BIDS apps: 
Improving ease of use, accessibility, and reproducibility of 
neuroimaging data analysis methods. PLoS Comput Biol 
2017;13:e1005209. 

	18	 Berg KO, Wood-Dauphinee SL, Williams JI, et al. Measuring balance 
in the elderly: validation of an instrument. Can J Public Health 
1992;83 Suppl 2:S7–11.

	19	 Beaton DE, Wright JG, Katz JN, et al. Development of the 
QuickDASH: comparison of three item-reduction approaches. J Bone 
Joint Surg Am 2005;87:1038–46. 

	20	 Casey AT, Bland JM, Crockard HA. Development of a functional 
scoring system for rheumatoid arthritis patients with cervical 
myelopathy. Ann Rheum Dis 1996;55:901–6. 

	21	 De Leener B, Lévy S, Dupont SM, et al. SCT: Spinal Cord Toolbox, 
an open-source software for processing spinal cord MRI data. 
Neuroimage 2017;145:24–43. 

	22	 Gros C, De Leener B, Badji A, et al. Automatic segmentation of 
the spinal cord and intramedullary multiple sclerosis lesions with 
convolutional neural networks. Neuroimage 2019;184:901–15. 

	23	 Ullmann E, Pelletier Paquette JF, Thong WE, et al. Automatic labeling 
of vertebral levels using a robust template-based approach. Int J 
Biomed Imaging 2014;2014:719520. 

	24	 De Leener B, Fonov VS, Collins DL, et al. PAM50: Unbiased 
multimodal template of the brainstem and spinal cord aligned with 
the ICBM152 space. Neuroimage 2018;165:170–9. 

	25	 Lévy S, Benhamou M, Naaman C, et al. White matter atlas of 
the human spinal cord with estimation of partial volume effect. 
Neuroimage 2015;119:262–71. 

	26	 Al-Shawwa A, Craig M, Ost K, et al. Focal compression of the 
cervical spinal cord alone does not indicate high risk of neurological 
deterioration in patients with a diagnosis of mild degenerative 
cervical myelopathy. J Neurol Sci 2024;461:123042. 

	27	 Stephens ME, O’Neal CM, Westrup AM, et al. Utility of machine 
learning algorithms in degenerative cervical and lumbar spine 
disease: a systematic review. Neurosurg Rev 2022;45:965–78. 

	28	 Lundberg SM, Lee S-I, et al. A unified approach to interpreting model 
predictions. In: Guyon I, Luxburg UV, Bengio S, eds. Advances in 
neural information processing systems. Curran Associates, Inc, 2017.

	29	 Ribeiro MT, Singh S, Guestrin C. 'Why should i trust you?': explaining 
the predictions of any classifier. Proceedings of the 22nd ACM 
SIGKDD International Conference on Knowledge Discovery and Data 
Mining; 2016:1135–44. 

B
M

J N
eurology O

pen: first published as 10.1136/bm
jno-2024-000940 on 31 January 2025. D

ow
nloaded from

 https://neurologyopen.bm
j.com

 on 21 A
pril 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0003-3662-9532
http://orcid.org/0000-0003-2581-5903
http://dx.doi.org/10.1097/BRS.0000000000000913
http://dx.doi.org/10.1097/BRS.0000000000000913
http://dx.doi.org/10.1097/BRS.0000000000000988
http://dx.doi.org/10.1136/bmj.k186
http://dx.doi.org/10.1097/00002517-199109000-00005
http://dx.doi.org/10.1097/00002517-199109000-00005
http://dx.doi.org/10.1007/s00586-016-4660-8
http://dx.doi.org/10.1097/BRS.0000000000001127
http://dx.doi.org/10.1097/BRS.0000000000001127
http://dx.doi.org/10.1177/2192568217701914
http://dx.doi.org/10.1038/s41393-023-00945-8
http://dx.doi.org/10.1016/j.spinee.2023.06.003
http://dx.doi.org/10.3171/jns.1988.68.2.0217
http://dx.doi.org/10.3171/jns.1988.68.2.0217
http://dx.doi.org/10.3171/2016.3.FOCUS1667
http://dx.doi.org/10.1016/j.nicl.2015.11.019
http://dx.doi.org/10.1016/j.spinee.2014.02.027
http://dx.doi.org/10.1148/radiographics.14.2.8190954
http://dx.doi.org/10.1016/j.nec.2017.09.003
http://dx.doi.org/10.1016/j.spinee.2020.02.003
http://dx.doi.org/10.1371/journal.pcbi.1005209
https://pubmed.ncbi.nlm.nih.gov/1468055
http://dx.doi.org/10.2106/JBJS.D.02060
http://dx.doi.org/10.2106/JBJS.D.02060
http://dx.doi.org/10.1136/ard.55.12.901
http://dx.doi.org/10.1016/j.neuroimage.2016.10.009
http://dx.doi.org/10.1016/j.neuroimage.2018.09.081
http://dx.doi.org/10.1155/2014/719520
http://dx.doi.org/10.1155/2014/719520
http://dx.doi.org/10.1016/j.neuroimage.2017.10.041
http://dx.doi.org/10.1016/j.neuroimage.2015.06.040
http://dx.doi.org/10.1016/j.jns.2024.123042
http://dx.doi.org/10.1007/s10143-021-01624-z


13Al-Shawwa A, et al. BMJ Neurol Open 2025;7:e000940. doi:10.1136/bmjno-2024-000940

Open access

	30	 Karadimas SK, Moon ES, Yu W-R, et al. A novel experimental model 
of cervical spondylotic myelopathy (CSM) to facilitate translational 
research. Neurobiol Dis 2013;54:43–58. 

	31	 Kanchiku T, Taguchi T, Kaneko K, et al. A new rabbit model for 
the study on cervical compressive myelopathy. J Orthop Res 
2001;19:605–13. 

	32	 Karadimas SK, Gatzounis G, Fehlings MG. Pathobiology of cervical 
spondylotic myelopathy. Eur Spine J 2015;24 Suppl 2:132–8. 

	33	 Karadimas SK, Klironomos G, Papachristou DJ, et al. 
Immunohistochemical profile of NF-κB/p50, NF-κB/p65, MMP-9, 
MMP-2, and u-PA in experimental cervical spondylotic myelopathy. 
Spine (Phila Pa 1976) 2013;38:4–10. 

	34	 Shimizu K, Nakamura M, Nishikawa Y, et al. Spinal kyphosis causes 
demyelination and neuronal loss in the spinal cord: a new model of 
kyphotic deformity using juvenile Japanese small game fowls. Spine 
(Phila Pa 1976) 2005;30:2388–92. 

	35	 Wang C, Laiwalla A, Salamon N, et al. Compensatory brainstem 
functional and structural connectivity in patients with degenerative 
cervical myelopathy by probabilistic tractography and functional 
MRI. Brain Res 2020;1749:147129. 

	36	 Zdunczyk A, Schwarzer V, Mikhailov M, et al. The Corticospinal 
Reserve Capacity: Reorganization of Motor Area and Excitability 
As a Novel Pathophysiological Concept in Cervical Myelopathy. 
Neurosurgery 2018;83:810–8. 

B
M

J N
eurology O

pen: first published as 10.1136/bm
jno-2024-000940 on 31 January 2025. D

ow
nloaded from

 https://neurologyopen.bm
j.com

 on 21 A
pril 2025 by guest.

P
rotected by copyright, including for uses related to text and data m

ining, A
I training, and sim

ilar technologies.

http://dx.doi.org/10.1016/j.nbd.2013.02.013
http://dx.doi.org/10.1016/S0736-0266(00)00058-9
http://dx.doi.org/10.1007/s00586-014-3264-4
http://dx.doi.org/10.1097/BRS.0b013e318261ea6f
http://dx.doi.org/10.1097/01.brs.0000184378.67465.5c
http://dx.doi.org/10.1097/01.brs.0000184378.67465.5c
http://dx.doi.org/10.1016/j.brainres.2020.147129
http://dx.doi.org/10.1093/neuros/nyx437

	Spinal cord demyelination predicts neurological deterioration in patients with mild degenerative cervical myelopathy
	Abstract
	Introduction﻿﻿
	Methods
	Study subjects
	Patient and public involvement

	Clinical metrics data collection
	MRI data collection
	Advanced imaging protocol
	Atlas-based spinal cord analysis
	Manually derived MRI metrics

	ML approach
	Data preprocessing
	Hyperparameter tuning and model evaluation


	Results
	Patient characteristics
	Model performance
	Model explainability

	Discussion
	Retrograde degeneration as a marker of early neurological deterioration
	DCM pathobiology
	Limitations

	Conclusion
	References


