Supplementary Material

. A systematic review of diagnostic and prognostic models of Chronic kidney disease in Lowand Middle- Income Countries

S1 Text: Protocol (also available at https://doi.org/10.1101/2021.04.24.21256041)	1
S1 Table: PRISMA Checklist	6
S2 Table: Search terms	11
S2.1 Table: Embase, Medline and Global Health (OVID)	11
S2.2 Table: SCOPUS	12
S2.3 Table: WEB OF SCIENCE	14
S3 Table: Data extraction form (by chapters)	15
S3.1 Table: Source of data and participants	15
S3.2 Table:: Outcome	26
S3.3 Table: Candidate predictors	31
S3.4 Table: Sample size and missing data	44
S3.5 Table: Model development	46
S3.6 Table: Model performance	49
S3.7 Table: Results	53
S3.8 Table: Discussion	55
S4 Table: PROBAST	57
S4.1 Table: Risk of Bias (RoB)	57
S4.2 Table: Applicability	65
S1 Figure: Countries where studies were conducted.	67
S2 Figure: Predictors included in the final models.	68

S1 Text: Protocol (also available at <u>https://doi.org/10.1101/2021.04.24.21256041</u>)

Chronic Kidney Disease in Low- and Middle- Income Countries: Protocol for a

systematic review of diagnostic and prognostic models

Edson J Ascencio^{1,2}

Diego J Aparcana-Granda^{1,3}

Rodrigo M Carrillo-Larco^{3,4}

- 1. Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Perú.
- 2. Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration, Universidad Peruana Cayetano Heredia, Lima, Peru
- 3. CRONICAS Centre of Excellence in Chronic Diseases, Universidad Peruana Cayetano Heredia, Lima, Peru
- 4. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK

Corresponding author

Rodrigo M Carrillo-Larco, MD

Department of Epidemiology and Biostatistics

School of Public Health, Imperial College London, London W2 1PG, UK

E-mail: rcarrill@ic.ac.uk

Phone: +44 0 7578240395

Competing interests: The authors declare no conflict of interests.

Support: RMC-L is supported by a Wellcome Trust International Training Fellowship (214185/Z/18/Z).

ABSTRACT

Background: Chronic Kidney Disease (CKD) is a highly prevalent condition with a large disease burden globally. In low- and middle-income countries (LMIC) the CKD screening challenges the health system. This systematic and comprehensive search of all CKD diagnostic and prognostic models in LMIC will inform screening strategies in LMIC following a risk-based approach.

Objective: To summarize all multivariate diagnostic and prognostic models for CKD in adults in LMIC.

Methods: Systematic review. Without date or language restrictions we will search Embase, Medline, Global Health (these three through Ovid), SCOPUS and Web of Science. We seek multivariable diagnostic or prognostic models which included a random sample of the general population. We will screen titles and abstracts; we will then study the selected reports. Both phases will be done by two reviewers independently. Data extraction will be performed by two researchers independently using a pre-specified Excel form (CHARMS model). We will evaluate the risk of bias with the PROBAST tool.

Conclusion: This systematic review will provide the most comprehensive list and critical appraisal of diagnostic and prognostic models for CKD available for the general population in LMIC. This evidence could

inform policies and interventions to improve CKD screening in LMIC following a risk-based approach, maximizing limited resources and reaching populations with limited access to CKD screening tests. This systematic review will also reveal methodological limitations and research needs to improve CKD diagnostic and prognostic models in LMIC.

Keywords: Chronic Kidney Disease; Diagnostic Models; Prognostic Models; Low- and Middle-income countries.

INTRODUCTION

Chronic kidney disease (CKD) is a highly prevalent condition that contributes to a large part of disease burden globally. Between 1990 and 2017, the health metrics of CKD showed a bleak profile: mortality rate, incidence and kidney transplantation rate increased by 2.8%, 29.3% and 34.4%, respectively.¹ CKD led to 1.2 million deaths in 2017 and in the best-case scenario, mortality is projected to increase to 2.2 million deaths² and become the 5th cause of years of life lost (YLL) by 2040.³ Currently, 2.5 million of patients receive kidney transplantation therapy and it is projected to increase to 5.4 million by 2030.¹ CKD also reveals disparities between low- and middle-income countries (LMIC) and high income countries (HIC); for example, the age-standardised disability-adjusted life-year (DALY) rate due to CKD was the highest in LMIC between 1990-2017.⁴ In LMIC, that remain as resource-constrained settings, there is a need for optimization of the CKD screening strategies which usually challenge the health system.⁵

Risk equations or risk scores are a cost-effective alternative for CKD screening.⁶ These equations are less invasive and accepted by the general population;⁷ also, they require less resources like laboratory tests.⁸ Many scores were developed in high-income countries,⁹⁻¹¹ and they may not be used in LMIC because their accuracy is better where they have been developed.¹² Current strategies for CKD screening suggest studying people with risk factors (e.g. diabetes, hypertension).¹³⁻¹⁵ These recommendations rely on studies where albuminuria and proteinuria were used as screening tools for identifying CKD patients.¹⁶ Nevertheless, a systematic review found that using risk scores allows screening of a larger population and therefore can be useful for detecting more CKD cases.⁶

To date, there are no systematic reviews of diagnostic or prognostic models for CKD with a focus on LMIC.^{17, 18} This limits our knowledge of what tools we have to enhance CKD screening in LMIC; similarly, this dearth of evidence prevents from planning future research to overcome the limitations of available models. This will be the first systematic review to fill these knowledge gaps in LMIC to improve and complement the CKD screening programmes in LMIC.

METHODS

Objective

To synthesise CKD diagnostic and prognostic models for the adult population of LMIC.

Study design

This systematic review and meta-analysis will be conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines.¹⁹ We will also adhere to the recommendations for systematic reviews of diagnostic and prognostic models following the CHARMS guidelines²⁰ and the PROBAST tool to assess risk of bias.²¹

Eligibility criteria

Participants/population: We will include the general adult population (18 years and above) of LMIC with no gender restrictions. Studies following a population-based random sampling approach will be included. We will only include populations from LMIC according to The World Bank.²² Conversely, studies with a study population of only patients (e.g., people with hypertension) or high-risk individuals (e.g., smokers) will be excluded. We will exclude studies with LMIC populations outside a LMIC.

Intervention, exposure: None (this review is looking at CKD diagnostic and prognostic models in LMIC).

Comparator, control: None (this review is looking at CKD diagnostic and prognostic models in LMIC).

Outcome: Diagnostic and prognostic models for CKD. The CKD diagnosis should have been based on a laboratory or imaging test including: urine albumin- creatinine ratio, urine protein-creatinine ratio, albumin excretion ratio, urine sediment, kidney images, kidney biopsy or the estimated glomerular filtration rate (eGFR). In other words, research in which CKD diagnosis was based on self-reported information only will not be considered. However, if a study combined both self-reported information and a laboratory or imaging tests, this will be included.

Types of studies: Studies with an observational design will be included, which encompasses crosssectional (for diagnostic models) and prospective longitudinal studies (for prognostic models). If we retrieve any systematic review on this subject, we will revise its reference list to identify relevant original sources.

Literature Search and Data collation

The search will be conducted in five search engines: Embase, Medline, Global Health (these three through Ovid), SCOPUS and Web of Science. No date or language restrictions will be set. The complete search strategy can be found in Supplementary Material.

Titles and abstracts will be screened by two researchers independently (DJA-G and EJA), looking for studies that meet the selection criteria above detailed. Full-text reports of the selected publications will be studied by two researchers independently (DJA-G and EJA). Discrepancies at any stage will be solved by consensus or by a third party (RMC-L).

During the full-text phase, if there are any original reports in which the population, methodology or results are not clear enough to assess the inclusion/exclusion criteria, we will contact the corresponding author by email. We will wait for two weeks, if we receive no answer and cannot solve our doubts through other means, this report will be excluded based on the lack of clarity to assess inclusion/exclusion criteria.

We will record the reasons for exclusion in the full-text phase and summarize the number of included/excluded reports following the PRISMA flow diagram.

Data extraction

We will develop a data extraction form following the CHARMS recommendations.²⁰ Data extraction will be conducted by two researchers independently; discrepancies will be solved by consensus or by a third party (RMC-L).

Risk of bias of individual studies

The risk of bias assessment of individual reports will be conducted using the Prediction model Risk Of

Bias ASsessment Tool (PROBAST) tool.21

Statistical Analysis

A qualitative synthesis is planned, whereby we will narratively synthesise the findings from the selected studies. We will summarize the key elements from each report such as study design, study population and characteristics of the study population. Also, we will summarize the key features of the risk scores as provided by each report, including discrimination, calibration, sensitivity, specificity, and predictive values. A quantitative synthesis will be carried out if the included studies are found to be sufficiently homogenous and we have at least four original reports.

Ethics

This review did not directly include human subjects. We considered this work as 'low risk' and did not request approval by an Ethics Committee. Results and opinions included in this protocol, and those included in the final report, are the author's alone and do not represent those of the institutions to which they belong.

CONCLUSIONS

This systematic review will provide a comprehensive list of diagnostic and prognostic models for CKD for people in LMIC, along with their accuracy metrics. Currently, information lacks in LMIC where diagnostic and prognostic models could inform CKD screening strategies. Similarly, this work will elucidate the limitations of available diagnostic and prognostic models for CKD in LMIC, so that future research can be planned accordingly to overcome these caveats and deliver robust models to advance

CKD screening strategies in LMIC.

REFERENCES

- 1. Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 19902017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709-33.
- 2. Agudelo-Botero M, Valdez-Ortiz R, Giraldo-Rodriguez L, Gonzalez-Robledo MC, Mino-Leon D, Rosales-Herrera MF, et al. Overview of the burden of chronic kidney disease in Mexico: secondary data analysis based on the Global Burden of Disease Study 2017. BMJ Open. 2020;10(3):e035285.
- **3.** Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392(10159):2052-90.
- 4. Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2020;395(10225):709-33.
- Jafar TH, Ramakrishnan C, John O, Tewari A, Cobb B, Legido-Quigley H, et al. Access to CKD Care in Rural Communities of India: a qualitative study exploring the barriers and potential facilitators. BMC Nephrol. 2020;21(1):26.
- Yarnoff BO, Hoerger TJ, Simpson SK, Leib A, Burrows NR, Shrestha SS, et al. The costeffectiveness of using chronic kidney disease risk scores to screen for early-stage chronic kidney disease. BMC Nephrol. 2017;18(1):85.
- 7. Bradshaw C, Kondal D, Montez-Rath ME, Han J, Zheng Y, Shivashankar R, et al. Early detection of chronic kidney disease in low-income and middle-income countries: development and validation of a point-of-care screening strategy for India. BMJ Glob Health. 2019;4(5):e001644.
- Misir R, Mitra M, Samanta RK. A Reduced Set of Features for Chronic Kidney Disease Prediction. J Pathol Inform. 2017;8:24.
- 9. Chang HL, Wu CC, Lee SP, Chen YK, Su W, Su SL. A predictive model for progression of CKD.
- **10.** Medicine (Baltimore). 2019;98(26):e16186.
- 11. Lerner B, Desrochers S, Tangri N. Risk Prediction Models in CKD. Semin Nephrol. 2017;37(2):144-50.
- 12. Tangri N, Inker LA, Hiebert B, Wong J, Naimark D, Kent D, et al. A Dynamic Predictive Model for Progression of CKD. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2017;69(4):514-20.
- **13.** Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. Eur J Cardiothorac Surg. 2018;54(2):203-8.
- 14. Boulware LE, Jaar BG, Tarver-Carr ME, Brancati FL, Powe NR. Screening for Proteinuria in US
- 15. AdultsA Cost-effectiveness Analysis. JAMA. 2003;290(23):3101-14.
- **16.** Hoerger TJ, Wittenborn JS, Segel JE, Burrows NR, Imai K, Eggers P, et al. A health policy model of CKD: 2. The cost-effectiveness of microalbuminuria screening. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2010;55(3):463-73.
- 17. Manns B, Hemmelgarn B, Tonelli M, Au F, Chiasson TC, Dong J, et al. Population based screening for chronic kidney disease: cost effectiveness study. BMJ. 2010;341:c5869.
- Komenda P, Ferguson TW, Macdonald K, Rigatto C, Koolage C, Sood MM, et al. Costeffectiveness of primary screening for CKD: a systematic review. American journal of kidney diseases : the official journal of the National Kidney Foundation. 2014;63(5):789-97.
- **19.** Echouffo-Tcheugui JB, Kengne AP. Risk models to predict chronic kidney disease and its progression: a systematic review. PLoS medicine. 2012;9(11):e1001344.
- 20. Ramspek CL, de Jong Y, Dekker FW, van Diepen M. Towards the best kidney failure prediction tool: a systematic review and selection aid. Nephrology Dialysis Transplantation. 2019;35(9):1527-38.

- 21. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
- 22. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS medicine. 2014;11(10):e1001744.
- 23. Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Annals of internal medicine. 2019;170(1):W1-W33.
- 24. Bank TW. World Bank Country and Lending Groups 2021 [Available from: <u>https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-countryand-lending-groups</u>.

S1 Table: PRISMA Checklist

Section and Topic	ltem #	Checklist item	Location where item is reported		
TITLE					
Title	1	Identify the report as a systematic review.	page 01		
ABSTRACT					
Abstract	ostract 2 See the PRISMA 2020 for Abstracts checklist.				
INTRODUCTION					
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	page 03		
Objectives	ectives 4 Provide an explicit statement of the objective(s) or question(s) the review addresses.		page 04		
METHODS					
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	page 04-05		
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	page 04		

Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	supplementary page 03-07
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	page 05
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	page 05-06
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	page 04-05, table 1
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	page 04-05, table 1
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	page 06
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	NA
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	page 06
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	NA
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	page 06

	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta- analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	page 06
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	NA
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	NA
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	NA
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	page 11
RESULTS	<u>.</u>	;	
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	page 06-07
•	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded.	page 06-07
Study characteristics	17	Cite each included study and present its characteristics.	page 08-09
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	page 11, supplementary page 39-45

Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots.	page 9-11					
Results of syntheses	······································							
	20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.							
	20c Present results of all investigations of possible causes of heterogeneity among study results.							
	20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results.							
Reporting biases								
Certainty of evidence								
DISCUSSION								
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	page 11					
	23b	Discuss any limitations of the evidence included in the review.	page 11-13					
	23c	Discuss any limitations of the review processes used.	page 11-13					

	23d	Discuss implications of the results for practice, policy, and future research.	page 14-15
OTHER INFORM	ATION		
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	page 04
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	page 04
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	NA
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	page 01
Competing interests	26	Declare any competing interests of review authors.	page 01
Availability of data, code and other materials	27	Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review.	page 15

NA: Not applicable

S2 Table: Search terms

S2.1 Table: Embase, Medline and Global Health (OVID)

01	chronic renal insufficiency.mp.
02	chronic kidney disease.mp.
03	chronic kidney failure.mp.
04	CKD.mp.
05	exp Renal Insufficiency, Chronic/
06	(chronic adj2 kidney adj2 disease).mp.
07	(chronic adj2 kidney adj2 failure).mp.
08	chronic renal failure.mp.
09	chronic renal disease.mp.
10	chronic kidney insufficiency.mp.
11	end stage renal disease.mp.
12	ESRD.mp.
13	kidney function.mp.
14	renal function.mp.
15	kidney dysfunction.mp.
16	renal dysfunction.mp.
17	01 or 02 or 03 or 04 or 05 or 06 or 07 or 08 or 09 or 10 or 11 or 12 or 13 or 14 or 15 or 16
17	
18	(("Afghanistan") or ("Benin") or ("Burkina Faso") or ("Burundi") or ("Central African Republic") or ("Chad") or ("Comoros") or ("Guinea-Bissau") or ("Haiti") or ("Democratic People's Republic of Korea") or ("Liberia") or ("Madagascar") or ("Malawi") or ("Mozambique") or ("Nepal") or ("Niger") or ("Liberia") or ("Madagascar") or ("Malawi") or ("Mali") or ("Mozambique") or ("Nepal") or ("Niger") or ("Bwanda") or ("Senegal") or ("Sierra Leone") or ("Somalia") or ("South Sudan") or ("Tanzania") or ("Togo") or ("Uganda") or ("Zimbabwe") or ("Armenia") or ("Bolivia") or ("Cape Verde") or ("Cambodia") or ("Cameroon") or ("Congo") or ("Cote d'Ivoire") or ("Bolivia") or ("Legypt") or ("El Salvador") or ("Ghana") or ("Guatemala") or ("Honduras") or ("India") or ("Indonesia") or ("Kenya") or ("Micronesia") or ("Kosovo") or ("Kyrgyzstan") or ("Laos") or ("Lesotho") or ("Mauritania") or ("Moldova") or ("Mongolia") or ("Sudan") or ("Samaa") or ("Samaa") or ("Tunisia") or ("Swaziland") or ("Syria") or ("Tajikistan") or ("Timor-Leste") or ("Tonga") or ("Yemen") or ("Zambia") or ("Albania") or ("Albania") or ("Albania") or ("American Samoa") or ("Angola") or ("Argentina") or ("Colombia") or ("Belize") or ("Costa Rica") or ("Colombia") or ("Costa Rica") or ("Cuabia") or ("Albania") or ("Albania") or ("Colombia") or ("Costa Rica") or ("Samaal") or ("Albania") or ("Albania") or ("Cinda") or ("Somaal") or ("Samaal") or ("Albania") or ("Cinda") or ("Compalia") or ("Samaal") or ("Samaal") or ("Albania") or ("Cinda") or ("Costa Rica") or ("Cuabia") or ("Albania") or ("Albania") or ("Costa Rica") or ("Colombia") or ("Bostwana") or ("Brazil") or ("Belarus") or ("Equatorial Guinea") or ("Costa Rica") or ("Cubas") or ("Gabon") or ("Georgia") or ("China") or ("Euvatorial Guinea") or ("Farail") or ("Belarus") or ("Costa Rica") or ("Cubas") or ("Jordan") or ("Gabon") or ("Costa Rica") or ("Cubas") or ("Jordan") or ("Gabon") or ("Ceorgia") or ("China") or ("Guyana") or ("Iran") or ("Ecuador") or ("Jordan") or ("Gabon") or ("Georgia") or ("Chi
19	risk assessment.mp.
20	risk functions.mp.
21	Risk Assessment/mt
22	risk equation\$.mp.
23	risk chart?.mp.
24	(risk adj3 tool\$).mp.
25	risk assessment function?.mp.
26	risk assessor.mp.
27	risk appraisal\$.mp.
28	risk calculation\$.mp.
20	risk calculator\$.mp.
23	insk calculatory.inp.

30	risk factor\$ calculator\$.mp.
31	risk factor\$ calculation\$.mp.
32	risk engine\$.mp.
33	risk equation\$.mp.
34	risk table\$.mp.
35	risk threshold\$.mp.
36	risk disc?.mp.
37	risk disk?.mp.
38	risk scoring method?.mp.
39	scoring scheme?.mp.
40	risk scoring system?.mp.
41	risk scal\$.mp.
42	risk prediction?.mp.
43	risk algorith\$.mp.
44	prediction model\$.mp.
45	predictive instrument?.mp.
46	project\$ risk?.mp.
47	predictive model?.mp.
48	scoring method\$.mp.
49	(prediction\$ adj3 method\$).mp.
50	exp Risk Assessment/
51	(risk? adj1 assess\$).mp.
52	screening.mp.
53	diagnostic test.mp.
54	19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35
	or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43 or 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or
	52 or 53
55	17 and 18 and 54
56	exp animals/ not humans.sh.
57	55 not 56
58	Remove duplicates from 57

S2.2 Table: SCOPUS

((TITLE-ABS-KEY("Afghanistan") OR TITLE-ABS-KEY("Benin") OR TITLE-ABS-KEY("Burkina
Faso") OR TITLE-ABS-KEY("Burundi") OR TITLE-ABS-KEY("Central African Republic") OR TITLE-
ABS-KEY("Chad") OR TITLE-ABS-KEY("Comoros") OR TITLE-ABS-KEY("Democratic Republic of
the Congo") OR TITLE ABSKEY("Eritrea") OR TITLE-ABS-KEY("Ethiopia") OR TITLE-ABS-
KEY("Gambia") OR TITLE ABSKEY("Guinea") OR TITLE-ABS-KEY("Guinea-Bissau") OR TITLE-
ABS-KEY("Haiti") OR TITLE ABSKEY("Democratic People's Republic of Korea") OR TITLE-ABS-
KEY("Liberia") OR TITLE ABSKEY("Madagascar") OR TITLE-ABS-KEY("Malawi") OR TITLE-ABS-
KEY("Mali") OR TITLE ABSKEY("Mozambique") OR TITLE-ABS-KEY("Nepal") OR TITLE-ABS-
KEY("Niger") OR TITLE-ABS-KEY("Rwanda") OR TITLE-ABS-KEY("Senegal") OR TITLE-ABS-
KEY("Sierra Leone") OR TITLE-ABSKEY("Somalia") OR TITLE-ABS-KEY("South Sudan") OR
TITLE-ABS-KEY("Tanzania") OR TITLE-ABSKEY("Togo") OR TITLE-ABS-KEY("Uganda") OR
TITLE-ABS-KEY("Zimbabwe") OR TITLE-ABS-KEY("Armenia") OR TITLE-ABS-KEY("Bangladesh")
OR TITLE-ABS-KEY("Bhutan") OR TITLE-ABSKEY("Bolivia") OR TITLE-ABS-KEY("Cape Verde")
OR TITLE-ABS-KEY("Cambodia") OR TITLE-ABSKEY("Cameroon") OR TITLE-ABS-KEY("Congo")
OR TITLE-ABS-KEY("Cote d'Ivoire") OR TITLE-ABSKEY("Djibouti") OR TITLE-ABS-KEY("Bolivia")
OR TITLE-ABS-KEY("Cape Verde") OR TITLE-ABS-KEY("Cambodia") OR TITLE-ABS-
KEY("Cameroon") OR TITLE-ABS-KEY("Congo") OR TITLE-ABSKEY("Cote d'Ivoire") OR TITLE-
ABS-KEY("Djibouti") OR TITLE-ABS-KEY("Egypt") OR TITLE-ABS-KEY("El Salvador") OR TITLE-
ABS-KEY("Ghana") OR TITLE-ABS-KEY("Guatemala") OR TITLE-ABSKEY("Honduras") OR TITLE-
ABS-KEY("India") OR TITLE-ABS-KEY("Indonesia") OR TITLE-ABSKEY("Kenya") OR TITLE-ABS-
KEY("Micronesia") OR TITLE-ABS-KEY("Kosovo") OR TITLE-ABSKEY("Kyrgyzstan") OR TITLE-
ABS-KEY("Laos") OR TITLE-ABS-KEY("Lesotho") OR TITLE-ABS-KEY("Mauritania") OR TITLE-
ABS-KEY("Moldova") OR TITLE-ABS-KEY("Mongolia") OR TITLE-ABSKEY("Morocco") OR TITLE-

ABS-KEY("Myanmar") OR TITLE-ABS-KEY("Nicaragua") OR TITLE-ABS-KEY("Nigeria") OR TITLE-ABS-KEY("Pakistan") OR TITLE-ABS-KEY("Papua New Guinea") OR TITLE-ABSKEY("Philippines") TITLE-ABS-KEY("Atlantic OR TITLE-ABS-KEY("Samoa") OR Islands") OR TITLE ABSKEY("Melanesia") OR TITLE-ABS-KEY("Sri Lanka") OR TITLE-ABS-KEY("Sudan") OR TITLE-ABSKEY("Swaziland") OR TITLE-ABS-KEY("Syria") OR TITLE-ABS-KEY("Tajikistan") OR TITLE-ABSKEY("Timor-Leste") OR TITLE-ABS-KEY("Tonga") OR TITLE-ABS-KEY("Tunisia") OR TITLE-ABSKEY("Ukraine") OR TITLE-ABS-KEY("Uzbekistan") OR TITLE-ABS-KEY("Vanuatu") OR TITLE-ABSKEY("Vietnam") OR TITLE-ABS-KEY("Middle East") OR TITLE-ABS-KEY("Yemen") OR TITLE-ABS-KEY("Zambia") OR TITLE-ABS-KEY("Albania") OR TITLE-ABS-KEY("Algeria") OR TITLE-ABSKEY("American Samoa") OR TITLE-ABS-KEY("Angola") OR TITLE-ABS-KEY("Argentina") OR TITLE-ABSKEY("Azerbaijan") OR TITLE-ABS-KEY("Republic of Belarus") OR TITLE-ABS-KEY("Belize") OR TITLE-ABSKEY("Bosnia and Herzegovina") OR TITLE-ABS-KEY("Botswana") OR TITLE-ABS-KEY("Brazil") OR TITLEABS-KEY("Bulgaria") OR TITLE-ABS-KEY("China") OR TITLE-ABS-KEY("Colombia") OR TITLE-ABS-KEY("Costa Rica") OR TITLE-ABS-KEY("Cuba") OR TITLE-ABS-KEY("Dominica") OR TITLE-ABSKEY("Dominican Republic") OR TITLE-ABS-KEY("Equatorial Guinea") OR TITLE-ABS-KEY("Ecuador") OR TITLE-ABS-KEY("Fiji") OR TITLE-ABS-KEY("Gabon") OR TITLE-ABS-KEY("Georgia") OR TITLE-ABSKEY("Grenada") OR TITLE-ABS-KEY("Guyana") OR TITLE-ABS-KEY("Iran") OR TITLE-ABS-KEY("Iraq") OR TITLE-ABS-KEY("Jamaica") OR TITLE-ABS-KEY("Jordan") OR TITLE-ABS-KEY("Kazakhstan") OR TITLEABS-KEY("Lebanon") OR TITLE-ABS-KEY("Libya") OR TITLE-ABS-KEY("Macedonia (Republic)") OR TITLEABS-KEY("Malaysia") OR TITLÈ-ABS-KEY("Indian Ocean Islands") OR TITLE-ABS-KEY("Mexico") OR TITLE-ABS-KEY("Montenegro") OR TITLE-ABS-KEY("Namibia") OR TITLE-ABS-KEY("Palau") OR TITLEABS-KEY("Panama") OR TITLE-ABS-KEY("Paraguay") OR TITLE-ABS-KEY("Peru") OR TITLE-ABSKEY("Russia") OR TITLE-ABS-KEY("Serbia") OR TITLE-ABS-KEY("South Africa") OR TITLE-ABS-KEY("Saint Lucia") OR TITLE-ABS-KEY("Saint Vincent and the Grenadines") OR TITLE-ABS-KEY("Suriname") OR TITLE-ABS-KEY("Thailand") OR TITLE-ABS-KEY("Turkey") OR TITLE-ABS-KEY("Turkmenistan") OR TITLEABS-KEY("Venezuela") OR TITLE-ABS-KEY(developing countr*) OR TITLE-ABS-KEY(lowincome countr*) OR TITLE-ABS-KEY(middle-income countr*) OR TITLE-ABS-KEY(low-middle income countr*) OR TITLEABS-KEY(upper-middle income countr*) OR TITLE-ABS-KEY("low resource") OR TITLE-ABS-KEY ("underresourced") OR TITLE-ABS-KEY("resource poor") OR TITLE-ABS-KEY("under-developed") OR TITLE-ABSKEY("underdeveloped") OR TITLE-ABS-KEY("developing world") OR TITLE-ABS-KEY("third world") OR TITLE-ABS-KEY(Imic) OR TITLE-ABS-KEY(low AND middle AND income)) AND (TITLE-ABS-KEY(Risk Assessment) OR TITLE-ABS-KEY(risk? adj1 assess*) OR TITLE-ÄBS-KEY(risk function) OR TITLE-ABS-KEY(Risk Assessment) OR TITLE-ABS-KEY(risk functions) OR TITLE-ABS-KEY(risk equation*) OR TITLEABS-KEY(risk chart?) OR TITLE-ABS-KEY(risk adj3 tool*) OR TITLE-ABS-KEY(risk assessment function?) OR TITLE-ABS-KEY(risk assessor) OR TITLE-ABS-KEY(risk appraisal*) OR TITLE-ABS-KEY(risk calculation*) OR TITLE-ABS-KEY(risk calculator*) OR TITLE-ABS-KEY(risk factor* calculator*) OR TITLEABS-KEY(risk factor* calculation*) OR TITLE-ABS-KEY(risk engine*) OR TITLE-ABS-KEY(risk equation*) OR TITLE-ABS-KEY(risk table*) OR TITLE-ABS-KEY(risk threshold*) OR TITLE-ABS-KEY(risk disc?) OR TITLE-ABS-KEY(risk disk?) OR TITLE-ABS-KEY(risk scoring method?) OR TITLE-ABS-KEY(scoring scheme?) OR TITLE-ABS-KEY(risk scoring system?) OR TITLE-ABS-KEY(risk prediction?) OR TITLE-ABSKEY(risk algorith*) OR TITLE-ABS-KEY(prediction model*) OR TITLE-ABS-KEY(predictive instrument?) OR TITLE-ABS-KEY(project* risk?) OR TITLE-ABS-KEY(predictive model?) OR TITLE-ABS-KEY(scoring method*) OR TITLE-ABS-KEY(prediction* adj3 method*) OR TITLE-ABS-KEY(screening) OR TITLE-ABSKEY(risk scal*) OR TITLE-ABS-KEY(diagnostic test)) AND (TITLE-ABS-KEY(chronic renal insufficiency) OR TITLE-ABS-KEY(chronic kidney disease) OR TITLE-ABS-KEY(chronic kidney failure) OR TITLE-ABS-KEY(CKD) OR TITLE-ABS-KEY(chronic renal failure) OR TITLE-ABS-KEY(chronic renal disease) OR TITLE-ABS-KEY(chronic kidney insufficiency) OR TITLE-ABS-KEY(end stage renal disease) OR TITLE-ABSKEY(ESRD) OR TITLE-ABS-KEY(kidney function) OR TITLE-ABS-KEY(renal function) OR TITLE-ABSKEY(kidney dysfunction) OR TITLE-ABS-KEY(renal dysfunction) OR TITLE-ABS-KEY(chronic W/2 kidney W/2 disease) OR TITLE- ABS-KEY(chronic W/2 kidney W/2 failure) AND NOT DBCOLL(medl))

S2.3 Table: WEB OF SCIENCE

(((chronic renal insufficiency) OR (chronic kidney disease) OR (chronic kidney failure) OR (CKD) OR (Renal Insufficiency, Chronic) OR (chronic NEAR/2 kidney NEAR/2 disease) OR (chronic NEAR/2 kidney NEAR/2 failure) OR (chronic renal failure) OR (chronic renal disease) OR (chronic kidney insufficiency) OR (end stage renal disease) OR (ESRD) OR (kidney function) OR (renal function) OR (kidney dysfunction) OR (renal dysfunction)) AND (("Afghanistan") OR ("Benin") OR ("Burkina Faso") OR ("Burundi") OR ("Central African Republic") OR ("Chad") OR ("Comoros") OR ("Democratic Republic of the Congo") OR ("Eritrea") OR ("Ethiopia") OR ("Gambia") OR ("Guinea") OR ("Guinea-Bissau") OR ("Haiti") OR ("Democratic People's Republic of Korea") OR ("Liberia") OR ("Madagascar") OR ("Malawi") OR ("Mali") OR ("Mozambique") OR ("Nepal") OR ("Niger") OR ("Rwanda") OR ("Senegal") OR ("Sierra Leone") OR ("Somalia") OR ("South Sudan") OR ("Tanzania") OR ("Togo") OR ("Uganda") OR ("Zimbabwe") OR ("Armenia") OR ("Bangladesh") OR ("Bhutan") OR ("Bolivia") OR ("Cape Verde") OR ("Cambodia") OR ("Cameroon") OR ("Congo") OR ("Cote d'Ivoire") OR ("Djibouti") OR ("Egypt") OR ("El Salvador") OR ("Ghana") OR ("Guatemala") OR ("Honduras") OR ("India") OR ("Indonesia") OR ("Kenya") OR ("Micronesia") OR ("Kosovo") OR ("Kyrgyzstan") OR ("Laos") OR ("Lesotho") OR ("Mauritania") OR ("Moldova") OR ("Mongolia") OR ("Morocco") OR ("Myanmar") OR ("Nicaragua") OR ("Nigeria") OR ("Pakistan") OR ("Papua New Guinea") OR ("Philippines") OR ("Samoa") OR ("Atlantic Islands") OR ("Melanesia") OR ("Sri Lanka") OR ("Sudan") OR ("Śwaziland") OR ("Syria") OR ("Tajikistan") OR ("Timor-Leste") OR ("Tonga") OR ("Tunisia") OR ("Ukraine") OR ("Uzbekistan") OR ("Vanuatu") OR ("Vietnam") OR ("Middle East") OR ("Yemen") OR ("Zambia") OR ("Albania") OR ("Algeria") OR ("American Samoa") OR ("Angola") OR ("Argentina") OR ("Azerbaijan") OR ("Republic of Belarus") OR ("Belize") OR ("Bosnia and Herzegovina") OR ("Botswana") OR ("Brazil") OR ("Bulgaria") OR ("China") OR ("Colombia") OR ("Costa Rica") OR ("Cuba") OR ("Dominica") OR ("Dominican Republic") OR ("Equatorial Guinea") OR ("Ecuador") OR ("Fiji") OR ("Gabon") OR ("Georgia") OR ("Grenada") OR ("Guyana") OR ("Iran") OR ("Iraq") OR ("Jamaica") OR ("Jordan") OR ("Kazakhstan") OR ("Lebanon") OR ("Libya") OR ("Macedonia (Republic) ") OR ("Malaysia") OR ("Indian Ocean Islands") OR ("Mexico") OR ("Montenegro") OR ("Namibia") OR ("Palau") OR ("Panama") OR ("Paraguay") OR ("Peru") OR ("Russia") OR ("Serbia") OR ("South Africa") OR ("Saint Lucia") OR ("Saint Vincent and the Grenadines") OR ("Suriname") OR ("Thailand") OR ("Turkey") OR ("Turkmenistan") OR ("Venezuela") OR (developing countr) OR (lowincome countr*) OR (middle-income countr*) OR (lowmiddle income countr*) OR (upper-middle income countr*)) AND ((risk assessment) OR (risk equation\$) OR (risk chart?) OR (risk NEAR/3 tool\$) OR (risk assessment function?) OR (risk assessor) OR (risk appraisal\$) OR (risk calculation\$) OR (risk calculator\$) OR (risk factor\$ calculation\$) OR (risk engine\$) OR (risk equation\$) OR (risk table\$) OR (risk threshold\$) OR (risk disc?) OR (risk disk?) OR (risk scoring method?) OR (scoring scheme?) OR (risk scoring system?) OR (risk scal\$) OR (risk prediction?) OR (risk algorith\$) OR (prediction model\$) OR (predictive instrument?) OR (project\$ risk?) OR (predictive model?) OR (scoring method\$) OR (prediction\$ NEAR/3 method\$) OR (risk? NEAR/1 assess\$) OR (screening) OR (diagnostic test))) NOT ((animal*) OR ("not humans"))

S3 Table: Data extraction form (by chapters)

S3.1 Table: Source of data and participants

		Sour ce of data					Pa	irticipants				
N°	Study	Sour ce of data	Partici pant locati on	Ba sel in e ye ar	En d ye ar (c oh ort s)	Sam pling	Inclusion criteria	Exclusion criteria	Out come pr ev al en ce (%)	Outc ome incid ence (for coho rts)	Baseli ne mean age	Baselin e % men
1	Asgari, 2020 Europea n Risk Assess ment tool (6- years validatio n)	Cohort	Communit y	1999- 2005	2011	Random	Tehran lipids and glucose study (TLGS) cohort participants.	Persons with prevalent Cardiovascular Disease (CVD), Type 2 Diabetes Mellitus or End-stage Renal Disease with (eGFR) <15 mL/min/1.73 m2. Also excluded those with missing data at baseline for creatinine (Cr), fasting plasma glucose (FPG), 2- hour postchallenge plasma	46.02 (11.95)	40.1%	58.34	29.53

								glucose (2 h-PCG), body mass index (BMI), waist				
								circumference (WC) and				
								smoking status as well as				
								participants with missing				
								data during follow-up on Cr,				
								FPG, 2 h-PCG and CVD				
								status				
								Persons with prevalent				
								Cardiovascular Disease				
								(CVD), Type 2 Diabetes				
								Mellitus or End-stage Renal				
								Disease with (eGFR) <15				
								mL/min/1.73 m2. Also				
								excluded those with missing				
								data at baseline for				
								creatinine (Cr), fasting				
	Asgari,							plasma glucose (FPG), 2-				
	2020							hour postchallenge plasma				
	Europea							glucose (2 h-PCG), body				
	n Risk							mass index (BMI), waist				
	Assess							circumference (WC) and				
	ment							smoking status as well as				
	tool (9-							participants with missing				
	years						Tehran lipids and glucose					
	validatio		Communit		2009-		study (TLGS) cohort	FPG, 2 h-PCG and CVD				
1	n)	Cohort	У	2005	2018	Random	participants.	status	NI	40.6%	48.20	49.70
							Any individual aged ≥20					
							years and permanently					
							residingin at Delhi and					
							Chennai (CARRS-II). A	De al dui de colinadio dal col				
	Duradala						permanent resident was	Beddriden individuals,				
	Bradsha						defined as a person living	pregnant women,				
	w, 2019						in the selected household,	participants with missing				
	- Model						was related to the	both or either serum				
	l (dorivoti	Cross-	Communit				household head and ate at least 3 meals in a week	creatinine or urine albumin- to- creatinine ratio data and	44.9			
2	(derivati	sectional		2015	n/a	Random			44.9 (13.5)	16 90/	48.20	49.70
2	on)	Sectional	у	2013	n/a	nanuom	with the family.	participants on dialysis.	(13.3)	46.8%	40.20	49.70

	1	1									1
						Households were defined					
						as "a group of people					
						wholive together, usually					
						pool their income and eat					
						atleast one meal together					
						a day when they are at					
						home. This does not					
						include people who have					
						migratedpermanently or					
						are considered visitors"					
						Any individual aged ≥20					
						years and permanently					
						residingin at Delhi and					
						Chennai (CARRS-II). A					
						permanent resident was					
						defined as a person living					
						in the selected household,					
						was related to the					
						household head and ate					
						at least 3 meals in a week					
						with the family.					
						Households were defined					
						as "a group of people					
						wholive together, usually					
						pool their income and eat	Beddriden individuals,				
Bradsha						atleast one meal together	pregnant women,				
w, 2019						a day when they are at	participants with missing				
- Model						home. This does not	both or either serum				
2						include people who have	creatinine or urine albumin-				
(derivati	Cross-	Communit				migratedpermanently or	to- creatinine ratio data and	-			
 2 on)	sectional	у	2015	n/a	Random	are considered visitors"	participants on dialysis.	(13.5)	46.8%	48.20	49.70
						Any individual aged ≥20	Beddriden individuals,				
Bradsha						years and permanently	pregnant women,				
w, 2019						residingin at Delhi and	participants with missing				
- Model						Chennai (CARRS-II). A	both or either serum				
3a						permanent resident was	creatinine or urine albumin-				
(derivati	Cross-	Communit				defined as a person living	to- creatinine ratio data and	44.9			
2 on)	sectional	У	2015	n/a	Random	in the selected household,	participants on dialysis.	(13.5)	46.8%	39.90	46.97

BMJ	Open
-----	------

		1	1			1						
							was related to the					
							household head and ate					
							at least 3 meals in a week					
							with the family.					
							Households were defined					
							as "a group of people					
							wholive together, usually					
							pool their income and eat					
							atleast one meal together					
							a day when they are at					
							home. This does not					
							include people who have					
							migratedpermanently or					
							are considered visitors"					
							Any individual aged ≥20					
							years and permanently					
							residingin at Delhi and					
							Chennai (CARRS-II). A					
							permanent resident was					
							defined as a person living					
							in the selected household,					
							was related to the					
							household head and ate					
							at least 3 meals in a week					
							with the family.					
							Households were defined					
							as "a group of people					
							wholive together, usually					
							pool their income and eat	Beddriden individuals,				
	Bradsha						atleast one meal together	pregnant women,				
	w, 2019						a day when they are at	participants with missing				
	- Model						home. This does not	both or either serum				
	Зb						include people who have	creatinine or urine albumin-				
	(derivati	Cross-	Communit				migratedpermanently or	to- creatinine ratio data and	44.9			
2	on)	sectional	У	2015	n/a	Random	are considered visitors"	participants on dialysis.	(13.5)	46.8%	39.90	46.97
	Bradsha						Any individual aged ≥20	Beddriden individuals,				
	w, 2019	Cross-	Communit				years and permanently	pregnant women,				
2	- Model	sectional	У	2012	n/a	Random	residingin at Delhi	participants with missing	NI	NI	47.20	38.00

BMJ (Open
-------	------

	3a (CARRS -I urban validatio n)						(CARRS-I). A permanent resident was defined as a person living in the selected household, was related to the household head and ate at least 3 meals in a week with the family. Households were defined as "a group of people wholive together, usually pool their income and eat atleast one meal together a day when they are at home. This does not include people who have migratedpermanently or are considered visitors"	both or either serum creatinine or urine albumin- to- creatinine ratio data and participants on dialysis.				
2	Bradsha w, 2019 - Model 3a (UDAY rural validatio n)	Cross- sectional	Communit y	2014	n/a	Random	UDAY cohort participants ((a) adults aged ≥30 years residing in the sampled urban and rural areas of Sonipat and Vizag, respectively; and (b) willing to participate and provide informed consent).	Participants with missing both or either serum creatinine or urine albumin- to- creatinine ratio data, unwilling to provide informed consent, with serious chronic illnesses [such as that of the liver (cirrhosis), kidneys (renal failure) or malignancies], and pregnant women.	NI	NI	47.20	38.00
3	Carrillo- Larco, 2017 - CRONI CAS- CKD (derivati on	Cross- sectional	Communit y		n/a	Random	Full time resident, capable of giving informed consent, one subject per	Being pregnant, having active pulmonary tuberculosis, and having any disability preventing from undergoing anthropometric assessments, having CKD, missing values in the prediction variables, missing	57.7	49.4%		

	-											
	complet							values in key variables to				
	e)							calculate eGFR, subjects				
								with BMI >40 kg/m2 or BMI				
								<18.5 kg/m2.				
								Being pregnant, having				
								active pulmonary				
								tuberculosis, and having				
								any disability preventing				
	Carrillo-							from undergoing				
	Larco,							anthropometric				
	2017 -							assessments, having CKD,				
	CRONI							missing values in the				
	CAS-							prediction variables, missing				
	CKD						Full time resident, capable					
	(derivati						of giving informed	calculate eGFR, subjects				
	on lab-	Cross-	Communit	2013-			consent, one subject per	with BMI >40 kg/m2 or BMI	57.7			
3	free)	sectional	v	2014	n/a	Random	household.	<18.5 kg/m2.	(12.4)	49.4%		
	Carrillo-	0000.0110.	,						()			
	Larco.											
	2017 -											
	CRONI							Report having CKD, missing				
	CAS-							values in key variables to				
	CKD							calculate eGFR, subjects				
	(validati							with BMI >40 kg/m2 or BMI				
	on							<18.5 kg/m2, age < 35				
	complet	Cross-	Communit	2004-			PREVENCION cohort	years, missing values in	57.1			
3	e)	sectional	v	2006	n/a	Random	participants.	prediction variables.	(12.6)	47.7%		
	Carrillo-		, ,				P		()			
	Larco,											
	2017 -							Report having CKD, missing				
	CRONI							values in key variables to				
	CAS-							calculate eGFR, subjects				
	CKD							with BMI >40 kg/m2 or BMI				
	(validati							<18.5 kg/m2, age < 35				
	on lab-	Cross-	Communit	2004-			PREVENCION cohort	years, missing values in	57.1			
3	free)	sectional	V	2006	n/a	Random	participants.	prediction variables.	(12.6)	47.7%		
	Mogueo	Cross-	Communit	2008-			Cape Town Bellville-South	Participants with missing	55			
4	, 2015 -	sectional	V	2011	n/a	Random	study cohort participants.	data on all variables, except	(15)	23.4%		
<u> </u>	,_0.0	2.500.00.101	J				they concrepance participantor		()		1	

	Korean							anaemia			
	model (eGFR										
	validatio										
	n)										
	Mogueo										
	, 2015 - Thai										
	model										
	(eGFR							Participants with missing			
4	validatio n)	Cross-	Communit	2008- 2011	2/2	Dandam	Cape Town Bellville-South		55 (15)	23.4%	
4	n) Mogueo	sectional	у	2011	n/a	Random	study cohort participants.	kidney stones	(15)	23.4%	
	, 2015 -										
	Korean										
	model										
	(eGFR or										
	proteinu										
	ria							Participants with missing			
4	validatio n)	Cross- sectional	Communit v	2008- 2011	n/a	Random	Cape Town Bellville-South study cohort participants.	data on all variables, except anaemia	55 (15)	23.4%	
4	Mogueo	Sectional	У	2011	Π/a	Tanuom	study conort participants.	anaennia	(13)	20.470	
	, 2015 -										
	Thai										
	model (eGFR										
	or										
	proteinu										
	ria	Cross	Communit	2002			Cana Tawa Balluilla Cauth	Participants with missing	EE		
4	validatio n)	Cross- sectional	Communit v	2008- 2011	n/a	Random	Cape Town Bellville-South study cohort participants.	data on all variables, except kidney stones	55 (15)	23.4%	
<u> </u>	Saranbu	2.501.0.141	,				· _ ·		()		
	rut,						Employees of the Electric				
	2017 - Framing						Generating Authority of Thailand (EGAT) who	Subjects who had CKD at baseline or did not have			
	ham		Communit				participated in a health	serum creatinine at baseline	54.6		
5	Heart	Cohort	у	2002	2012	Random	survey in 2002	or at follow-up.	(5.6)	70.8%	

	Study										
	(MDRD										
	validatio										
	n)										
	Saranbu										
	rut,										
	2017 -										
	Framing										
	ham										
	Heart										
	Study						Employees of the Electric				
	(CKD-						Generating Authority of	Subjects who had CKD at			
	EPI		_				Thailand (EGAT) who	baseline or did not have			
_	validatio		Communit				participated in a health	serum creatinine at baseline	54.7		
5	n)	Cohort	У	2002	2012	Random	survey in 2003	or at follow-up.	(5.7)	71.5%	
							EGAT 1-2 cohort				
							participants with				
	. .						preserved GFR (estimate				
	Saranbu						glomerular filtration rate	Patients who died, retired,			
	rut,						(eGFR) ≥ 60	moved, did not want to			
	2017 -						mL/min/1.73m2) at	participate o had with			
	Model 1						baseline who attended	missing baseline serum			
	(derivati						both the examinations	creatinine data. Also,			
	on				0040		(EGAT 1 5rd examination	patients with eGFR<60 at	= 1 0		
	Clinical	<u> </u>	Communit	2002-	2012-	_ .	and EGAT 2 4nd	baseline in 2002-2003 were	51.3	70 50/	
6	only)	Cohort	У	2003	2013	Random	examination).	excluded	(7.4)	70.5%	
							EGAT 1-2 cohort				
							participants with				
	Saranbu						preserved GFR (estimate				
	rut,						glomerular filtration rate	Patients who died, retired,			
	2017 -						(eGFR) ≥ 60	moved, did not want to			
	Model 1						mL/min/1.73m2) at	participate o had with			
	BMI						baseline who attended	missing baseline serum			
	(derivati						both the examinations	creatinine data. Also,			
	on			0000	0010		(EGAT 1 5rd examination	patients with eGFR<60 at	54.0		
	Clinical	Oshavi	Communit	2002-	2012-	Develo	and EGAT 2 4nd	baseline in 2002-2003 were	51.3	70 50/	
6	only)	Cohort	У	2003	2013	Random	examination).	excluded	(7.4)	70.5%	

	Saranbu						EGAT 1-2 cohort				
	rut,						participants with				
	2017 -						preserved GFR (estimate				
	Model 2						glomerular filtration rate	Patients who died, retired,			
	(derivati						(eGFR) ≥ 60	moved, did not want to			
	on						mL/min/1.73m2) at	participate o had with			
	Clinical						baseline who attended	missing baseline serum			
	+						both the examinations	creatinine data. Also,			
	Limited						(EGAT 1 5rd examination	patients with eGFR<60 at			
	laborato		Communit	2002-	2012-		and EGAT 2 4nd	baseline in 2002-2003 were	51.3		
6	ry tests)	Cohort	У	2003	2013	Random	examination).	excluded	(7.4)	70.5%	
							EGAT 1-2 cohort				
	Saranbu						participants with				
	rut,						preserved GFR (estimate				
	2017 -						glomerular filtration rate	Patients who died, retired,			
	Model 3						(eGFR) ≥ 60	moved, did not want to			
	(derivati						mL/min/1.73m2) at	participate o had with			
	on						baseline who attended	missing baseline serum			
	Clinical						both the examinations	creatinine data. Also,			
	+ Full						(EGAT 1 5rd examination	patients with eGFR<60 at			
	laborato		Communit	2002-	2012-		and EGAT 2 4nd	baseline in 2002-2003 were	51.3		
6	ry tests)	Cohort	У	2003	2013	Random	examination).	excluded	(7.4)	70.5%	
	Saranbu						EGAT 3 cohort	Participants younger than			
	rut,						participants with	40 years old at baseline,			
	2017 -						preserved GFR (eGFR ≥	with missing serum			
	Model 1						60) at baseline in 2009	creatinine values, parrients			
	(validati						(EGAT 3 1st examination)	who died, retired and			
	on						who were followed up 5	moved, unwilling to			
	Clinical		Communit				years later in 2014 (EGAT	participate and with an	45.6		
6	only)	Cohort	У	2009	2014	Random	3 2nd examination).	eGFR <60 at baseline.	(4.2)	75.5%	
	Saranbu						EGAT 3 cohort	Participants younger than			
	rut,						participants with	40 years old at baseline,			
	2017 -						preserved GFR (eGFR ≥	with missing serum			
	Model 2						60) at baseline in 2009	creatinine values, parrients			
	(validati						(EGAT 3 1st examination)	who died, retired and			
1	on						who were followed up 5	moved, unwilling to	45.0		
	Clinical	. .	Communit			L	years later in 2014 (EGAT	participate and with an	45.6		
6	+	Cohort	У	2009	2014	Random	3 2nd examination).	eGFR <60 at baseline.	(4.2)	75.5%	

	Limited										
	laborato										
	ry tests)										
							Global Screening and Early Evaluation of Kidney				
							Disease (SEEK) study				
							subjects: being 18 years				
							or older, had no				
							menstruation period for at				
	Thakkin						least a week prior to the				
	stian.						examination date if women, and whom were				
	2011						,				
		Cross-	Communit	2007-			willing participants of the	Cubicate without blood or	45.2		
7	(derivati	sectional	v	2007-2008	n/a	Random	study and provided signed consent forms.	Subjects without blood or	45.2 (0.79)	45.5%	
/	on) Wen,	Sectional	У	2000	11/a	nanuum	consent ionns.	urine specimens.	(0.79)	40.0%	
	2020 -										
	Simple						Handan Eye Study (HES)	Subjects who were			
	Risk						participants (rural	diagnosed with CKD,			
	Score						residents aged ≥30 years	unwilling to participate,			
	(derivati		Communit	2006-	2012-		old living in Yongnian	missing follow up data	50		
8	on)	Cohort	v	2000-	2012-	Random	County).	(eGFR or UACR).	(10)	44.7%	
-	Wen,		,						(10)		
	2020 -										
	Best-fit						Handan Eye Study (HES)	Subjects who were			
	Risk						participants (rural	diagnosed with CKD,			
	Score						residents aged ≥30 years	unwilling to participate,			
	(derivati		Communit	2006-	2012-		old living in Yongnian	missing follow up data	50		
8	`on)	Cohort	У	2007	2013	Random	County).	(eGFR or UACR).	(10)	44.7%	
								Participants without: age			
								information; body mass			
	Wu,							index (BMI) information;			
	2016						Adults older than 18 years	blood pressure (BP)			
	(derivati	Cross-	Communit				and having given consent	measurement; serum	45.3		
9	on)	sectional	У	2012	n/a	Random	to this study.	creatinine test.	(14.3)	56.7%	
							Adults older than 18 years	Participants without: age			
	Wu,	Cross-	Communit				and having given consent	information; body mass	41.8		
9	2016	sectional	У	2012	n/a	Random	to this study.	index (BMI) information;	(11.7)	63.7%	

(validati				blood pressure (BP)		
on)				measurement; serum		
				creatinine test.		

S3.2 Table:: Outcome

		Outcome									
N°	Study	Outcome	Outcome details	Same outcome definition for all patients?	Blinde d outco me	Predictor s part of the outcome	Mean follow- up (years) (cohorts)				
1	Asgari, 2020 European Risk Assessment tool (6-years validation)	CKD composite	CKD was defined as eGFR < 60 mL/min/1.73 m2, provided by the Modification of Diet in Renal Disease (MDRD).	Yes	NI	No	6.2				
1	Asgari, 2020 European Risk Assessment tool (9-years validation)	CKD composite	CKD was defined as eGFR < 60 mL/min/1.73 m2, provided by the Modification of Diet in Renal Disease (MDRD).	Yes	NI	No	9.2				
2	Bradshaw, 2019 - Model 1 (derivation)	CKD composite	CKD was defined as an eGFR rate <60 mL/min/1.73 m2 (estimated by the CKD-EPI equation) or UACR ≥30 mg/g	Yes	NI	No	0				
2	Bradshaw, 2019 - Model 2 (derivation)	CKD composite	CKD was defined as an eGFR rate <60 mL/min/1.73 m2 (estimated by the CKD-EPI equation) or UACR ≥30 mg/g	Yes	NI	No	0				
2	Bradshaw, 2019 - Model 3a (derivation)	CKD composite	CKD was defined as an eGFR rate <60 mL/min/1.73 m2 (estimated by the CKD-EPI equation) or UACR ≥30 mg/g	Yes	NI	No	0				
2	Bradshaw, 2019 - Model 3b (derivation)	CKD composite	CKD was defined as an eGFR rate <60 mL/min/1.73 m2 (estimated by the CKD-EPI equation) or UACR ≥30 mg/g	Yes	NI	No	0				
2	Bradshaw, 2019 - Model 3a	CKD composite	CKD was defined as an eGFR rate <60 mL/min/1.73 m2 (estimated by the CKD-EPI equation) or UACR ≥30 mg/g	Yes	NI	No	0				

BMJ (Open
-------	------

					1 1		
	(CARRS-I urban						
	validation)						
	Bradshaw, 2019						
	- Model 3a						
	(UDAY rural	CKD	CKD was defined as an eGFR rate <60 mL/min/1.73 m2				
2	validation)	composite	(estimated by the CKD-EPI equation) or UACR ≥30 mg/g	Yes	NI	No	0
	Carrillo-Larco,						
	2017 -						
	CRONICAS-		CKD defined as an eGFR <60 mL/min/1.73m2, using the				
	CKD (derivation	CKD	MDRD (Modification of Diet in Renal Disease) formula, also				
3	complete)	composite	known as CKD stage III	Yes	Yes	No	0
	Carrillo-Larco,						
	2017 -						
	CRONICAS-		CKD defined as an eGFR <60 mL/min/1.73m2, using the				
	CKD (derivation	CKD	MDRD (Modification of Diet in Renal Disease) formula, also				
3	lab-free)	composite	known as CKD stage III	Yes	Yes	No	0
	Carrillo-Larco,	•	ř.				
	2017 -						
	CRONICAS-		CKD defined as an eGFR <60 mL/min/1.73m2, using the				
	CKD (validation	CKD	MDRD (Modification of Diet in Renal Disease) formula, also				
3	complete)	composite	known as CKD stage III	Yes	Yes	No	0
	Carrillo-Larco,						
	2017 -						
	CRONICAS-		CKD defined as an eGFR <60 mL/min/1.73m2, using the				
	CKD (validation	CKD	MDRD (Modification of Diet in Renal Disease) formula, also				
3	lab-free)	composite	known as CKD stage III	Yes	Yes	No	0
-	Mogueo, 2015 -						-
	Korean model						
	(eGFR	CKD	eGFR <60 ml/min/1.73 m2 based on the 4-variable				
4	validation)	composite	Modification of Diet in Renal Disease (MDRD) formula	Yes	NI	No	0
<u> </u>	Mogueo, 2015 -	20					
	Thai model						
	(eGFR	CKD	eGFR <60 ml/min/1.73 m2 based on the 4-variable				
4	validation)	composite	Modification of Diet in Renal Disease (MDRD) formula	Yes	NI	No	0
-	validation	composite	eGFR <60 ml/min/1.73 m2 based on the 4-variable	105	1 11	110	<u> </u>
	Mogueo, 2015 -		Modification of Diet in Renal Disease (MDRD) formula and				
	Korean model	CKD	'any nephropathy' including any of the stages I to V of the				
4	(eGFR or	composite	Kidney Disease: Improving Global Outcomes Chronic	Yes	NI	No	0
4		composite	Nuney Disease. Improving Giobai Outcomes Chronic	162	INI	INU	U

	proteinuria validation)		Kidney Disease (KDIGO) classification				
4	Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	CKD composite	eGFR <60 ml/min/1.73 m2 based on the 4-variable Modification of Diet in Renal Disease (MDRD) formula and 'any nephropathy' including any of the stages I to V of the Kidney Disease: Improving Global Outcomes Chronic Kidney Disease (KDIGO) classification	Yes	NI	No	0
5	Saranburut, 2017 - Framingham Heart Study (MDRD validation)	CKD composite	CKD was defined as estimate glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 using the Modification of Diet in Renal Disease (MDRD)	Yes	NI	No	10
5	Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	CKD composite	CKD defined as (eGFR) <60 mL/min/1.73 m2 using the CKD-EPI equation.	Yes	NI	No	10
6	Saranburut, 2017 - Model 1 (derivation Clinical only)	CKD	Preserved GFR (eGFR ≥60) at baseline and subsequently developed decreased GFR (eGFR < 60 mL/min/1.73m2) at the 10 year follow-up calculated according to two-level race variable Chronic Kidney Disease–Epidemiology Collaboration (CKDEPI) equation using the non-black coefficient. The outcome is a modification from the KDIGO definition of CKD stage 3-5	Yes	NI	No	10
6	Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	CKD	Preserved GFR (eGFR ≥60) at baseline and subsequently developed decreased GFR (eGFR < 60 mL/min/1.73m2) at the 10 year follow-up calculated according to two-level race variable Chronic Kidney Disease–Epidemiology Collaboration (CKDEPI) equation using the non-black coefficient. The outcome is a modification from the KDIGO definition of CKD stage 3-5	Yes	NI	No	10
6	Saranburut, 2017 - Model 2 (derivation Clinical + Limited	CKD	Preserved GFR (eGFR ≥60) at baseline and subsequently developed decreased GFR (eGFR < 60 mL/min/1.73m2) at the 10 year follow-up calculated according to two-level race variable Chronic Kidney Disease–Epidemiology				
6	laboratory tests)	composite	Collaboration (CKDEPI) equation using the non-black	Yes	NI	No	10

-	1						
			coefficient. The outcome is a modification from the KDIGO				
			definition of CKD stage 3-5				
			Preserved GFR (eGFR ≥60) at baseline and subsequently				
			developed decreased GFR (eGFR < 60 mL/min/1.73m2) at				
	Saranburut,		the 10 year follow-up calculated according to two-level race				
	2017 - Model 3		variable Chronic Kidney Disease–Epidemiology				
	(derivation		Collaboration (CKDEPI) equation using the non-black				
	Clinical + Full	CKD	coefficient. The outcome is a modification from the KDIGO				
6	laboratory tests)	composite	definition of CKD stage 3-5	Yes	NI	No	10
			Preserved GFR (eGFR ≥60) at baseline and subsequently				
			developed decreased GFR (eGFR < 60 mL/min/1.73m2) at				
			the 10 year follow-up calculated according to two-level race				
	Saranburut,		variable Chronic Kidney Disease–Epidemiology				
	2017 - Model 1		Collaboration (CKDEPI) equation using the non-black				
	(validation	CKD	coefficient. The outcome is a modification from the KDIGO				
6	Clinical only)	composite	definition of CKD stage 3-5	Yes	NI	No	5
		•	Preserved GFR (eGFR ≥60) at baseline and subsequently				
			developed decreased GFR (eGFR < 60 mL/min/1.73m2) at				
	Saranburut,		the 10 year follow-up calculated according to two-level race				
	2017 - Model 2		variable Chronic Kidney Disease-Epidemiology				
	(validation		Collaboration (CKDEPI) equation using the non-black				
	Clinical + Limited	CKD	coefficient. The outcome is a modification from the KDIGO				
6	laboratory tests)	composite	definition of CKD stage 3-5	Yes	NI	No	5
			CKD was defined as stage I & II if GFR ≥ 90 and GFR 60-				
			89 ml/min/1.73 m2 with haematuria and/or albumin-				
			creatinine ratio 30 mg/g or greater, stage III, IV, and V if the				
			GFR of 30-59, 15-29, and < 15 ml/min/1.73 m2				
			respectively, regardless of kidney damage. eGFR was				
	Thakkinstian,	CKD	calculated using the MDRD equation for IDMS traceable				
7	2011 (derivation)	composite	serum creatinine values.	Yes	NI	No	0
	Wen, 2020 -						
	Simple Risk		CKD was defined as an eGFR rate <60 mL/min/1.73 m2				
	Score	CKD	((assessed by the modified Chinese MDRD equation) or				
8	(derivation)	composite	UACR ≥30 mg/g	Yes	NI	No	5.6
	Wen, 2020 -						
	Best-fit Risk		CKD was defined as an eGFR rate <60 mL/min/1.73 m2				
	Score	CKD	((assessed by the modified Chinese MDRD equation) or				
8	(derivation)	composite	UACR ≥30 mg/g	Yes	NI	No	5.6
L	(2011-00110	<u>و</u> و				0.0

	Wu, 2016	CKD	Reduced eGFR was defined as eGFR<60 mL/min/1.73 m2				l
9	(derivation)	composite	using the CKD-EPI equation.	Yes	NI	No	0
	Wu, 2016	CKD	Reduced eGFR was defined as eGFR<60 mL/min/1.73 m2				
9	(validation)	composite	using the CKD-EPI equation.	Yes	NI	No	0
9		composite	using the CKD-EPI equation.	Yes	NI	No	

CKD, chronic kidney disease; CKD-EPI, chronic kidney disease epidemiology collaboration; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; KDIGO, MDRD, modification of diet renal disease; n/a, not applicable; NI, no information; UACR, urinary albumin-to-creatinine ratio.

S3.3 Table: Candidate predictors

						Candidate Predictors		
N°	Study	Nu mb er of can did ate pre dict ors	Num ber of predi ctors in the final mod el	Predi ctors timing	List of predictors in the final model	Predictors definition	Predictors ascertainment	Predictors modelling
1	Asgari, 2020 European Risk Assessme nt tool (6- years validation)	n/a	18	NI	Age; BMI (body mass index); waist circumference; use of antihypertensives; current smoking, parent and/or sibling with myocardial infarction or stroke; parent and/or sibling with diabetes.	Age (<45, ≥45 to <50, ≥50 to <55, ≥55 to <60, ≥60 to <65, ≥65 to <70, ≥70 to <75, ≥75 to <85); Body mass index (<25, ≥25 to <30, ≥30); Waist circumference [<94, ≥94 to <102, ≥102 (for men) and <80, ≥80 to <88, ≥88 (for women)]; use of antihypertensive medications; current smoking ('who smokes cigarettes daily or occasionally'); family history of cardiovascular disease (CVD) and/or diabetes (previously diagnosed CVD in first-degree male and female relatives aged < 55 and < 65 years, respectively)	BMI was calculated as weight (kg) divided by height (m2). Data collected by trained interviewer using a standard questionnaire	n/a
1	Asgari, 2020 European Risk Assessme nt tool (9- years validation)	n/a	18	NI	Age; BMI (body mass index); waist circumference; use of antihypertensives; current smoking, parent and/or sibling with myocardial infarction or stroke; parent and/or sibling with diabetes.	Age (<45, \geq 45 to <50, \geq 50 to <55, \geq 55 to <60, \geq 60 to <65, \geq 65 to <70, \geq 70 to <75, \geq 75 to <85); Body mass index (<25, \geq 25 to <30, \geq 30); Waist circumference [<94, \geq 94 to <102, \geq 102 (for men) and <80, \geq 80 to <88, \geq 88 (for women)]; use of antihypertensive medications; current smoking ('who smokes cigarettes daily	BMI was calculated as weight (kg) divided by height (m2). Data collected by trained interviewer using a standard questionnaire	n/a

						or occasionally'); family history of cardiovascular disease (CVD) and/or diabetes (previously diagnosed CVD in first-degree male and female relatives aged < 55 and < 65 years, respectively)		
2	Bradshaw, 2019 - Model 1 (derivation	30	ΝΙ	NI	ΝΙ	ΝΙ	ΝΙ	All continuous variables used cubic spline terms with knots placed at fixed quantiles of the predictor's marginal distribution, categorical variables were summarized using percentages
2)	30		INI	INI	NI	<u> </u>	All continuous
	Bradshaw, 2019 - Model 2 (derivation	23	NI	NI	NI	NI	NI	variables used cubic spline terms with knots placed at fixed quantiles of the predictor's

								distribution, categorical variables were summarized using percentages and counts. All continuous
								variables used cubic spline terms with knots placed at fixed quantiles of the predictor's marginal distribution,
2	Bradshaw, 2019 - Model 3a (derivation)	NI	NI	NI	NI	NI	NI	categorical variables were summarized using percentages and counts.
2	Bradshaw, 2019 - Model 3b (derivation)	8	NI	NI	NI	NI	NI	continuous variables used cubic spline terms with knots placed at fixed quantiles of the

33

Aparcana-Granda DJ, et al. BMJ Open 2022; 12:e058921. doi: 10.1136/bmjopen-2021-058921

								predictor's marginal distribution, categorical variables were summarized using percentages and counts.
2	Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	n/a	NI	NI	NI	NI	NI	n/a
	Bradshaw, 2019 - Model 3a (UDAY rural							
2	Carrillo- Larco, 2017 - CRONICA S-CKD (derivation	n/a	NI	NI	NI Age; hypertension;	NI Age (< 50, 50-69, ≥ 70 years), hypertension (blood pressure ≥ 140/90 mmHg OR previous diagnosis of hypertension and currently under treatment) and anemia (haemoglobin < 13 g/dL if male and < 12 g/dL if	NI Age (information was collected by trained fieldworkers through face-to- face interviews), hypertension (blood pressure measurements were conducted according to the recommendations of the 7th Joint National Committee on the diagnosis and management of High Blood Pressure in adults (JNC-7), NI	n/a
3	complete)	36	7	NI	anemia.	female).	on anemia.	NI
	Carrillo- Larco,					Age (< 50, 50-69, \geq 70 years), hypertension (blood pressure \geq 140/90	Age (information was collected by trained	
3	2017 -	26	5	NI	Age; hypertension.	mmHg OR previous diagnosis of	fieldworkers through face-to-	NI

	CRONICA S-CKD (derivation lab-free)					hypertension and currently under treatment).	face interviews), hypertension (blood pressure measurements were conducted according to the recommendations of the 7th Joint National Committee on the diagnosis and management of High Blood Pressure in adults (JNC-7), NI on anemia.	
3	Carrillo- Larco, 2017 - CRONICA S-CKD (validation complete)	n/a	7	NI	Age; hypertension; anemia.	Age (< 50, 50-69, ≥ 70 years), hypertension (blood pressure ≥ 140/90 mmHg OR previous diagnosis of hypertension and currently under treatment) and anemia (haemoglobin < 13 g/dL if male and < 12 g/dL if female).	Age (information was collected by trained fieldworkers through face-to- face interviews), hypertension (blood pressure measurements were conducted according to the recommendations of the 7th Joint National Committee on the diagnosis and management of High Blood Pressure in adults (JNC-7), NI on anemia.	n/a
3	Carrillo- Larco, 2017 - CRONICA S-CKD (validation lab-free)	n/a	5	NI	Age; hypertension.	Age (< 50, 50-69, ≥ 70 years), hypertension (blood pressure ≥ 140/90 mmHg OR previous diagnosis of hypertension and currently under treatment).	Age (information was collected by trained fieldworkers through face-to- face interviews), hypertension (blood pressure measurements were conducted according to the recommendations of the 7th Joint National Committee on the diagnosis and management of High Blood Pressure in adults (JNC-7), NI on anemia.	n/a
	Mogueo,				Age; sex; diabetes	Age (50-59, 60-69, ≥70); Female	Participants received a	NII
4	2015 -	n/a	8	NI	mellitus; hypertension; use	gender; Hypertension (history of	standardized interview (Age	NI

	Korean model (eGFR validation)				of statins; proteinuria	illness, taking antihyper-tensive drug(s) or had systolic blood pressure ≥140 mmHg or diastolicblood pressure ≥90 mmHg); Diabetes (history of illness, taking oral hypoglycaemicagents or fasting plasma glucose levels≥126 mg/dL); Use of statins; Proteinuria	and sex) and physical examination during which blood pressure was measured according to the World Health Organisation (WHO) guidelines using a semi- automated digital blood pressure monitor (Rossmax PA, USA) on the right arm in the sitting position. Participants with no history of doctor diagnosed diabetes mellitus underwent a 75 g oral glucose tolerance test (OGTT) as recommended by the WHO	
4	Mogueo, 2015 - Thai model (eGFR validation)	n/a	8	NI	Age; diabetes mellitus; hypertension	Age (<40, 40-59, 60-69, >70); Hypertension (history of illness, taking antihyper-tensive drug(s) or had systolic blood pressure ≥140 mmHg or diastolicblood pressure ≥90 mmHg); Diabetes (history of illness, taking oral hypoglycaemicagents or fasting plasma glucose levels≥126 mg/dL)	Participants received a standardized interview (Age) and physical examination during which blood pressure was measured according to the World Health Organisation (WHO) guidelines using a semi-automated digital blood pressure monitor (Rossmax PA, USA) on the right arm in the sitting position. Participants with no history of doctor diagnosed diabetes mellitus underwent a 75 g oral glucose tolerance test (OGTT) as recommended by the WHO	NI
	Mogueo, 2015 - Korean model				Age; sex; diabetes mellitus; hypertension; use	Age (50-59, 60-69, ≥70); Female gender; Hypertension (history of illness, taking antihyper-tensive drug(s) or had systolic blood pressure	Participants received a standardized interview (Age and sex) and physical examination during which	
4	(eGFR or	n/a	8	NI	of statins; proteinuria	≥140 mmHg or diastolicblood pressure	blood pressure was measured	NI

	proteinuria validation)					≥90 mmHg); Diabetes (history of illness, taking oral hypoglycaemicagents or fasting plasma glucose levels≥126 mg/dL); Use of statins; Proteinuria	according to the World Health Organisation (WHO) guidelines using a semi- automated digital blood pressure monitor (Rossmax PA, USA) on the right arm in the sitting position. Participants with no history of doctor diagnosed diabetes mellitus underwent a 75 g oral glucose tolerance test (OGTT) as recommended by the WHO	
4	Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	n/a	8	NI	Age; diabetes mellitus; hypertension	Age (<40, 40-59, 60-69, >70); Hypertension (history of illness, taking antihyper-tensive drug(s) or had systolic blood pressure ≥140 mmHg or diastolicblood pressure ≥90 mmHg); Diabetes (history of illness, taking oral hypoglycaemicagents or fasting plasma glucose levels≥126 mg/dL)	Participants received a standardized interview (Age) and physical examination during which blood pressure was measured according to the World Health Organisation (WHO) guidelines using a semi-automated digital blood pressure monitor (Rossmax PA, USA) on the right arm in the sitting position. Participants with no history of doctor diagnosed diabetes mellitus underwent a 75 g oral glucose tolerance test (OGTT) as recommended by the WHO	NI
5	Saranburu t, 2017 - Framingh am Heart Study (MDRD validation)	n/a	5	NI	Diabetes mellitus; hypertension; eGFR category	Diabetes mellitus (yes); hypertension (yes); eGFR category (60-74, 75-89, 90-119)	Hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg or use of oral antihypertensive medication. Diabetes mellitus was defined as a fasting glucose of ≥126 mg/dl or use	n/a

Age; sex; systolic blood

pressure; body mass index

(BMI); diabetes mellitus

NI

Saranburu t, 2017 -Framingh am Heart Study (CKD-EPI validation)

Saranburu t, 2017 -Model 1 (derivation Clinical

only)

Saranburu t, 2017 -

Model 1

BMI

(derivation

15

15

5

6

6

					of medications. eGFR was	
					estimated using the	
					Modification of Diet in Renal	
					Disease (MDRD) equation.	
					Age was obtained by a	
					survey. Hypertension was	
					defined as systolic blood	
					pressure ≥ 140 mmHg or	
					diastolic blood pressure ≥ 90	
					mmHg or use of oral	
					antihypertensive medication.	
					Diabetes mellitus was defined	
					as a fasting glucose of ≥126	
				Age (30-34, 35-39, 40-44, 45-49, 50-	mg/dl or use of medications.	
			A	54, 55-59, 60-64, 65-69, 70-74, 75-79,	eGFR was estimated using	
			Age; diabetes mellitus;	80-85); diabetes mellitus (yes);	the chronic kidney disease-	
n/a	16	NI	hypertension; eGFR	hypertension (yes); eGFR category	epidemiology collaboration	n/o
n/a	10	INI	category	(60-74, 75-89, 90-119)	(CKD-EPI) equation Age (health survey), sex	n/a
					(health survey). Hypertension	
					was defined as systolic blood	
					pressure ≥ 140 mmHg or	
					diastolic blood pressure \geq 90	
					mmHg or use of oral	
					antihypertensive medication.	
				Age (<45, 45-54, 55-59, ≥55); Sex	Diabetes mellitus was defined	
				(male, female); Waist circumference	as a fasting glucose of ≥126	
				(≤80 for male or ≤90 for male, >80 for	mg/dl or a positive history of	
			Age; sex; systolic blood	female or >90 for male); Diabetes	diabetes. Waist circumference	
			pressure; waist	(yes, no); Systolic blood pressure	was measured midway	
			circumference; diabetes	(<120, 120-129, 130-139, 140-149,	between the lowest ribs and	
15	15	NI	mellitus	150-159, ≥160)	the iliac crest.	NI
					Age (health survey), sex	
				Age (<45, 45-54, 55-59, ≥55); Sex	(health survey). Hypertension	

(male, female); BMI (<25, ≥25);

Diabetes (yes, no); Systolic blood

pressure (<120, 120-129, 130-139,

140-149, 150-159, ≥160)

38

NI

was defined as systolic blood

pressure ≥ 140 mmHg or

diastolic blood pressure ≥ 90

mmHg or use of oral

	Clinical			1			antibupartanaiva madication	
							antihypertensive medication.	
	only)						Diabetes mellitus was defined	
							as a fasting glucose of ≥126	
							mg/dl or a positive history of	
							diabetes. Body mass index	
							was defined as weight in	
							kilograms divided by the	
							square of height in meters	
							Age (health survey), sex	
							(health survey). Hypertension	
							was defined as systolic blood	
							pressure ≥ 140 mmHg or	
							diastolic blood pressure ≥ 90	
							mmHg or use of oral	
							antihypertensive medication.	
							Diabetes mellitus was defined	
							as a fasting glucose of ≥126	
							mg/dl or a positive history of	
							diabetes. Serum creatinine	
							(sCr) was measured by the	
							enzymatic assay on the Vitros	
							350 analyzer (Ortho-Clinical	
							Diagnostics, USA) using	
							IDMS-Standard Reference	
	Saranburu						Material (SRM) 967 as the	
	t, 2017 -						standard. Estimate glomerular	
	Model 2						filtration rate (eGFR) was	
	(derivation					Age (<45, 45-54, 55-59, ≥55); Sex	calculated according to two-	
	Clinical +				Age; sex; systolic blood	(male, female); Diabetes (yes, no);	level race variable Chronic	
	Limited				pressure; diabetes	Systolic blood pressure (<120, 120-	Kidney Disease-	
	laboratory				mellitus; glomerular	129, 130-139, 140-149, 150-159,	Epidemiology Collaboration	
6	tests)	16	16	NI	filtration rate at baseline	≥160); eGFR (≥90, 75-89, 60-74)	(CKDEPI) equation	NI
0	Saranburu	10	10	111		Age (<45, 45-54, 55-59, ≥55); Sex	Age (health survey), sex	INI
	t, 2017 -				Age; sex; systolic blood	(male, female); Diabetes (yes, no);	(health survey). Hypertension	
	Model 3				pressure; diabetes	Systolic blood pressure (<120, 120-	was defined as systolic blood	
	(derivation				mellitus; glomerular	129, 130-139, 140-149, 150-159,	pressure ≥ 140 mmHg or	
	Clinical +				filtration rate at baseline:	\geq 160); eGFR (\geq 90, 75-89, 60-74); Uric	diastolic blood pressure \geq 90	
6	Full	22	20	NI	,			NI
0	Full	22	20	INI	uric acid; hemoglobin	acid (>6 for female or >7 for male, ≤6	mmHg or use of oral	INI

	laboratory tests)					for female or ≤7 for male); Hemoglobin (<12 for female or <13 for male, ≥12 for female or ≥13 for male)	antihypertensive medication. Diabetes mellitus was defined as a fasting glucose of ≥126 mg/dl or a positive history of diabetes. Serum creatinine (sCr) was measured by the enzymatic assay on the Vitros 350 analyzer (Ortho-Clinical Diagnostics, USA) using IDMS-Standard Reference Material (SRM) 967 as the standard. Estimate glomerular filtration rate (eGFR) was calculated according to two- level race variable Chronic Kidney Disease– Epidemiology Collaboration (CKDEPI) equation. There is no information about uric acid and hemoglobin	
6	Saranburu t, 2017 - Model 1 (validation Clinical only)	n/a	15	NI	Age; sex; systolic blood pressure; waist circumference; diabetes mellitus	Age (<45, 45-54, 55-59, ≥55); Sex (male, female); Waist circumference (≤80 for male or ≤90 for male, >80 for female or >90 for male); Diabetes (yes, no); Systolic blood pressure (<120, 120-129, 130-139, 140-149, 150-159, ≥160)	Age (health survey), sex (health survey). Hypertension was defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg or use of oral antihypertensive medication. Diabetes mellitus was defined as a fasting glucose of ≥126 mg/dl or a positive history of diabetes. Waist circumference was measured midway between the lowest ribs and the iliac crest.	n/a
6	Saranburu t, 2017 - Model 2 (validation	n/a	16	NI	Age; sex; systolic blood pressure; diabetes mellitus; glomerular filtration rate at baseline	Age (<45, 45-54, 55-59, ≥55); Sex (male, female); Diabetes (yes, no); Systolic blood pressure (<120, 120- 129, 130-139, 140-149, 150-159,	Age (health survey), sex (health survey). Hypertension was defined as systolic blood pressure ≥ 140 mmHg or	n/a

	Clinical +					≥160); eGFR (≥90, 75-89, 60-74)	diastolic blood pressure ≥ 90	
	Limited						mmHg or use of oral	
	laboratory						antihypertensive medication.	
	tests)						Diabetes mellitus was defined	
							as a fasting glucose of ≥126	
							mg/dl or a positive history of	
							diabetes. Serum creatinine	
							(sCr) was measured by the	
							enzymatic assay on the Vitros	
							350 analyzer (Ortho-Clinical	
							Diagnostics, USA) using	
							IDMS-Standard Reference	
							Material (SRM) 967 as the	
							standard. Estimate glomerular	
							filtration rate (eGFR) was	
							calculated according to two-	
							level race variable Chronic	
							Kidney Disease-	
							Epidemiology Collaboration	
							(CKDEPI) equation	
							Age (survey), diabetes	
						Age (<40, 40-59, 60-69, ≥70);	(history of illness, relevant	
						Hypertension (taking antihyper-tensive	medicines used or laboratory	
						drug(s) or had systolic blood pressure	tests/physical examinations),	
						≥140 mmHg or diastolicblood pressure	hypertension (history of	
						≥90 mmHg); Diabetes (taking oral	illness, relevant medicines	
	Thakkinsti					hypoglycaemicagents or fasting	used or laboratory	
	an, 2011				Age; history of kidney	plasma glucose levels ≥126 mg/dL);	tests/physical examinations),	
	(derivation				stones; diabetes mellitus;	History of kidney stone was measured	and history of kidney stones	
7)	37	10	NI	hypertension	by self-reporting kidney stone	(self-reported in survey).	NI
						Waist circumference [<80/<75, 80-	During medical examinations,	
	Wen,					84.9/75-79.9, 85-89.9/80-84.9, 90-	participants took two blood	
	2020 -					94.9/85-89.9, ≥95/≥90 (for	pressure measurements	
	Simple					male/female)]; systolic blood pressure	using a non-invasive	
	Risk					(<120, 120-139, 140-159, >160); sex	automatic HEM-907 blood	
	Score				Waist circumference;	(male, female); education (illiterate,	pressure monitor after 5	
	(derivation			Time-	systolic blood pressure;	primary school and above); diabetes	minutes of rest. Systolic blood	
8)	NI	15	varying	sex; education; diabetes	(no or yes)	pressure was identified as the	NI

							average values of two	
							independent measurements;	
							Diabetes was defined as: (1)	
							FPG ≥7.0 mmol/L, or (2) self-	
							reported diagnosis of	
							diabetes, or (3) the use of	
							antidiabetic medications;	
							According to the number of	
							years of education, they were	
							divided into four groups	
							(illiterate for 0 years, primary	
							school for 1–6 years, junior	
							high school for 7–9years, and	
							senior high school for ≥10	
							years); Sex was self-reported;	
							Information about waist	
							circumference was no	
							available	
							Urinary albumin and	
							creatinine were measured	
							from fresh morning spot urine	
							samples; During medical	
							examinations, participants	
							took two blood pressure	
							measurements using a non-	
							invasive automatic HEM-907	
							blood pressure monitor after 5	
							minutes of rest. Systolic blood	
							pressure was identified as the	
							average values of two	
						Livia em Albumaia te eventiais - veti-	independent measurements;	
	14/010					Urinary Albumin-to-creatinine ratio	Diabetes was defined as: (1)	
	Wen,					(<5.0, 5.0-10.0, >10.0); systolic blood	FPG ≥7.0 mmol/L, or (2) self-	
	2020 -					pressure (<120, 120-139, 140-159,	reported diagnosis of	
	Best-fit				Urinary Albumin-to-	>160); C-reactive protein (<1.0, 1-3,	diabetes, or (3) the use of	
	Risk				creatinine ratio; systolic	>3.0); triglycerides (<1.0, 1.0-1.7,	antidiabetic medications;	
	Score				blood pressure; C-reactive	>1.7); sex (male, female); education	According to the number of	
-	(derivation			Time-	protein; triglycerides; sex;	(illiterate, primary school and above);	years of education, they were	
8)	NI	19	varying	education; diabetes	diabetes (no or yes)	divided into four groups	NI

							(illiterate for 0 years, primary	
							school for 1–6 years, junior	
							high school for 7–9years, and	
							senior high school for ≥10	
							years); Sex was self-reported;	
							Information about waist	
							circumference, C-reactive	
							protein and triglycerides were	
							no available	
						Age (≤ 40, 41−50, 51−60, 61−70,	Age (self-reported), gender	
						≥71), gender (male, female) and body		
	Wu, 2016					mass index (BMI) status (normal,	index (BMI) status (calculated	
	(derivation				Age, gender and body	overweight: 23-24.9 kg/m2, obesity:	from participant's measured	
9)	NI	10	Baseline	mass index (BMI) status.	≥25 kg/m2).	body weight and height).	NI
						Age (≤ 40, 41 - 50, 51 - 60, 61 - 70,	Age (self-reported), gender	
						71+), gender (male, female) and body		
	Wu, 2016					mass index (BMI) status (normal,	index (BMI) status (calculated	
	(validation				Age, gender and body	overweight: 23-24.9 kg/m2, obesity:	from participant's measured	
9)	n/a	10	Baseline	mass index (BMI) status.	≥25 kg/m2).	body weight and height).	n/a

S3.4 Table: Sample size and missing data

			Sample Siz	ze	Mi	ssing Data	
N°	Study	Baselin e sample size	Number of outcome events	Total outcome events per candidate predictors	Missing data	Number of participant s with missing data	Missing data per candidat e predictor s
1	Asgari, 2020 European Risk Assessment tool (6-years validation)	3270	722	n/a	Complete-case	2817	n/a
1	Asgari, 2020 European Risk Assessment tool (9-years validation)	3240	1359	n/a	Complete-case	2847	n/a
2	Bradshaw, 2019 - Model 1 (derivation)	8698	947	31,57	Complete-case	896	29,87
2	Bradshaw, 2019 - Model 2 (derivation)	8698	947	41,17	Complete-case	896	38,96
2	Bradshaw, 2019 - Model 3a (derivation)	8698	947	NI	Complete-case	896	NI
2	Bradshaw, 2019 - Model 3b (derivation)	8698	947	118,38	Complete-case	896	112,00
2	Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	4065	NI	n/a	Complete-case	1300	n/a
2	Bradshaw, 2019 - Model 3a (UDAY rural validation)	4940	NI	n/a	Complete-case	1233	n/a
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	2368	81	2,25	Complete-case	235	6,53
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab-free)	2368	81	3,12	Complete-case	235	9,04
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	1459	79	n/a	Complete-case	79	n/a
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab-free)	1459	79	n/a	Complete-case	79	n/a
4	Mogueo, 2015 - Korean model (eGFR validation)	902	259	n/a	Complete-case	383	n/a
4	Mogueo, 2015 - Thai model (eGFR validation)	902	259	n/a	Complete-case	383	n/a
4	Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	902	268	n/a	Complete-case	383	n/a
4	Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	902	268	n/a	Complete-case	383	n/a
5	Saranburut, 2017 - Framingham Heart Study (MDRD validation)	2141	222	n/a	Complete-case	NI	n/a
5	Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	2328	233	n/a	Complete-case	NI	n/a
6	Saranburut, 2017 - Model 1 (derivation Clinical only)	3186	271	18,07	Complete-case	NI	NI
6	Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	3186	271	18,07	Complete-case	NI	NI
6	Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	3186	271	16,94	Complete-case	NI	NI
6	Saranburut, 2017 - Model 3 (derivation Clinical + Full laboratory tests)	3186	271	12,32	Complete-case	NI	NI
6	Saranburut, 2017 - Model 1 (validation Clinical only)	1395	27	n/a	Complete-case	NI	NI

	Saranburut, 2017 - Model 2 (validation Clinical + Limited laboratory			n/a			
6	tests)	1395	27	11/a	Complete-case	NI	NI
7	Thakkinstian, 2011 (derivation)	3459	626	16,92	NI	NI	NI
8	Wen, 2020 - Simple Risk Score (derivation)	3266	590	NI	Complete-case	992	NI
8	Wen, 2020 - Best-fit Risk Score (derivation)	3266	590	NI	Complete-case	992	NI
9	Wu, 2016 (derivation)	14374	294	NI	Complete-case	3135	NI
9	Wu, 2016 (validation)	4371	48	n/a	Complete-case	911	n/a

S3.5 Table: Model development

		Model Development						
N°	Study	Regressio n method	Were the model assumptions verified?	Predictors selection	If the prediction model was a replication, which was the original model?	If there were pre-selection, describe the method	Was a shrinkag e method used?	
1	Asgari, 2020 European Risk							
	Assessment tool (6-years validation) Asgari, 2020 European Risk	n/a	n/a	n/a	n/a	n/a	n/a	
1	Assessment tool (9-years validation)	n/a	n/a	n/a	n/a	n/a	n/a	
2	Bradshaw, 2019 - Model 1 (derivation)	Logistic	NI	Pre-selection	n/a	Step-down selection procedure based on the Akaike information criterion to select the final predictors	No	
2	Bradshaw, 2019 - Model 2 (derivation)	Logistic	NI	Pre-selection	n/a	Step-down selection procedure based on the Akaike information criterion to select the final predictors	No	
2	Bradshaw, 2019 - Model 3a (derivation)	Logistic	NI	Pre-selection	n/a	Step-down selection procedure based on the Akaike information criterion to select the final predictors	No	
2	Bradshaw, 2019 - Model 3b (derivation)	Logistic	NI	Pre-selection	n/a	Step-down selection procedure based on the Akaike information criterion to select the final predictors	No	
2	Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	n/a	n/a	n/a	n/a	n/a	n/a	
2	Bradshaw, 2019 - Model 3a (UDAY rural validation)	n/a	n/a	n/a	n/a	n/a	n/a	
3	Carrillo-Larco, 2017 - CRONICAS- CKD (derivation complete)	Logistic	NI	Pre-selection	n/a	Stepwise backward elimination method	No	

	Carrillo-Larco, 2017 - CRONICAS-					Stepwise backward elimination	
3	CKD (derivation lab-free)	Logistic	NI	Pre-selection	n/a	method	No
	Carrillo-Larco, 2017 - CRONICAS-	209.000					
3	CKD (validation complete)	n/a	n/a	n/a	n/a	n/a	n/a
	Carrillo-Larco, 2017 - CRONICAS-						
3	CKD (validation lab-free)	n/a	n/a	n/a	n/a	n/a	n/a
	Mogueo, 2015 - Korean model (eGFR	n/a	n/a	n/a	n/a	n/a	n/a
4	validation) Mogueo, 2015 - Thai model (eGFR						
4	validation)	n/a	n/a	n/a	n/a	n/a	n/a
	Mogueo, 2015 - Korean model (eGFR	,	,	,	,	,	1
4	or proteinuria validation)	n/a	n/a	n/a	n/a	n/a	n/a
	Mogueo, 2015 - Thai model (eGFR or	n/a	n/a	n/a	n/a	n/a	n/a
4	proteinuria validation)	n/a	n/a	11/a	n/a	IVa	n/a
_	Saranburut, 2017 - Framingham Heart						
5	Study (MDRD validation)	n/a	n/a	n/a	n/a	n/a	n/a
-	Saranburut, 2017 - Framingham Heart			ra / a		- /-	
5	Study (CKD-EPI validation)	n/a	n/a	n/a	n/a	n/a Variables were sequentially	n/a
						added in a pre-specified order	
						and incorporated using a p<	
	Saranburut, 2017 - Model 1 (derivation					0.05 threshold for entry and	
6	Clinical only)	Logistic	NI	Pre-selection	n/a	retention in the final model	No
		0				Variables were sequentially	
						added in a pre-specified order	
						and incorporated using a p<	
	Saranburut, 2017 - Model 1 BMI					0.05 threshold for entry and	
6	(derivation Clinical only)	Logistic	NI	Pre-selection	n/a	retention in the final model	No
						Variables were sequentially	
						added in a pre-specified order	
	Saranburut 2017 Madel 2 (derivation					and incorporated using a p< 0.05 threshold for entry and	
6	Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	Logistic	NI	Pre-selection	n/a	retention in the final model	No
		Logistic	INI		Π/α	Variables were sequentially	110
						added in a pre-specified order	
						and incorporated using a p<	
	Saranburut, 2017 - Model 3 (derivation					0.05 threshold for entry and	
6	Clinical + Full laboratory tests)	Logistic	NI	Pre-selection	n/a	retention in the final model	No

	Saranburut, 2017 - Model 1 (validation						
6	Clinical only)	n/a	n/a	n/a	n/a	n/a	n/a
	Saranburut, 2017 - Model 2 (validation	,	,	,	,	,	,
6	Clinical + Limited laboratory tests)	n/a	n/a	n/a	n/a	n/a	n/a
						Factors with p values < 0.15 in a univariate analysis were	
						considered to be	
						simultaneously included in the	
						multivariate logistic equation.	
						Model selection was performed	
						using F-tests, and thus only	
						significant variables were kept	
						in the final model. C statistic of	
						models with and without a	
						particular variable were then	
						compared; if dropping that variable did not significantly	
						reduce the explanation of the	
						CKD, that variable was omitted	
						in the final parsimonious	
7	Thakkinstian, 2011 (derivation)	Logistic	NI	Pre-selection	n/a	model.	No
						Risk factors were investigated	
						by forward stepwise logistic	
						regression and only statiscally	
	Wan 2020 Simple Dick Secre					significant (a two-sided P value	
8	Wen, 2020 - Simple Risk Score (derivation)	Logistic	NI	Pre-selection	n/a	<0.05) risk factors were retained.	No
	(derivation)	Logistic	111	TTE-Selection	11/a	Risk factors were investigated	INO
						by forward stepwise logistic	
						regression and only statiscally	
						significant (a two-sided P value	
	Wen, 2020 - Best-fit Risk Score					<0.05) risk factors were	
8	(derivation)	Logistic	NI	Pre-selection	n/a	retained.	No
						Stepwise logistic regression	
						model. Variables with a p value	
9	Wu, 2016 (derivation)	Logistic	NI	Pre-selection	n/a	less than 0.1 were kept in the final model.	No
9	Wu, 2016 (validation)	n/a	n/a	n/a	n/a	n/a	n/a
	, , , , , , , , , , , , , , , , , , , ,						

n/a: not applicable; NI: no information

S3.6 Table: Model performance

				Model Performance		
N°	Study	Calibration	Discrimination (%)	Classification measures	Cut-off point	For replicati on studies, was the cut-off the same?
1	Asgari, 2020 European Risk Assessment tool (6- years validation)	Hosmer-Lemeshow X2 test (for intercept adjusted model): 13.53 with a p-value 0.09 (for male) and 10.1 with a p-value 0.26 (for women)	AUC (95% CI) for final intercept adjusted model = Male: 0.76 (0.72- 0.79) and Female: 0.71 (0.69-0.73)	Men: Sensitivity = 72.7%, Specificity = 67.6%. Women: Sensitivity = 66.8%, Specificity = 65.6%.	Men: 25. Women: 19	No
	Asgari, 2020 European Risk Assessment tool (9-	Hosmer-Lemeshow X2 test (for intercept adjusted model): 12.54 with a p-value 0.13 (for male) and 8.19 with a p-value 0.41 (for	AUC (95% CI) for final intercept adjusted model = Male: 0.71 (0.67- 0.74) and Female:	Men: Sensitivity = 64.5%, Specificity = 69.5%. Women:	Men: 25.	
1	years validation) Bradshaw, 2019 - Model	women) Calibration slope:	0.70 (0.68-0.73) C-statistic (95% CI)	Sensitivity = 56.9%, Specificity = 76.6% Sensitivity = 72%, Specificity = 72%, PPV = 24%, NPV	Women: 23	No
2	1 (derivation)	0.96	= 0.79 (0.78-0.81)	= 96%	0.09	n/a
2	Bradshaw, 2019 - Model 2 (derivation)	Calibration slope: 0.98	C-statistic (95% Cl) = 0.73 (0.72-0.75)	Sensitivity = 68%, Specificity = 67%, PPV = 20%, NPV = 95%	0.09	n/a
2	Bradshaw, 2019 - Model 3a (derivation)	Calibration slope: 0.98	C-statistic (95% CI) = 0.77 (0.75-0.79)	Sensitivity = 71%, Specificity = 70%, PPV = 22%, NPV = 95%	0.09	n/a
2	Bradshaw, 2019 - Model 3b (derivation)	Calibration slope: 0.99	C-statistic (95% Cl) = 0.77 (0.76-0.79)	Sensitivity = 71%, Specificity = 70%, PPV = 22%, NPV = 95%	0.09	n/a

	Bradshaw, 2019 - Model					
	3a (CARRS-I urban		C-statistic (95% CI)	N 11	0.00	Ň
2	validation)	NI	= 0.74 (0.73-0.74)	NI	0.09	Yes
	Bradshaw, 2019 - Model					
0	3a (UDAY rural		C-statistic (95% CI)	NU NU	0.00	Ň
2	validation)	NI	= 0.70 (0.69-0.71)	NI	0.09	Yes
		Hosmer-Lemeshow				
	0 11 1 0017	X2 test: 4.13 with a				
	Carrillo-Larco, 2017 -	p-value of 0.53 (for				
	CRONICAS-CKD	final multivariable		Sensibility = 82.5%, Specificity = 70.0%, PPV = 8.8%,		
3	(derivation complete)	model).	AUC = 76.2%	NPV = 99.1%, LHR+ = 2.8, LHR- = 0.3	2	n/a
		Hosmer-Lemeshow				
		X2 test: 4.13 with a				
	Carrillo-Larco, 2017 -	p-value of 0.53 (for				
	CRONICAS-CKD	final multivariable		Sensibility = 80.0%, Specificity = 72.0%, PPV = 9.1%,	_	
3	(derivation lab-free)	model).	AUC = 76%	NPV = 99.0%, LHR+ = 2.9, LHR- = 0.3	2	n/a
	Carrillo-Larco, 2017 -					
	CRONICAS-CKD			Sensitivity = 70.5%, Specificity = 69.1%, PPV = 11.4%,		
3	(validation complete)	NI	AUC = 70.0%.	NPV = 97.6%, LHR+ = 2.3, LHR- = 0.4	2	Yes
	Carrillo-Larco, 2017 -					
	CRONICAS-CKD			Sensitivity = 70.5%, Specificity = 69.7%, PPV = 11.6%,		
3	(validation lab-free)	NI	AUC = 70.0%.	NPV = 97.7%, LHR+ = 2.3, LHR- = 0.4	2	Yes
		Expected/Observed				
		rate (95%) = 0.76				
		(0.67-0.86); Brier	C-statistic (95% CI)			
	Mogueo, 2015 - Korean	score = 0.164;	= 0.797 (0.765-			
4	model (eGFR validation)	Yates slope = 0.208	0.829)	Sensitivity = 82%, Specificity = 67%	0.30	NI
		Expected/Observed				
		rate (95%) = 0.98				
		(0.87-1.10); Brier	C-statistic (95% CI)			
	Mogueo, 2015 - Thai	score = 0.165;	= 0.760 (0.726-			
4	model (eGFR validation)	Yates slope = 0.200	0.793)	Sensitivity = 73%, Specificity = 72%	0.31	NI
		Expected/Observed				
		rate (95%) = 0.76				
	Mogueo, 2015 - Korean	(0.67-0.85); Brier	C-statistic (95% CI)			
	model (eGFR or	score = 0.161;	= 0.811 (0.780-			
4	proteinuria validation)	Yates slope = 0.225	0.842)	Sensitivity = 84%, Specificity = 68%	0.31	NI

BMJ	Open
-----	------

		Expected/Observed			1	
		rate $(95\%) = 0.97$				
	Mogueo, 2015 - Thai	(0.86-1.09); Brier	C-statistic (95% CI)			
		score = 0.164:	. ,			
4	model (eGFR or	,	= 0.772 (0.739 - 0.805)	Constitute 749/ Constitute 799/	0.32	NI
4	proteinuria validation)	Yates slope = 0.211	0.805)	Sensitivity = 74%, Specificity = 73%	0.32	INI
	Saranburut, 2017 -	Hosmer-Lemeshow				
_	Framingham Heart Study	X2 test: 30.2	AUC (95% CI) =	NU		
5	(MDRD validation)	(p<0.001)	0.69 (0.66-0.73)	NI	NI	NI
	Saranburut, 2017 -	Hosmer-Lemeshow				
	Framingham Heart Study	X2 test: 256.5	AUC (95% CI) =			
5	(CKD-EPI validation)	(p<0.001)	0.63 (0.57-0.65)	NI	NI	NI
	Saranburut, 2017 - Model	Hosmer-Lemeshow				
	1 (derivation Clinical	X2 test: 9.02	AUC (95% CI) =			
6	only)	(p=0.34)	0.72 (0.69-0.75)	NI	NI	n/a
	Saranburut, 2017 - Model	Hosmer-Lemeshow				
	1 BMI (derivation Clinical	X2 test: 8.87	AUC (95% CI) =			
6	only)	(p=0.35)	0.72 (0.69-0.75)	NI	NI	n/a
	Saranburut, 2017 - Model	Hosmer-Lemeshow				
	2 (derivation Clinical +	X2 test: 10.87	AUC (95% CI) =			
6	Limited laboratory tests)	(p=0.21)	0.79 (0.76-0.82)	NI	NI	n/a
	Saranburut, 2017 - Model	Hosmer-Lemeshow	, , , , , , , , , , , , , , , , , , ,			
	3 (derivation Clinical +	X2 test: 8.28	AUC (95% CI) =			
6	Full laboratory tests)	(p=0.41)	0.80 (0.77-0.82)	NI	NI	n/a
	, ,	Hosmer-Lemeshow				
	Saranburut, 2017 - Model	X2 test: 4.31	AUC (95% CI) =			
6	1 (validation Clinical only)	(p=0.229)	0.66 (0.55-0.78)	NI	NI	NI
Ť	Saranburut, 2017 - Model	Hosmer-Lemeshow	5.00 (0.00 0.00)			
	2 (validation Clinical +	X2 test: 2.29	AUC (95% CI) =			
6	Limited laboratory tests)	(p=0.514)	0.88 (0.80-0.95)	NI	NI	NI
- Ŭ		Calibration was		1 31		
		assessed by				
		subtracting the two				
		Somer's D				
		correlation				
		coefficients: 0.045				
	Thakkinstian, 2011	(95% CI: 0.034-	C-statistic of internal			
7	(derivation)	0.057)	validation = 0.741	Sensitivity = 76%, Specificity = 69%	5	n/a
/	(derivation)	0.057)	vanualion = 0.741	3 = $70%$, 3 = $70%$	5	II/d

		Hosmer-Lemeshow				
	Wen, 2020 - Simple Risk	X2 test: 4.89	AUC (95% CI) =	Sensitivity = 70.49%, Specificity = 65.14%, PPV =		
8	Score (derivation)	(p=0.769)	0.717 (0.689-0.744)	29.8%, NPV = 91.3%, LHR+ = 2.02, LHR- = 0.45	14	n/a
		Hosmer-Lemeshow				
	Wen, 2020 - Best-fit Risk	X2 test: 2.52	AUC (95% CI) =	Sensitivity = 56.83%, Specificity = 76.61%, PPV =		
8	Score (derivation)	(p=0.961)	0.721 (0.693-0.748)	33.8%, NPV = 89.4%, LHR+ = 2.43, LHR- = 0.56	24	n/a
		Internal validation				
		dataset: Hosmer-	AUC (95% CI) of			
		Lemeshow X2 test	internal validation =			
9	Wu, 2016 (derivation)	P=0.798	0.894 (0.861-0.926)	Sensitivity = 0.820, Specificity = 0.863	36	n/a
			AUC = 0.880			
		Hosmer-Lemeshow	(95%CI: 0.829-			
9	Wu, 2016 (validation)	X2 test P=397	0.931)	NI	NI	NI

AUC, area under the curve; CI, confident interval; NI, no information.

S3.7 Table: Results

		Results						
N°	Study	Was a simplified model presente d?	Were the coefficien ts of the regressio n model presente d?	Was the baseline risk presente d?	Were there alternative results presentati on?			
1	Asgari, 2020 European Risk Assessment tool (6-years validation)	No	No	Yes	No			
1	Asgari, 2020 European Risk Assessment tool (9-years validation)	No	No	Yes	No			
2	Bradshaw, 2019 - Model 1 (derivation)	Yes	No	No	No			
2	Bradshaw, 2019 - Model 2 (derivation)	Yes	No	No	No			
2	Bradshaw, 2019 - Model 3a (derivation)	No	No	No	No			
2	Bradshaw, 2019 - Model 3b (derivation)	Yes	No	No	No			
2	Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	No	No	No	No			
2	Bradshaw, 2019 - Model 3a (UDAY rural validation)	No	No	No	No			
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	Yes	Yes	No	No			
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab-free)	No	Yes	No	No			
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	Yes	No	No	No			
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab-free)	No	No	No	No			
4	Mogueo, 2015 - Korean model (eGFR validation)	No	No	No	No			
4	Mogueo, 2015 - Thai model (eGFR validation)	No	No	No	No			
4	Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	No	No	No	No			
4	Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	No	No	No	No			
5	Saranburut, 2017 - Framingham Heart	No	Yes	No	No			

	Study (MDRD validation)				
	Saranburut, 2017 - Framingham Heart Study (CKD-EPI				
5	validation)	No	Yes	No	No
6	Saranburut, 2017 - Model 1 (derivation Clinical only)	No	Yes	No	Yes
6	Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	No	No	No	Yes
6	Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	Yes	Yes	No	Yes
0	Saranburut, 2017 -	res	res	INO	res
	Model 3 (derivation Clinical + Full laboratory	Ň	N N		N
6	tests)	Yes	Yes	No	No
6	Saranburut, 2017 - Model 1 (validation Clinical only)	No	No	No	Yes
	Saranburut, 2017 - Model 2 (validation Clinical + Limited				
6	laboratory tests)	Yes	No	No	Yes
7	Thakkinstian, 2011 (derivation)	No	Yes	No	Yes
8	Wen, 2020 - Simple Risk Score (derivation)	No	Yes	Yes	Yes
8	Wen, 2020 - Best-fit Risk Score (derivation)	No	Yes	Yes	Yes
9	Wu, 2016 (derivation)	No	Yes	No	Yes
9	Wu, 2016 (validation)	No	Yes	No	Yes

S3.8 Table: Discussion

		Discussion				
N°	Study	Interpretation of the results	Comparison with other studies in LAC	Generalizability		
1	Asgari, 2020 European Risk Assessment tool (6-years validation)	Exploratory	No	Non- generalizability		
1	Asgari, 2020 European Risk Assessment tool (9-years validation)	Exploratory	No	Non- generalizability		
2	Bradshaw, 2019 - Model 1 (derivation)	NI	No	NI		
2	Bradshaw, 2019 - Model 2 (derivation)	NI	No	NI		
2	Bradshaw, 2019 - Model 3a (derivation)	Confirmatory	Yes	Non- generalizability		
2	Bradshaw, 2019 - Model 3b (derivation)	NI	No	NI		
2	Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	Confirmatory	Yes	Non- generalizability		
2	Bradshaw, 2019 - Model 3a (UDAY rural validation)	Confirmatory	Yes	Non- generalizability		
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	Exploratory	Yes	Generalizable		
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab-free)	Exploratory	Yes	Generalizable		
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	Exploratory	Yes	Generalizable		
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab-free)	Exploratory	Yes	Generalizable		
4	Mogueo, 2015 - Korean model (eGFR validation)	Exploratory	Yes	Non- generalizability		
4	Mogueo, 2015 - Thai model (eGFR validation)	Exploratory	Yes	Non- generalizability		
4	Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	Exploratory	Yes	Non- generalizability		
4	Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	Exploratory	Yes	Non- generalizability		
5	Saranburut, 2017 - Framingham Heart Study (MDRD validation)	Exploratory	No	Non- generalizability		
5	Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	Exploratory	No	Non- generalizability		
6	Saranburut, 2017 - Model 1 (derivation Clinical only)	Exploratory	No	Non- generalizability		
6	Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	Exploratory	No	Non- generalizability		
6	Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	Exploratory	No	Non- generalizability		
6	Saranburut, 2017 - Model 3 (derivation Clinical + Full laboratory tests)	Exploratory	No	Non- generalizability		
6	Saranburut, 2017 - Model 1 (validation Clinical only)	Exploratory	No	Non- generalizability		
6	Saranburut, 2017 - Model 2 (validation Clinical + Limited laboratory tests)	Exploratory	No	Non- generalizability		
7	Thakkinstian, 2011 (derivation)	Confirmatory	No	Non- generalizability		

8	Wen, 2020 - Simple Risk Score (derivation)	Confirmatory	Yes	Non- generalizability
	Wen, 2020 - Best-fit Risk Score			Non-
8	(derivation)	Exploratory	Yes	generalizability
				Non-
9	Wu, 2016 (derivation)	Exploratory	No	generalizability
				Non-
9	Wu, 2016 (validation)	Exploratory	No	generalizability

S4 Table: PROBAST S4.1 Table: Risk of Bias (RoB)

	Partici	pants		Predictors			
Study	Were appropriate data sources used, e.g., cohort, RCT, or nested case–control study data?	Were all inclusions and exclusions of participants appropriate?	Were predictors defined and assessed in a similar way for all participants?	Were predictor assessments made without knowledge of outcome data?	Are all predictors available at the time the model is intended to be used?		
Asgari, 2020 European Risk Assessment tool (6-years validation)	Y	Y	Y	Y	Y		
Asgari, 2020 European Risk Assessment tool (9-years validation)	Y	Y	Y	Y	Y		
Bradshaw, 2019 - Model 1 (derivation)	Y	Y	Y	Y	PY		
Bradshaw, 2019 - Model 2 (derivation)	Y	Y	Y	Y	Y		
Bradshaw, 2019 - Model 3a (derivation)	Y	Y	Y	Y	PY		
Bradshaw, 2019 - Model 3b (derivation)	Y	Y	Y	Y	PY		
Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	Y	Y	Y	Y	PY		
Bradshaw, 2019 - Model 3a (UDAY rural validation)	Y	Y	Y	Y	PY		
Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	Y	Y	Y	Y	PY		
Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab-free)	Y	Y	Y	Y	Y		
Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	Y	Y	Y	Y	PY		
Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab-free)	Y	Y	Y	Y	Y		
Mogueo, 2015 - Korean model (eGFR validation)	Y	Y	Y	Y	PY		
Mogueo, 2015 - Thai model (eGFR validation)	Y	Y	Y	Y	Y		
Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	Y	Y	Y	Y	PY		
Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	Y	Y	Y	Y	Y		

Saranburut, 2017 - Framingham Heart Study (MDRD validation)	Y	Y	Y	Y	PY
Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	Y	Y	Y	Y	PY
Saranburut, 2017 - Model 1 (derivation Clinical only)	Y	Y	Y	Y	Y
Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	Y	Y	Y	Y	Y
Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	Y	Y	Y	Y	PY
Saranburut, 2017 - Model 3 (derivation Clinical + Full laboratory tests)	Y	Y	Y	Y	PY
Saranburut, 2017 - Model 1 (validation Clinical only)	Y	Y	Y	Y	Y
Saranburut, 2017 - Model 2 (validation Clinical + Limited laboratory tests)	Y	Y	Y	Y	PY
Thakkinstian, 2011 (derivation)	Y	Y	Y	Y	Y
Wen, 2020 - Simple Risk Score (derivation)	Y	Y	Y	Y	Y
Wen, 2020 - Best-fit Risk Score (derivation)	Y	Y	Y	Y	Y
Wu, 2016 (derivation)	Y	Y	Y	Y	Y
Wu, 2016 (validation)	Y	Y	Y	Y	Y

Answer options: Y (yes), PY (probably yes), N (no), PN (probably no), NI (no information), n/a (not applicable).

	Outcome							
Study	Was the outcome determined appropriately?	Was a prespecified or standard outcome definition used?	Were predictors excluded from the outcome definition?	Was the outcome defined and determined in a similar way for all participants?	Was the outcome determined without knowledge of predictor information?	Was the time interval between predictor assessment and outcome determination appropriate?		
Asgari, 2020 European Risk Assessment tool (6-years validation)	Y	Y	Y	Y	NI	Y		
Asgari, 2020 European Risk Assessment tool (9-years validation)	Y	Y	Y	Y	NI	Y		
Bradshaw, 2019 - Model 1 (derivation)	Y	Y	Y	Y	NI	PY		
Bradshaw, 2019 - Model 2 (derivation)	Y	Y	Y	Y	NI	Y		
Bradshaw, 2019 - Model 3a (derivation)	NI	Y	Y	Y	NI	PY		
Bradshaw, 2019 - Model 3b (derivation)	Y	Y	Y	Y	NI	PY		
Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	Y	Y	Y	Y	NI	PY		
Bradshaw, 2019 - Model 3a (UDAY rural validation)	Y	Y	Y	Y	NI	PY		
Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	Y	Y	Y	Y	PY	PY		
Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab- free)	Y	Y	Y	Y	PY	Y		
Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	Y	Y	Y	Y	ΡY	PY		

BMJ	Open

Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab- free)	Y	Y	Y	Y	PY	Y
Mogueo, 2015 - Korean model (eGFR validation)	Y	Y	Y	Y	NI	PY
Mogueo, 2015 - Thai model (eGFR validation)	Y	Y	Y	Y	NI	Y
Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	Y	Y	Y	Y	NI	PY
Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	Y	Y	Y	Y	NI	Y
Saranburut, 2017 - Framingham Heart Study (MDRD validation)	Y	Y	Y	Y	NI	PY
Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	Y	Y	Y	Y	NI	PY
Saranburut, 2017 - Model 1 (derivation Clinical only)	Y	Y	Y	Y	NI	Y
Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	Y	Y	Y	Y	NI	Y
Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	Y	Y	Y	Y	NI	PY
Saranburut, 2017 - Model 3 (derivation Clinical + Full laboratory tests)	Y	Y	Y	Y	NI	PY
Saranburut, 2017 - Model 1 (validation Clinical only)	Y	Y	Y	Y	NI	Y
Saranburut, 2017 - Model 2 (validation Clinical + Limited laboratory tests)	Y	Y	Y	Y	NI	PY
Thakkinstian, 2011 (derivation)	Y	Y	Y	Y	NI	Y
Wen, 2020 - Simple Risk Score (derivation)	Y	Y	Y	Y	NI	Y

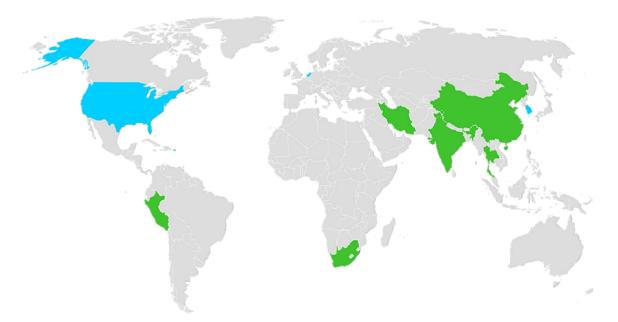
Wen, 2020 - Best-fit Risk Score (derivation)	Y	Y	Y	Y	NI	Y
Wu, 2016 (derivation)	Y	Y	Y	Y	NI	Y
Wu, 2016 (validation)	Y	Y	Y	Y	NI	Y

Answer options: Y (yes), PY (probably yes), N (no), PN (probably no), NI (no information), n/a (not applicable).

	Analysis								
Study	Were there a reasonabl e number of participan ts with the outcome?	appropriat	Were all enrolled participan ts included in the analysis?	Were participants with missing data handled appropriatel y?	Was selection of predictors based on univariabl e analysis avoided? [develop ment studies only]		Were relevant model performan ce measures evaluated appropriat ely?	Were model overfittin g and optimism in model performa nce accounte d for? [develop ment studies only]	Do predictors and their assigned weights in the final model correspond to the results from the reported multivariable analysis? [developmen t studies only]
Asgari, 2020 European Risk Assessment tool (6-years validation)	Y	Y	Ν	N	n/a	NI	N	n/a	n/a
Asgari, 2020 European Risk Assessment tool (9-years validation)	Y	Y	N	N	n/a	NI	N	n/a	n/a
Bradshaw, 2019 - Model 1 (derivation)	Y	Ν	N	Ν	N	NI	Y	Y	NI
Bradshaw, 2019 - Model 2 (derivation)	Y	N	N	N	N	NI	Y	Y	NI
Bradshaw, 2019 - Model 3a (derivation)	NI	NI	N	N	N	NI	Y	Y	NI
Bradshaw, 2019 - Model 3b (derivation)	Y	N	Ν	N	N	NI	Y	Y	NI
Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	NI	Y	Ν	N	n/a	NI	NI	n/a	n/a

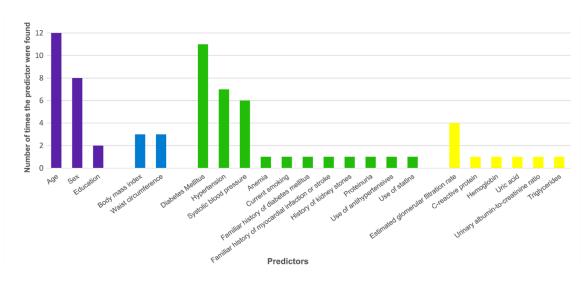
Bradshaw, 2019 - Model 3a (UDAY rural validation)	NI	Y	N	N	n/a	NI	NI	n/a	n/a
Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	Ν	Ν	N	N	N	NI	N	Y	Y
Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab-free)	Ν	Ν	N	N	N	NI	N	Y	Y
Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	Ν	Y	N	N	n/a	NI	N	n/a	n/a
Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab-free)	Ν	Y	N	N	n/a	NI	N	n/a	n/a
Mogueo, 2015 - Korean model (eGFR validation)	Y	Y	N	N	n/a	NI	PY	n/a	n/a
Mogueo, 2015 - Thai model (eGFR validation)	Y	Y	N	N	n/a	NI	PY	n/a	n/a
Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	Y	Y	N	N	n/a	NI	PY	n/a	n/a
Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	Y	Y	N	N	n/a	NI	PY	n/a	n/a
Saranburut, 2017 - Framingham Heart Study (MDRD validation)	Y	Y	N	N	n/a	NI	Ν	n/a	n/a
Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	Y	Y	N	N	n/a	NI	Ν	n/a	n/a
Saranburut, 2017 - Model 1 (derivation Clinical only)	PY	Ν	N	N	N	NI	Ν	Y	Y
Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	PY	Ν	N	N	N	NI	Ν	Y	NI

Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	PY	N	N	Ν	N	NI	Ν	Y	Y
Saranburut, 2017 - Model 3 (derivation Clinical + Full laboratory tests)	PN	N	N	Ν	N	NI	N	Y	Y
Saranburut, 2017 - Model 1 (validation Clinical only)	N	Y	N	Ν	n/a	NI	Ν	n/a	n/a
Saranburut, 2017 - Model 2 (validation Clinical + Limited laboratory tests)	N	Y	N	Ν	n/a	NI	Ν	n/a	n/a
Thakkinstian, 2011 (derivation)	PY	N	NI	NI	N	NI	Ν	Y	Y
Wen, 2020 - Simple Risk Score (derivation)	NI	N	N	Ν	N	NI	Ν	N	Y
Wen, 2020 - Best-fit Risk Score (derivation)	NI	N	N	Ν	N	NI	Ν	N	Y
Wu, 2016 (derivation)	NI	N	N	Ν	N	NI	N	N	Y
Wu, 2016 (validation)	Ν	Y	N	Ν	n/a	NI	Ν	n/a	Y


Answer options: Y (yes), PY (probably yes), N (no), PN (probably no), NI (no information), n/a (not applicable).

S4.2 Table: Applicability

N°	Study	Participants	Predictors	Outcome
1	Asgari, 2020 European Risk Assessment tool (6-years validation)	Low	Low	Low
1	Asgari, 2020 European Risk Assessment tool (9-years validation)	Low	Low	Low
2	Bradshaw, 2019 - Model 1 (derivation)	Low	Low	Low
2	Bradshaw, 2019 - Model 2 (derivation)	Low	Low	Low
2	Bradshaw, 2019 - Model 3a (derivation)	Low	Low	Low
2	Bradshaw, 2019 - Model 3b (derivation)	Low	Low	Low
2	Bradshaw, 2019 - Model 3a (CARRS-I urban validation)	Low	Low	Low
2	Bradshaw, 2019 - Model 3a (UDAY rural validation)	Low	Low	Low
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation complete)	Low	Low	Low
3	Carrillo-Larco, 2017 - CRONICAS-CKD (derivation lab-free)	Low	Low	Low
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation complete)	Low	Low	Low
3	Carrillo-Larco, 2017 - CRONICAS-CKD (validation lab-free)	Low	Low	Low
4	Mogueo, 2015 - Korean model (eGFR validation)	Low	Low	Low
4	Mogueo, 2015 - Thai model (eGFR validation)	Low	Low	Low
4	Mogueo, 2015 - Korean model (eGFR or proteinuria validation)	Low	Low	Low
4	Mogueo, 2015 - Thai model (eGFR or proteinuria validation)	Low	Low	Low
5	Saranburut, 2017 - Framingham Heart Study (MDRD validation)	Low	Low	Low
5	Saranburut, 2017 - Framingham Heart Study (CKD-EPI validation)	Low	Low	Low
6	Saranburut, 2017 - Model 1 (derivation Clinical only)	Low	Low	Low
6	Saranburut, 2017 - Model 1 BMI (derivation Clinical only)	Low	Low	Low
6	Saranburut, 2017 - Model 2 (derivation Clinical + Limited laboratory tests)	Low	Low	Low
6	Saranburut, 2017 - Model 3 (derivation Clinical + Full laboratory tests)	Low	Low	Low
6	Saranburut, 2017 - Model 1 (validation Clinical only)	Low	Low	Low
6	Saranburut, 2017 - Model 2 (validation Clinical + Limited laboratory tests)	Low	Low	Low
7	Thakkinstian, 2011 (derivation)	Low	Low	Low
8	Wen, 2020 - Simple Risk Score (derivation)	Low	Low	Low
8	Wen, 2020 - Best-fit Risk Score (derivation)	Low	Low	Low
9	Wu, 2016 (derivation)	Low	Low	Low


9	Wu, 2016 (validation)	Low	Low	Low				
A	Answer options: Low (low concern for applicability), Hig (High concern for applicability) and Unclear (Unclear concern for applicability)							

S1 Figure: Countries where studies were conducted.

LMIC that developed and/or validated models included in this review (Green). Moreover, Asgari et al, Mogueo et al] and Saranburut et al validated risk models that were originally derivated in the Netherlands, South Korea and the United States, respectively (Blue).

S2 Figure: Predictors included in the final models.

The colours of the bars identify the underlying characteristic of predictors inherent to: the subject (purple), anthropometrics (blue), clinical assessment and history (green), and laboratory measures (yellow).