BMJ Open

A protocol for examining effectiveness of injectable penicillin versus a combination of penicillin and gentamicin in children with pneumonia characterised by indrawing in routine settings in Kenya

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016784
Article Type:	Protocol
Date Submitted by the Author:	13-Mar-2017
Complete List of Authors:	Malla, Lucas; Kenya Medical Research Institute - Wellcome Trust; University of Oxford Perera, Rafael; University of Oxford, Primary Health Care McFadden, Emily; University of Oxford, Primary Health Care English, Mike; University of Oxford, Nuffield Department of Medicine and Department of Paediatrics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology
Keywords:	propensity score, multiple imputation, observational research, comparative effectiveness

BMJ Open

2		
4		
5		
6 7		
8		
9		
10		
12		
13		
14		
15 16		
17		
18		
19 20		
20		
22		
23		
24 25		
26		
27		
28 29		
30		
31		
32		
34		
35		
36		
38		
39		
40 41		
42		
43		
44 45		
46		
47		
48 ⊿q		
5 0		
51		
52 53		
53 54		
55		
56		
ว/ 58		
59		
60		

A protocol for examining effectiveness of injectable penicillin versus a combination of 1

- 2 penicillin and gentamicin in children with pneumonia characterised by indrawing in
- routine settings in Kenya 3
- Lucas Malla^{1*} (lucas.malla@some.ox.ac.uk) 4
- Rafael Perera-Salazar² (rafael.perera@phc.ox.ac.uk) 5
- Emily McFadden² (<u>emily.mcfadden@phc.ox.ac.uk</u>) 6
- Mike English^{1,3} (menglish@kemri-wellcome.org) 7
- ¹Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom. 8
- ²Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United 9

10 Kingdom.

³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya. 11 st .

- *Corresponding author: 13
- Lucas Malla 14
- 15
- 16
- 17
- 18
- 19
- 20

21 Introduction

WHO treatment guidelines are widely recommended for guiding treatment for millions of children with pneumonia every year across multiple low and middle income countries. Guidelines are based on synthesis of available evidence that provides moderate certainty in evidence of effects for forms of pneumonia that can result in hospitalisation. However, trials have included fewer children from Africa than other settings and it is suggested that African children with pneumonia have higher mortality. Thus despite improving access to recommended treatments and deployment with high coverage of childhood vaccines, pneumonia remains one of the top causes of mortality for children in Kenya. Establishing whether there are benefits of alternative treatment regimens to help reduce mortality would utilize pragmatic clinical trials. However, these remain relatively expensive and time consuming. This protocol describes an approach to using a new, large routine dataset as a potentially cheaper and quicker way to examine the comparative effectiveness of penicillin versus penicillin plus gentamicin in treatment of indrawing pneumonia. Addressing this question is important as although it is now recommended that this form of pneumonia is treated with oral medication as an outpatient it remains associated with non-trivial mortality that may be higher outside trial populations.

38 Methods and analysis

We will use a large routine dataset that captures data on all admissions to 13 Kenyan county hospitals. These data represent the findings of clinicians in practice and, because the system was developed for large observational research, pose challenges of non-random treatment allocation and missing data. To overcome these challenges this analysis will use a rigorous approach to study design, propensity score methods and multiple imputation to minimize bias. Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

1		
3	45	Ethics and dissemination
4 5		
6 7	46	This analysis will be conducted as part of the Kenyan Clinical Information Network project
8	47	which has received ethical clearance from the Kenya Medical Research Institute.
10		
11	48	Strength
12 13		
14	49	- This study will be used as a platform to explore effectiveness of alternative treatments
15 16	F.0	in routing core in a low income setting to improve health outcomes for shildren
17	50	In fourne care in a low income setting to improve hearth outcomes for clinicien.
18		
19	51	Limitation
20		
22	52	- The analysis will be limited to the variables in the routine dataset – and therefore risk
23		
24	53	bias due to unmeasured key variables.
26		
27	54	- The influence of any resulting bias, to alter results, will however be assessed through
28		
29 30	55	the use of alternative methods as instrumental variables.
31		
32	56	
33		
34 35		
36		
37		
38		
40		
41		
42		
43 44		
45		
46		
47 48		
49		
50		
51		
52 53		
54		
55		
56 57		
58		
59		
60		3

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

57 Introduction

Kenva has developed and disseminated national treatment guidelines largely drawing on those of WHO for a number of childhood diseases including pneumonia (1, 2). These pneumonia guideline recommendations are based on synthesis of available evidence that provides moderate certainty in evidence of effects of treatments for forms of pneumonia that can result in hospitalisation (3). Such guidelines have been shown to be effective in reducing pneumonia related mortality and thus Kenyan clinicians are supposed to use them in routine practice to treat pneumonia (and other diseases) (4, 5). However, although the guidelines are based on the best available evidence, the evidence available from trials conducted in Africa remains limited (6). There has also been little thorough investigation of the effectiveness of treatments in non-trial populations in routine settings that may often differ from those enrolled in formal clinical trials. For example many children admitted with pneumonia may have co-morbidity that might exclude them from trials (7). These issues can prove problematic when making national guidelines where study generalisability can be contested (8).

The WHO and Kenyan pneumonia treatment guidelines are implicitly based on risk stratification of illness with children deemed at higher risk of severe illness and mortality offered broad spectrum antibiotic regimens and those at lower risk narrow spectrum antibiotics (2, 9-11). This risk stratification approach is operationalized by requiring clinicians to look for specific features in the clinical history and examination that are used to define illness severity and therefore recommended treatment (Panel 1). Previous studies conducted in Kenya have, however, indicated that clinicians do not always follow guideline recommendations in treating pneumonia (5). Variation from the guideline recommended approach can occur at the point of pneumonia severity assignment (clinicians do not follow the rules linking clinical signs and severity category) and at the point of treatment assignment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

82 (clinicians do not follow the rules linking treatment and severity). This variability in 83 treatment assignment provides the opportunity for comparative effectiveness evaluation if 84 similar populations of children with pneumonia are prescribed different treatments. Clinicians 85 may create such a situation by not following recommendations because they have inadequate

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

- 86 knowledge or if they believe (potentially contrary to the evidence) that certain treatments
 - 87 result in better health outcomes.

Panel 1: Pneumonia treatment algorithm

The pneumonia severity classification that was recommended by Kenyan guidelines up to March 2016 (10) (and previously by WHO guidelines (1)) defined the following three severity classes:

1. Very severe pneumonia: If a child had either oxygen saturation less than 90% or central cyanosis or was grunting or unable to drink or not alert, then s/he was classified as having very severe pneumonia, put on oxygen and treated with a combination of gentamicin and penicillin.

{*The new WHO (2) and Kenyan guidelines (10) renamed this class as "severe pneumonia" – and currently recommend treatment with a combination of ampicillin (or penicillin) with gentamicin plus oxygen*}.

- Severe pneumonia: If a child had lower chest wall indrawing (but did not have any of qualifying signs for very severe pneumonia above) and was alert then s/he was to be classified as having severe pneumonia and be treated with benzyl penicillin only.
 Note: The term indrawing pneumonia is hereafter used in this protocol to define this category of children to avoid confusion.
- 3. (Non severe) Pneumonia: If a child had none of the mentioned signs but had cough or difficulty breathing and a respiratory rate greater than or equal to 50 breaths/minute (for age between 2 and 11 months) or respiratory rate greater than or equal to 40 breaths/minute (for age above 12 months) then s/he was classified as having non severe pneumonia and treated with cotrimoxazole or amoxicillin if previously treated with cotrimoxazole.

{The current WHO and Kenyan guidelines collapsed severity classes 2 and 3 into one category referred to as "non –severe pneumonia". This group of patients are currently treated with oral amoxicillin – partly informed by a local trial (18)}.

Page 7 of 29

BMJ Open

In particular, a previous study showed that clinicians over-prescribed gentamicin, adding this to penicillin for the treatment of pneumonia characterized by lower chest wall indrawing but no other signs of severe illness instead of penicillin alone as was recommended $(5)^1$. Therefore, this protocol is for a study that seeks to explore whether there is any benefit from adding gentamicin to penicillin in treating children with indrawing pneumonia. Such a benefit could accrue if bacterial causes of pneumonia that were previously (prior to introduction of new vaccines) proportionately less common (eg. S. aureus and gram negative bacteria) are now accounting for an increased proportion of pneumonia deaths – as in such cases, the addition of gentamicin might provide effective treatment for a broader spectrum of pathogens. Tackling this question is of importance as WHO have recently changed indrawing pneumonia treatment guidance based on trials that suggest equivalence of oral amoxicillin and injectable penicillin (13-16). New guidance recommends outpatient oral treatment for a population of children previously admitted to hospital (11). However, mortality from pneumonia has been reported to be higher in African settings (17) despite the increasing use of multiple vaccines spanning: measles, pertussis, HiB and pneumococcal conjugate vaccines. It remains possible therefore that for a small number of children a broader spectrum antibiotic regimen might be of benefit. This study addresses this question that has not been the subject of prior clinical trials.

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Objectives

109 Primary

Experiment 1: To compare the effectiveness of injectable penicillin versus penicillin
 plus gentamicin (both injectable) in treatment of indrawing pneumonia; where
 severity level is imputed using data recorded on each child's clinical signs (hospitals

¹ The fact that inadequate knowledge in handling childhood pneumonia may result in inconsistent treatment allocation is supported by a survey conducted in seven developing countries showing that 56% of nurses and doctors had inadequate knowledge in managing pneumonia in children (12).

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

4	
5	
6 7	
8	
9	
10	
11	
12	
13	
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27 28	
29	
30	
31	
32	
33 24	
35	
36	
37	
38	
39	
40 1	
41	
43	
44	
45	
46	
47 78	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

1 2 3

use a structured record form that supports recording of signs highlighted in 113 guidelines) such that severity classification is consistent with guideline 114 recommendations. This scenario will provide an evaluation of alternative therapies 115 within a guideline class (where children have very similar clinical signs) and thus is 116 the best mimic of a prospectively designed comparative evaluation in which clinicians 117 stick to the rules of severity classification (see (18) for an example of a RCT in Kenya 118 119 that this would be similar to - where classification is based on clinical signs). Recommended treatment for this disease classification was penicillin alone, treatment 120 with combination therapy may therefore represent over-treatment. Alternatively the 121 122 combination treatment that provides broader antimicrobial cover could provide an 123 advantage in a small proportion of cases that would only be detected in moderately 124 large studies – where the addition of gentamicin offers improved treatment for specific organisms not susceptible to penicillin alone. 125

126 Secondary

2) Experiment 2: To compare effectiveness of injectable penicillin versus penicillin plus 127 gentamicin in treatment of indrawing pneumonia; where we use clinician assigned 128 severity level. This experiment will provide a test of alternative therapies amongst 129 130 those where clinicians used their own judgement (possibly including gut feeling) to 131 classify and treat (19) and have on occasions (potentially) over-ridden or ignored the 132 guideline recommendations. In this case although the same label of indrawing pneumonia is given to all, the treatment selected may be an indicator of perceived 133 134 severity and there may be a potential bias as a result – and the propensity score 135 distributions (see below) may help demonstrate this and in theory may overcome this 136 potential bias. Here if there is no clinically relevant difference between treatments 137 within a group of patients that reflects clinicians' actual classification decisions this

8

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

could reassure them that monotherapy with penicillin (or amoxicillin) would beacceptable.

3) Experiment 3: To compare effectiveness of injectable penicillin versus penicillin plus gentamicin in treatment of all cases of pneumonia admitted to hospital. This is an extension of the logic of experiment two. To date there have been no trials of penicillin alone compared with alternative combination therapies for all forms of inpatient pneumonia, and addressing this question may be relevant for two reasons. First, the population of children admitted with severe forms of pneumonia is now largely one that has received *H. influenzae* Type B and pneumococcal conjugate vaccines that have likely changed the aetiology of this illness. Second, if clinicians are poorly trained and unable to classify illness severity – resulting in non-adherence to guidelines - it would be useful to explore the potential impact of this across all levels of severity of pneumonia. This analysis has the largest numbers of subjects.

Experiment 1 will be primary as it most approximates a typical randomised trial where recruitment would be based on specified clinical signs. Experiment 2 will demonstrate what effects would be achieved if clinicians assign a category of indrawing pneumonia but are not necessarily adherent to guidelines² recommending use of specific clinical signs to assign illness severity and experiment 3 will explore effects of treatments across all potential severity classes of pneumonia in children admitted to hospital (even though the primary focus will be on indrawing pneumonia). BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

158 Methods and analysis

² Includes patients where clinicians have been non-adherent to clinical classifications recommended in guidelines.

Panel 2: Clinical Information Network

CIN was initiated to improve data availability from secondary care in paediatrics and as a model for demonstrating the value of routine data in improving quality of care in the county (formerly district) hospitals. These hospitals typically have a single paediatrician leading services predominantly provided by junior clinical teams. Data in these hospitals are collected prospectively post discharge by trained data clerks, guided by well-defined standard operating procedures, under close supervision by the hospital medical records department and the research team. It is worth noting that the research team has no personnel checking quality of clinical process and whether clinicians correctly document what they do. However, the patient record is the formal (and legal) document describing the clinical condition and management. These documents are used for data abstraction and they include patient files with standardized Paediatric Admission Record (PAR) forms, treatment sheets, discharge summary forms, laboratory reports and clinician notes. The collected data are used to assess documentation of history, physical examination, diagnosis, laboratory investigations, treatment and discharge plans. Feedback to hospitals as part of the CIN activities has helped improve the quality of clinical data (38). The description of hospital selection and their populations of patients is detailed in Ayieko (2015) (7).

160 dataset that provides routine data on all admissions to 13 Kenyan County hospitals (panel 2).

161 The analysis will proceed in two stages – design and outcome analysis as suggested by Rubin

162 (2008) (20) as an objective way for analysing observational datasets.

163 Study Design

This will be an observational study conducting analyses of data routinely collected from hospital paediatric wards in Kenya's CIN. The design process for the three experimental scenarios will be similar and broadly consists of the following steps suggested in Rubin (2008) (20):

BMJ Open

	a) Definition of inclusion and exclusion criteria.	
	b) Understanding the pneumonia diagnosis and treatment assignment processes. This is	
	to help understand key and auxiliary variables required for analysis.	
	c) Verification of sample size if sufficient for any meaningful analyses.	
	d) Creation of comparable treatment arms – which will be addressed analytically aiming	
	to overcome non – random treatment assignment and deal with missing data.	
	e) Outcome analysis follows after conceptualisation of design in steps a – d.	
a)	Inclusion and exclusion	
	This analysis will include all children aged 2 – 59 months and will exclude children with	
	any co-morbidity of HIV, meningitis, tuberculosis and or acute malnutrition as there are	
	specific antibiotic treatment rules for these children that supersede those for pneumonia.	
	Importantly therefore children with other co-morbidities such as mild anaemia, diarrhoea	
	and malaria are not necessarily excluded from the analysis.	
b)	Understanding the diagnosis and treatment assignment rules for pneumonia paediatric	
	patients	
Cli	nicians are supposed to use guidelines widely disseminated as the 'Basic Paediatric	
Pro	stocols' in Kenya (10) that are adapted from WHO guidance, based on available evidence	
anc	developed by consensus by a national guideline panel (see (21-23)). In standard practice,	
the	process of treatment assignment happens in three steps; first, there is assessment and	
doc	cumentation of each clinical sign. Step two involves integration of clinical information into	
sev	erity classification, and in step three severity classification is translated into a treatment	
ass	ignment (see panel 1). In Kenya, as in many low and middle income countries these	
	11	

BN

169		a) Definition of inclusion and exclusion criteria.
170		b) Understanding the pneumonia diagnosis and treatment assignment processes. This i
171		to help understand key and auxiliary variables required for analysis.
172		c) Verification of sample size if sufficient for any meaningful analyses.
173		d) Creation of comparable treatment arms – which will be addressed analytically aiming
174		to overcome non – random treatment assignment and deal with missing data.
175		e) Outcome analysis follows after conceptualisation of design in steps a – d.
176		
177	a)	Inclusion and exclusion
178		This analysis will include all children aged 2 – 59 months and will exclude children with
179		any co-morbidity of HIV, meningitis, tuberculosis and or acute malnutrition as there ar
180		specific antibiotic treatment rules for these children that supersede those for pneumonia
181		Importantly therefore children with other co-morbidities such as mild anaemia, diarrhoe
182		and malaria are not necessarily excluded from the analysis.
183	b)	Understanding the diagnosis and treatment assignment rules for pneumonia paediatri
184	-,	patients
185	Cli	nicians are supposed to use guidelines widely disseminated as the 'Basic Paediatri

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

recommendations reflect the absence of access to further diagnostic tests. Thus pulse oximetry, blood culture or tests for inflammatory markers are not routinely available (7). As indicated above clinicians may fail to adhere to guideline recommendations by making errors or over-riding recommendations at any of the three steps of assessment, severity classification and treatment assignment. However, based on the clinical symptoms and signs recorded it is possible to assign a severity classification (and thus expected treatment) based on the data. It is a data informed and investigator assigned classification as indrawing pneumonia that is used in the primary analysis (experiment 1).

200 c) Analysis Variables

Outcome variable

202 Mortality will be used as the outcome variable in all the three experiments.

203 Independent variables

These variables are grouped into key and auxiliary. Key variables are defined as those that should influence pneumonia severity classification and hence treatment based on the treatment protocol (10) (panel 1). Auxiliary variables are defined as those that might, a priori, be expected to influence treatment assignment based on clinical reasoning (for example they might make a clinician concerned for severe illness), although according to the formal rules (the guidelines) they are not considered reasons to alter treatment assignment. Such auxiliary variables were identified from those clinical symptoms and signs that are routinely collected within CIN. See table 1 for a summary of key and auxiliary variables that will be used in the analyses.

215
216

Table 1: Summary of key and auxiliary independent variables for experiments 1, 2 and 3³

Experiment 1 and 2 key variables	Experiment 3 key variables	Auxiliary variables for experiments 1, 2 and 3		
Age $(2 - 59 \text{ months})$	Age $(2 - 59 \text{ months})$	Gender (male/female)		
Indrawing (present/absent)	Indrawing (present/absent)	Cough duration (days)		
History of cough (yes/no)	History of cough (yes/no)	Crackles (present/absent)		
Difficulty breathing (present/absent)	Difficulty breathing (present/absent)	Weight (Kg)		
Level of consciousness – AVPU	Level of consciousness – AVPU	Pallor (0, +, +++)		
(alert/verbal response/pain response/unresponsive)	(alert/verbal response/pain response/unresponsive)			
	Oxygen ordered (yes/no)	Capillary refill (immediate, $1 - 2$		
		secs, $3 - 6$ sec, > 6 secs)		
	Cyanosis (present/absent)	Fever (present/absent)		
	Inability to drink/breastfeed (yes/no)	Diarrhoea (present/absent)		
	Grunting (present/absent)	Convulsions (present/absent)		
	Respiratory rate (breaths/min)	Vomiting (yes/no)		
		Referral (yes/no)		
		Length of illness (days)		
		Number of fits		
		Thrush (present/absent)		
		Quinine/artesunate (prescribed/not prescribed)		
		Weight for age z – score		
		Wheeze (present/absent)		
		Comorbidities (Malaria and or diarrhoea)		
<i>d) Sample size verification</i>Here, sample size verification uses the formula cited in (24):				
$ns = \frac{k+1}{k} \frac{\overline{p}(1-\overline{p})(Z_{\beta} + Z_{1-\alpha/2})^2}{(p_1 - p_2)^2}, \text{ where:}$				

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

d) Sample size verification

Here, sample size verification uses the formula cited in (24):

221
$$ns = \frac{k+1}{k} \frac{\overline{p}(1-\overline{p})(Z_{\beta}+Z_{1-\alpha/2})^2}{(p_1-p_2)^2}$$
, where:

³ Experiment 3 has more key variables than experiment 2 as it considers patient populations with "very severe, severe and non -severe pneumonia" - as classified in the previous WHO and Kenyan treatment guidelines. Therefore, in addition to variables used to classify severe pneumonia, other variables used to classify very severe and non-severe pneumonia are considered.

ns = size of smaller group.
k = ratio of larger group to smaller group.
p₁ - p₂ = clinical difference in proportions of the outcome.
Z_β = corresponds to power of 80%
Z_{1-α/2} = corresponds to two-tailed significance level (1.96 for α = .05).
p̄ = corresponds to average of outcome proportions in two groups.

223 The value for p̄ is estimated from studies – two of which formed evidence for earlier WHO
224 indrawing pneumonia treatment guidelines. See table 2 that shows the number of deaths per

treatment arm reported in these studies.

Study	Treatment arms	Mortality	p
Shann et. al(1985) Chloramphenicol alone		48/377	0.1470
	Chloraphenicol+Penicillin	62/371	
Addo – Yobo et. al (2002)	(2002) Injectable penicillin		0.0050
	Oral amoxicillin	2/857	
.gweyu (2015) Injectable penicillin		3/264	0.008
	Oral amoxicillin	1/263	
			·

Table 2: Summary of some of pneumonia studies that informed previous WHO guidelines

For assessment of sample size for indrawing pneumonia experiments, a weighted ${}^4 \bar{p}$ of 0.041 from these studies is used. The ratio r is varied between 1 and 3. Figure 1 was generated by fixing power and significance level at 80% and 5% respectively. Estimates of $\overline{p}(1-\overline{p})$ derived from WHO studies were substituted in the sample size formula and data simulated in order to see what detectable differences would be achieved by different sample sizes. A total sample size of about 4000 would be sufficient to detect a minimum difference of 1.5% (absolute difference e.g. a reduction of mortality from X% to X - 1.5%) in any of these experiments⁵.

236 [Insert figure 1]

⁴ Weighting was done using the total sample sizes per experiment.

⁵ A sample size of at least 4000 would be required for experiment 3 as this is the minimum sample for experiments 1 and 2 which are nested in experiment 3.

6

BMJ Open

Statistical and outcome Analysis
Statistical analysis will proceed in the following four steps:
Sten 1 – subset of natients of interest for the experiments will be obtained
 Experiment 1: First missing clinical signs data will be multiply imputed⁶ (excluding
extreme data) and then have aliginal signs data word to impute (construct) a
outcome data) – and then key clinical signs data used to impute (construct) a
pneumonia severity level for all patients based on the algorithms in the pneumonia
treatment protocol (10). Thereafter, a subset of patients with guideline-defined
indrawing pneumonia (for each of the imputed datasets) will be obtained for further
analyses.
• Experiment 2: A subset of indrawing pneumonia patients (with severity as indicated
by the clinicians) will be obtained from the raw dataset - and clinical signs data
imputed using multiple imputation (without the outcome data).
• Experiment 3: The raw dataset containing all the patients with all forms of pneumonia
severity will be used and clinical signs data imputed using multiple imputation
(without the outcome data).
Step 2 – patients in the alternative treatment arms will be matched using propensity score
(PS) methods to overcome non – random treatment allocation. Standardised mean differences
(and where necessary density plots) will be used as diagnostic checks for covariate balance
and overlap (26, 27) between penicillin and penicillin plus gentamicin treatment groups. PS
methods that utilise all the data (PS optimal full matching, weighting and sub classification)
will be examined in experiments 1 and 2 (on each imputed dataset) and the method that
results in the minimum average absolute standardised mean differences for the majority of
the variables and retains the largest number of patients in the analysis will be considered
appropriate (28). While only PS sub-classification will be used for experiment 3. As
experiment 3 aims to investigate comparative effectiveness in all cases of pneumonia,
⁶ For the three experiments, 20 datasets will be multiply imputed using chained equations (25).
15
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For pee ٩r

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

propensity score will be used as a proxy for disease severity thus patients with lower
propensity scores will be considered less ill while those with higher propensity scores will be
considered more ill (grouped in propensity score subclasses for analysis).

Step 3: conducting outcome analysis.

For each imputed dataset (per experiment), outcome analysis will aim to investigate treatment causal effects across all the hospitals. Bayesian log binomial regression models (29) will be used to estimate overall treatment effects⁷. A hospital variable will be modelled as a fixed effect in the log binomial regression that measures treatment effects on pooled data. These models will be fitted on each imputed dataset (adjusting for other variables used in PS models) and results pooled using Rubin rules (30).

Step 4: sensitivity analysis will be conducted to investigate effects of unmeasured confounders and validity of estimates obtained through multiple imputation. Propensity score methods generate matched treated and (active) control patients whose distribution of measured covariates are as similar as possible. However, two patients with similar covariate distribution may differ in terms of unmeasured variables – and this may introduce bias in estimated treatment effects (31). On the other hand, if outcome and explanatory variables have missing data, then inclusion of outcome data in multiple imputation may contribute minor information in the substantive (outcome) model (32).

282 Exploring effects of unmeasured confounders

⁷ Bayesian models will be used to overcome any bias due to sparsity of data as PS sub-classification in itself reduces the effective sample size.

BMJ Open

Sensitivity analysis for unmeasured confounders will involve the use of an instrumental variable (IV) (33) – weekend admission and PS trimming (34). A few IV sources in health studies have been described in Baiocchi (2014) (35). These include: distance to specialty, genes, insurance plan, timing of admission, calendar time and preference based IVs. Of relevance to this analysis would be timing of admission IVs. A study conducted by Berkley (2004) (36) in a Kenyan hospital demonstrated that children who were admitted during the weekend experienced higher mortality compared to those admitted during the weekdays – which is an indication of poor quality of care and treatment during the weekend. In other words, it is anticipated that children admitted during the weekdays would have better health outcomes. This, in theory, implies that the type of treatment and care received depend on the day of admission – and which later determines the type of health outcome of the patient.

Examining validity of multiple imputation

The analysis steps 1 - 3 above will exclude outcome data in the imputation model – however sensitivity analysis will include models in which the outcome variable is included in the imputation approach. This will aim to investigate if including outcome data in the imputation model has an influence⁸.

299 Ethics and dissemination

This analysis will be based on a larger project (CIN) which was cleared by the Kenya Medical Research Institute ethics and review board (Protocol number: 2465). The findings will be useful in understanding the external validity of current treatments – and will provide a platform on which to do more similar analyses for different (combinations of) treatments.

304 Competing Interests

⁸ The primary interpretations will consider results of multiple imputations without outcome if results differ from those of MI with outcome – as is the standard recommendation to analysis of observational datasets in Rubin (2008) (37).

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

305 The authors declare they have no competing interests.

306 Authors Contributions

The contributions of the authors were as follows: LM did an initial draft of this manuscript with the support of RP, EM and ME. Thereafter, all authors edited subsequent versions and approved the final copy.

310 Funding

311 We are grateful for the funds from the Wellcome Trust (#097170) that support ME through a

- fellowship and additional funds from a Wellcome Trust core grant awarded to the KEMRI-
- 313 Wellcome Trust Research Programme (#092654) that supported this work. LM is supported
- 314 by a Nuffield Department of Medicine Prize DPhil Studentship and Clarendon Scholarship
- 315 (Oxford University). The funders had no role in drafting or submitting this manuscript.

References

- 319 1. Hospital Care for Children [Internet].; 2005 []. Available from:
 320 http://apps.who.int/iris/bitstream/10665/43206/1/9241546700.pdf.
- 321 2. Hospital Care for Children [Internet].; 2013 []. Available from:
 322 <u>http://apps.who.int/iris/bitstream/10665/81170/1/9789241548373_eng.pdf</u>.
- 323 3. WHO. Hospital Care for Children. 2013.
 - 4. Sazawal S, Black R. Pneumonia Case Management Trials Group. Lancet Infect Dis.
 2003;3(9):547-56.

5. Agweyu A, Kibore M, Digolo L, Kosgei C, Maina V, Mugane S, et al. Prevalence and correlates of treatment failure among Kenyan children hospitalised with severe communityacquired pneumonia: a prospective study of the clinical effectiveness of WHO pneumonia

- 329 case management guidelines. Tropical Medicine & International Health. 2014.
- 6. Mulholland K, Carlin JB, Duke T, Weber M. Challenges of trials of antibiotics for
 pneumonia in low-income countries. The Lancet Respiratory Medicine. 2014;2(12):952-4.
- 7. Ayieko P, Ogero M, Makone B, Julius T, Mbevi G, Nyachiro W, et al. Characteristics of
 admissions and variations in the use of basic investigations, treatments and outcomes in

BMJ Open

2		
3	334	Kenyan hospitals within a new Clinical Information Network. Archives of Disease in
4	335	Childhood. 2015.
5		
6	336	8. Agweyu A. Opiyo N. English M. Experience developing national evidence-based clinical
7	337	guidelines for childhood pneumonia in a low-income setting - making the GRADE? BMC
8	228	Pediatric 2012
9	220	
10	220	0 Asiste D. Fastist M. Com Menseement of Childhead Damasais in Developing
11	339	9. Ayleko P, English M. Case Management of Childhood Pheumonia in Developing
12	340	Countries . Pediatr Infect Dis J. 2007;26:432-40.
13		
14	341	10. Basic Paediatric Protocols: November 2013 Edition [Internet].: Ministry of Health; 2013
15	342	[]. Available from: http://www.idoc-africa.org/index.php/86-clinical-guide/ken-guide/134-
16	343	basic-paediatric-protocols-november-2013-edition.
17		
18	344	11 Basic paediatric protocols [Internet] · Kenyan Ministry of Health · 2016 [] Available
19	345	from: https://www.tropicalmedicine.ox.ac.uk/_asset/file/basic-paediatric-protocols-2016.pdf
20	545	
21	246	12 Groham SM English M Hazir T. Energon D. Duka T. Challenges to improving age
22	340	12. Oralian Sivi, English IVI, Hazir T, Enalson F, Duke T. Chanenges to improving case
23	347	management of childhood pheumonia at health facilities in resource limited settings. Bulletin
24	348	of the WHO. 2015.
25		
20	349	13. Atkinson M, et al. A multicentre randomised controlled equivalence trial comparing oral
28	350	amoxicillin and intravenous benzyl penicillin for community acquired pneumonia in children
29	351	PIVOT Trial. Thorax. 2007;61:1102-6.
30		
31	352	14. Hazir T. et al. Ambulatory short-course high-dose oral amoxicillin for treatment of severe
32	353	pneumonia in children: a randomised equivalency trial Lancet 2008:371:49-56
33	555	produtiona in entratent. a failaentised equivalency that. Daileet. 2000,571.19 00.
34	251	15 Adda Vaha E. Chicaka N. Hassan M. Hibberd P. Lozana IM. Jeena P. et al. Oral
35	254	amovicillin versus injectable nonicillin for severe nnoumonic in children aged 2 to 50
36	355	anioxiciti versus injectable perioriti for severe preunoina in cinturen ageu 5 to 59
37	356	months: a randomised multicentre equivalency study. Lancet. 2004;364:1141-8.
38		
39	357	16. Addo-Yobo E, et al. Outpatient treatment of children with severe pneumonia with oral
40	358	amoxicillin in four countries: the MASS study . Tropical Medicine and International Health.
41	359	2011;16:995-1006.
42		
43	360	17. IVAC. Pneumonia and Diarrhoea Progress Report 2014. John Hopkins Bloomberg School
44	361	of Public Health; 2014.
45		
46	362	18 Agweyu A. Gathara D. Oliwa I. Muinga N. Edwards T. Allen F. et al. Oral amovicillin
47	262	versus benzul penicillin for severe pneumonia among kenyan children: a progratic
48	202	rendemised controlled noninferiority trial. Clin Infect Dis. 2015
49	364	randomised controlled nonlineirority trial. Clin Infect Dis. 2013.
50		
51	365	19. Stopler E, Van Roeyn P, Van de Wiel M, Van Bokhoven M, Houben P, Van der Weijde
52	366	T, et al. Consensus on gut feelings in general practice. BMC Family Practice. 2009.
53		
54 55	367	20. Rubin DB. For Objective Causal Inference, Design Trumps Analysis. 2008;2(3):808-40.
55 56		
00 57	368	21. Draft recommendation for management of children with severe febrile illness and
57 58	369	impared circulation without signs of severly impaired circulation: Guideline Panel Meeting
50		1
60		10
00		19

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

2	
3 4	
5	
6 7	
8	
9	
10	
12	
13 14	
15	
16	
17	
19	
20 21	
22	
23	
24 25	
26	
27	
29	
30 31	
32	
33	
34 35	
36	
37 38	
39	
40 41	
41	
43	
44 45	
46	
47 ⊿8	
49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

370 371 372 373	[Internet].: Health Services, Implementation Research and Clinical Excellence Collaboration; 2013 []. Available from: <u>http://www.idoc-africa.org/images/documents/guidelines/Panel%20recommendation%20on%20fluid%20resus citation%20I%20final.pdf</u> .
374 375 376 377 378	22. Draft recommendations for care of umbilical cord in newborns: Guideline Panel Meeting. [Internet].: Health Services, Implementation Research and Clinical Excellence Collaboration; 2013 []. Available from: <u>http://www.idoc-africa.org/images/documents/guidelines/Panel%20recommendations%20on%20cord%20care%20final.pdf</u> .
379 380 381 382 383 384	23. Draft recommendations for hospital management of children (less than 5 years) with sickle cell disease: Guideline Panel Meeting 2013. [Internet].: Health Services, Implementation Research and Clinical Excellence Collaboration; 2013 []. Available from: http://www.idoc-africa.org/images/documents/guidelines/Panel%20recommendations%20on%20sickle%20cell%20anaemia%20final.pdf .
385 386	24. Wittes J. Sample size calculations for randomised controlled trials. Epidemiologic Reviews. 2002;24(1).
387 388 389	25. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? International Journal of Methods in Psychiatric Research. 2011;20(1):40-9.
390 391	26. Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score. Pharmacoepidemiol Drug Saf. 2008 2008;17(12):1218-25.
392 393 394	27. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009 10 Nov 2009;28(25):3083-107.
395 396	28. Stuart EA. Matching methods for causal inference: A review and a look forward. Statist. Sci. 2010;25(1):1-21.
397 398	29. Fine J, Gray R. A Proportional Hazards Model for the Subdistribution of a Competing Risk. Journal of the American Statistical Association. 1999;94(446):496-509.
399	30. Rubin DB. An overview of Multiple Imputation 1988.
400 401	31. Rosenbaum PR. Design sensitivity and efficiency in observational studies. Journal of the American Statistical Association. 2010;105:692-702.
402 403	32. Roderick JAL. Regression With Missing X's: A Review. Journal of the American Statistical Association. 1992;87(420):1227-37.
404 405	33. Chiba Y. Bias analysis of the instrumental variable estimator as an estimator of the average causal effect. Contemporary Clinical Trials. 2010 January 2010;31(1):12-7.

BMJ Open

34. Lee BK, Lessler J, Stuart EA. Weight Trimming and Propensity Score Weighting. PLoS ONE [Electronic Resource]. 2011.

35. Baiocchi M, Cheng J, Small DS. Tutorial in Biostatistics: Instrumental Variable Methods for Causal Inference. Statistics in Medicine. 2014;33(13):2297-340.

36. Berkley JA, Brent A, Mwangi I, English M, Maitland K, Marsh K, et al. Mortality among Kenyan children admitted to a rural district hospital on weekends as compared with

weekdays . Pediatrics. 2004;114:1737-8.

37. Rubin D.B. For Objective Causal Inference, Design Trumps Analysis. The Annals of Applied Statistics. 2008;2(3):808-40.

- 38. Tuti T, Bitok M, Malla L, Paton C, Muinga N, Gathara D, et al. Improving documentation
- clinc. care in Keny. of clinical care within a clinical information network: an essential initial step in efforts to
- understand and improve care in Kenyan hospitals. BMJ Global Health. 2016.

i otal sample size

169x192mm (300 x 300 DPI)

BMJ Open

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/ item	ltemNo	Description	Line Number
Administrative in	formatio	n	
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1 – 3
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	Not Applicable
	2b	All items from the World Health Organization Trial Registration Data Set	
Protocol version	3	Date and version identifier	Not Applicable
Funding	4	Sources and types of financial, material, and other support	304 – 308
Roles and responsibilities	5a	Names, affiliations, and roles of protocol contributors	300 – 303
	5b	Name and contact information for the trial sponsor	Not Applicable
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	308
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	Not Applicable
Introduction			

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1
2
3
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
30
24
31
32
33
34
35
36
27
31
38
39
40
41
42
43
11
44 /-
45
46
47
48
49
50
50
51
52
53
54
55
56
57
57
58
59

60

Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	57 – 103
	6b	Explanation for choice of comparators	57 – 103
Objectives	7	Specific objectives or hypotheses	104 – 152
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	158 – 170
Methods: Partici	pants, ir	terventions, and outcomes	
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	155
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	172 – 177
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	56 – 103
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	Not applicable
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	Not applicable
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	Not applicable

Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	197
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	Not applicable
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	214 – 230
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	Not applicable
Methods: Assignr	ment of i	nterventions (for controlled trials)	
Allocation:			
Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	Not applicable
Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	Not applicable

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2
2
3
4
5
6
7
0
ð
9
10
11
12
12
13
14
15
16
17
17
١ð
19
20
21
22
22
23
24
25
26
20
21
28
29
30
21
31
32
33
34
35
20
36
37
38
39
10
40
41
42
43
44
1
40
46
47
48
10
73 50
50
51
52
53
51
54 55
55
56
57
58
50
59
60

Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	Not applicable
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	Not applicable
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	Not applicable
Methods: Data co	llection,	management, and analysis	
Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	155
	18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	Not applicable
Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	155
Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	231 – 291

BMJ Open

	20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	
	20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	231 – 291
Methods: Monitor	ring		
Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	Not applicable
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	Not applicable
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	Not applicable
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	Not applicable
Ethics and disser	nination		
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	292 – 298
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	Not applicable

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

2	
3	
4	
4	
5	
6	
7	
1	
8	
g	
10	
10	
11	
12	
12	
13	
14	
15	
10	
16	
17	
18	
10	
19	
20	
21	
~ 1	
22	
23	
24	
27	
25	
26	
27	
21	
28	
29	
30	
50	
31	
32	
33	
55	
34	
35	
36	
30	
37	
38	
20	
39	
40	
41	
10	
42	
43	
44	
45	
40	
46	
47	
10	
40	
49	
50	
51	
51	
52	
53	
51	
54	
55	
56	
57	
57	
58	
59	
60	
00	

1

Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	Not applicable
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	Not applicable
Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	Not applicable
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	298
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	Not applicable
Ancillary and post-trial care	30	Provisions, if any, for ancillary and post- trial care, and for compensation to those who suffer harm from trial participation	Not applicable
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	295 – 296
	31b	Authorship eligibility guidelines and any intended use of professional writers	
	31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	
Appendices			
Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	

BMJ Open

Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable
		specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable

BMJ Open

Comparative effectiveness of injectable penicillin versus a combination of penicillin and gentamicin in children with pneumonia characterised by indrawing in Kenya: A protocol for an observational study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-016784.R1
Article Type:	Protocol
Date Submitted by the Author:	15-May-2017
Complete List of Authors:	Malla, Lucas; Kenya Medical Research Institute - Wellcome Trust; University of Oxford Perera, Rafael; University of Oxford, Primary Health Care McFadden, Emily; University of Oxford, Primary Health Care English, Mike; University of Oxford, Nuffield Department of Medicine and Department of Paediatrics
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Epidemiology, Health services research
Keywords:	comparative effectiveness, propensity scores, pneumonia, observational

SCHOLARONE[®] Manuscripts

BMJ Open

protocol for an observational study Lucas Malla ^{1*} (lucas.malla@some.ox.ac.uk) Rafael Perera-Salazar ² (rafael.perera@phc.ox.ac.uk) Emily McFadden ² (emily.mcfadden@phc.ox.ac.uk) Mike English ^{1, 3} (menglish@kemri-wellcome.org) ¹ Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdor ² Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxf Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	gentamicin in childrer	with pneumonia characterised by	indrawing in
Lucas Malla ^{1*} (<u>lucas malla@some.ox.ac.uk</u>) Rafael Perera-Salazar ² (<u>rafael.perera@phc.ox.ac.uk</u>) Emily McFadden ² (<u>emily.mcfadden@phc.ox.ac.uk</u>) Mike English ^{1,3} (<u>menglish@kemri-wellcome.org</u>) ¹ Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdor ² Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxf Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	protocol for an observa	ional study	
Rafael Perera-Salazar ² (rafael.perera@phc.ox.ac.uk) Emily McFadden ² (emily.mcfadden@phc.ox.ac.uk) Mike English ^{1, 3} (menglish@kemri-wellcome.org) ¹ Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdor ² Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxf Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	Lucas Malla ^{1*} (<u>lucas.mal</u>	<u>a@some.ox.ac.uk</u>)	
Emily McFadden ² (emily.mcfadden@phc.ox.ac.uk) Mike English ^{1, 3} (menglish@kemri-wellcome.org) ¹ Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdor ² Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxford, Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	Rafael Perera-Salazar ² (<u>ra</u>	fael.perera@phc.ox.ac.uk)	
Mike English ^{1, 3} (menglish@kemri-wellcome.org) ¹ Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdor ² Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxf Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	Emily McFadden ² (emily	.mcfadden@phc.ox.ac.uk)	
 ¹Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdor ²Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxfor	Mike English ^{1, 3} (menglish	h@kemri-wellcome.org)	
² Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxf Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	¹ Nuffield Department of	Medicine, University of Oxford, Oxford,	United Kingdom
Kingdom. ³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	² Nuffield Department of	Primary Care Health Sciences, University	y of Oxford, Oxfo
³ Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairob *Corresponding author: Lucas Malla	Kingdom.		
*Corresponding author: Lucas Malla	³ Kenya Medical Researc	n Institute-Wellcome Trust Research Pro	gramme, Nairobi
*Corresponding author: Lucas Malla			
Lucas Malla	*Corresponding author		
	Lucas Malla		

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Introduction

WHO treatment guidelines are widely recommended for guiding treatment for millions of children with pneumonia every year across multiple low and middle income countries. Guidelines are based on synthesis of available evidence that provides moderate certainty in evidence of effects for forms of pneumonia that can result in hospitalisation. However, trials have included fewer children from Africa than other settings and it is suggested that African children with pneumonia have higher mortality. Thus despite improving access to recommended treatments and deployment with high coverage of childhood vaccines, pneumonia remains one of the top causes of mortality for children in Kenya. Establishing whether there are benefits of alternative treatment regimens to help reduce mortality would utilize pragmatic clinical trials. However, these remain relatively expensive and time consuming. This protocol describes an approach to using secondary analysis of a new, large observational dataset as a potentially cheaper and quicker way to examine the comparative effectiveness of penicillin versus penicillin plus gentamicin in treatment of indrawing pneumonia. Addressing this question is important as although it is now recommended that this form of pneumonia is treated with oral medication as an outpatient it remains associated with non-trivial mortality that may be higher outside trial populations.

Methods and analysis

We will use a large observational dataset that captures data on all admissions to 13 Kenyan county hospitals. These data represent the findings of clinicians in practice and, because the system was developed for large observational research, pose challenges of non-random treatment allocation and missing data. To overcome these challenges this analysis will use a

BMJ Open

rigorous approach to study design, propensity score methods and multiple imputation to minimize bias.

Ethics and dissemination

The primary data are held by hospitals participating in the Kenyan Clinical Information Network (CIN) project with de-identifed data shared with the KEMRI-Wellcome Trust Research Programme for agreed analyses. The use of data for the analysis described received ethical clearance from the Kenya Medical Research Institute Scientific and Ethical Review Committee. The findings of this analysis will be published.

Strength

- This study will be used as a platform to explore effectiveness of alternative treatments in routine care in a low income setting to improve health outcomes for children.

Limitation

- The analysis will be limited to the variables in the observational dataset and therefore risk bias due to unmeasured key variables.
- The influence of any resulting bias, to alter results, will however be assessed through the use of alternative methods as instrumental variables.

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Introduction

Kenya has developed and disseminated national treatment guidelines largely drawing on those of WHO for a number of childhood diseases including pneumonia (1, 2). These pneumonia guideline recommendations are based on synthesis of available evidence that provides moderate certainty in evidence of effects of treatments for forms of pneumonia that can result in hospitalization (1, 2). Such guidelines have been shown to be effective in reducing pneumonia related mortality and thus Kenyan clinicians are supposed to use them in routine practice to treat pneumonia (and other diseases) (3, 4). However, although the guidelines are based on the best available evidence, the evidence available from trials conducted in Africa remains limited (5). There has also been little thorough investigation of the effectiveness of treatments in non-trial populations in routine settings that may often differ from those enrolled in formal clinical trials. For example many children admitted with pneumonia may have co-morbidity that might exclude them from trials (6). These issues can prove problematic when making national guidelines where study generalisability can be contested (7).

The WHO and Kenyan pneumonia treatment guidelines are implicitly based on risk stratification of illness with children deemed at higher risk of severe illness and mortality offered broad spectrum antibiotic regimens and those at lower risk narrow spectrum antibiotics (2, 8-10). This risk stratification approach is operationalized by requiring clinicians to look for specific features in the clinical history and examination that are used to define illness severity and therefore recommended treatment (Panel 1). Previous studies conducted in Kenya have, however, indicated that clinicians do not always follow guideline recommendations in treating pneumonia (4). Variation from the guideline recommended approach can occur at the point of pneumonia severity assignment (clinicians do not follow the rules linking clinical signs and severity category) and at the point of treatment assignment

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

(clinicians do not follow the rules linking treatment and severity). This variability in treatment assignment provides the opportunity for comparative effectiveness evaluation if similar populations of children with pneumonia are prescribed different treatments. Clinicians may create such a situation by not following recommendations because they have inadequate

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

knowledge or if they believe (potentially contrary to the evidence) that certain treatments result in better health outcomes.

Panel 1: Pneumonia treatment algorithm

The pneumonia severity classification that was recommended by Kenyan guidelines up to March 2016 (9) (and previously by WHO guidelines (1)) defined the following three severity classes:

1. Very severe pneumonia: If a child had either oxygen saturation less than 90% or central cyanosis or was grunting or unable to drink or not alert, then s/he was classified as having very severe pneumonia, put on oxygen and treated with a combination of gentamicin and penicillin.

{*The new WHO (2) and Kenyan guidelines (9) renamed this class as "severe pneumonia" – and currently recommend treatment with a combination of ampicillin (or penicillin) with gentamicin plus oxygen*}.

2. Severe pneumonia: If a child had lower chest wall indrawing (but did not have any of qualifying signs for very severe pneumonia above) and was alert then s/he was to be classified as having severe pneumonia and be treated with benzyl penicillin only. Note: The term indrawing pneumonia is hereafter used in this protocol to define this category of children to avoid confusion.

3. (Non – severe) Pneumonia: If a child had none of the mentioned signs but had cough or difficulty breathing and a respiratory rate greater than or equal to 50 breaths/minute (for age between 2 and 11 months) or respiratory rate greater than or equal to 40 breaths/minute (for age above 12 months) then s/he was classified as having non severe pneumonia and treated with cotrimoxazole or amoxicillin if previously treated with cotrimoxazole.

{The current WHO and Kenyan guidelines collapsed severity classes 2 and 3 into one category referred to as "non –severe pneumonia". This group of patients are currently treated with oral amoxicillin – partly informed by a local trial (18)}.

In particular, a previous study showed that clinicians over-prescribed gentamicin, adding this to penicillin for the treatment of pneumonia characterized by lower chest wall indrawing but no other signs of severe illness instead of penicillin alone as was recommended $(4)^{1}$. Therefore, this protocol is for a study that seeks to explore whether there is any benefit from adding gentamicin to penicillin in treating children with indrawing pneumonia. Such a benefit could accrue if bacterial causes of pneumonia that were previously (prior to introduction of new vaccines) proportionately less common (eg. S. aureus and gram negative bacteria) are now accounting for an increased proportion of pneumonia deaths – as in such cases, the addition of gentamicin might provide effective treatment for a broader spectrum of pathogens. Tackling this question is of importance as WHO have recently changed indrawing pneumonia treatment guidance based on trials that suggest equivalence of oral amoxicillin and injectable penicillin (12-15). New guidance recommends outpatient oral treatment for a population of children previously admitted to hospital (10). However, mortality from pneumonia has been reported to be higher in African settings (16, 17) despite the increasing use of multiple vaccines spanning: measles, pertussis, HiB and pneumococcal conjugate vaccines. It remains possible therefore that for a small number of children a broader spectrum antibiotic regimen might be of benefit. This study addresses this question that has not been the subject of prior community and pragmatic clinical trials.

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Objectives

Primary

 Experiment 1: To compare the effectiveness of injectable penicillin versus penicillin plus gentamicin (both injectable) in treatment of indrawing pneumonia; where severity level is constructed (imputed) using data recorded on each child's clinical

¹ The fact that inadequate knowledge in handling childhood pneumonia may result in inconsistent treatment allocation is supported by a survey conducted in seven developing countries showing that 56% of nurses and doctors had inadequate knowledge in managing pneumonia in children (11).

signs (hospitals use a structured record form that supports recording of signs highlighted in guidelines) such that severity classification is consistent with guideline recommendations.

Secondary

- Experiment 2: To compare effectiveness of injectable penicillin versus penicillin plus gentamicin in treatment of indrawing pneumonia; where we use clinician assigned severity level.
- Experiment 3: To compare effectiveness of injectable penicillin versus penicillin plus gentamicin in treatment of all cases of pneumonia admitted to hospital.

Experiment 1 will be primary as it most approximates a typical randomised trial where recruitment would be based on specified clinical signs. This scenario will provide an evaluation of alternative therapies within a guideline class (where children have very similar clinical signs) and thus is the best mimic of a prospectively designed comparative evaluation in which clinicians stick to the rules of severity classification (see (18) for an example of a RCT in Kenya that this would be similar to – where classification is based on clinical signs). Recommended treatment for this disease classification was penicillin alone, treatment with combination therapy may therefore represent over-treatment. Alternatively, the combination treatment that provides broader antimicrobial cover could provide an advantage in a small proportion of cases that would only be detected in moderately large studies – where the addition of gentamicin offers improved treatment for specific organisms not susceptible to penicillin alone.

Experiment 2 will provide a test of alternative therapies amongst those where clinicians used their own judgement (possibly including gut feeling) to classify and treat (19) and have on occasions (potentially) over-ridden or ignored the guideline recommendations. In this case

although the same label of indrawing pneumonia is given to all, the treatment selected may be an indicator of perceived severity and there may be a potential bias as a result – and the propensity score distributions (see below) may help demonstrate this and in theory may overcome this potential bias. Here if there is no clinically relevant difference between treatments within a group of patients that reflects clinicians' actual classification decisions this could reassure them that monotherapy with penicillin (or amoxicillin) would be acceptable. Lastly, experiment 3 is an extension of the logic of experiment two. To date there have been no pragmatic trials of penicillin alone compared with alternative combination therapies for all forms of inpatient pneumonia, and addressing this question may be relevant for two reasons. First, the population of children admitted with severe forms of pneumonia is now largely one that has received *H. influenzae* Type B and pneumococcal conjugate vaccines that have likely changed the aetiology of this illness. Second, if clinicians are poorly trained and unable to classify illness severity – resulting in non-adherence to guidelines - it would be useful to explore the potential impact of this across all levels of severity of pneumonia. This analysis has the largest numbers of subjects.

Methods and analysis

To answer these three questions, we will use the Kenyan Clinical Information Network (CIN) dataset that provides observational data on all admissions to 13 Kenyan County hospitals (panel 2).

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

CIN was initiated to improve data availability from secondary care in paediatrics and as a model for demonstrating the value of routine data in improving quality of care in the county (formerly district) hospitals. These hospitals typically have a single paediatrician leading services predominantly provided by junior clinical teams. Data in these hospitals are collected prospectively post discharge by trained data clerks, guided by well-defined standard operating procedures, under close supervision by the hospital medical records department and the research team. It is worth noting that the research team has no personnel checking quality of clinical process and whether clinicians correctly document what they do. However, the patient record is the formal (and legal) document describing the clinical condition and management. These documents are used for data abstraction and they include patient files with standardized Paediatric Admission Record (PAR) forms, treatment sheets, discharge summary forms, laboratory reports and clinician The collected data are used to assess documentation of history, physical notes. examination, diagnosis, laboratory investigations, treatment and discharge plans. Feedback to hospitals as part of the CIN activities has helped improve the quality of clinical data (38). The description of hospital selection and their populations of patients is detailed in Ayieko (2015) (6).

The analysis will proceed in two stages – design and outcome analysis as suggested by Rubin (2008) (20) as an objective way for analysing observational datasets.

Study Design

This will be an observational study conducting secondary analyses of data routinely collected from hospital paediatric wards in Kenya's CIN. The design process for the three experimental scenarios will be similar and broadly consists of the following steps suggested in Rubin (2008) (20):

- a) Definition of inclusion and exclusion criteria.
- b) Understanding the pneumonia diagnosis and treatment assignment processes. This is to help understand key and auxiliary variables required for analysis.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

- c) Verification of sample size if sufficient for any meaningful analyses.
- d) Creation of comparable treatment arms which will be addressed analytically aiming to overcome non – random treatment assignment and deal with missing data.
- e) Outcome analysis follows after conceptualisation of design in steps a d.

a) Inclusion and exclusion

This analysis will include all children aged 2 - 59 months and will exclude children with any co-morbidity of HIV, meningitis, tuberculosis and or acute malnutrition as there are specific antibiotic treatment rules for these children that supersede those for pneumonia. Specifically Kenyan guidelines for the inpatient treatment of pneumonia in children that are HIV infected recommend only combination therapy. Importantly therefore children with other co-morbidities such as mild anaemia, diarrhoea and malaria are not necessarily excluded from the analysis.

b) Understanding the diagnosis and treatment assignment rules for pneumonia paediatric patients

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Clinicians are supposed to use guidelines widely disseminated as the 'Basic Paediatric Protocols' in Kenya (9) that are adapted from WHO guidance, based on available evidence and developed by consensus by a national guideline panel (see (21-23)). In standard practice, the process of treatment assignment happens in three steps; first, there is assessment and documentation of each clinical sign. Step two involves integration of clinical information into severity classification, and in step three severity classification is translated into a treatment assignment (see panel 1). In Kenya, as in many low and middle income countries these recommendations reflect the absence of access to further diagnostic tests. Thus pulse oximetry, blood culture or tests for inflammatory markers are not routinely available (6). As indicated above clinicians may fail to adhere to guideline recommendations by making errors

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

or over-riding recommendations at any of the three steps of assessment, severity classification and treatment assignment. However, based on the clinical symptoms and signs recorded it is possible to assign a severity classification (and thus expected treatment) based on the data. It is a data informed and investigator assigned classification as indrawing pneumonia that is used in the primary analysis (experiment 1).

c) Analysis Variables

Outcome variable

Mortality will be used as the outcome variable in all the three experiments.

Independent variables

These variables are grouped into key and auxiliary. Key variables are defined as those that should influence pneumonia severity classification and hence treatment based on the treatment protocol (9) (panel 1). Auxiliary variables are defined as those that might, *a priori*, be expected to influence treatment assignment based on clinical reasoning (for example they might make a clinician concerned for severe illness), although according to the formal rules (the guidelines) they are not considered reasons to alter treatment assignment. Such auxiliary variables were identified from those clinical symptoms and signs that are routinely collected within CIN. See table 1 for a summary of key and auxiliary variables that will be used in the analyses.

1	
2	
2	
3	
4	
5	
ĉ	
ю	
7	
8	
0	
9	
10	
11	
11	
12	
13	
4.4	
14	
15	
16	
10	
17	
18	
10	
19	
20	
21	
~ 1	
22	
23	
21	
24	
25	
26	
27	
21	
28	
29	
20	
30	
31	
32	
52	
33	
34	
25	
30	
36	
37	
57	
38	
39	
10	
+0	
41	
42	
⁄\2	
+3	
44	
45	
10	
40	
47	
48	
40	
49	
50	
51	
51	
52	
53	
5 J	
54	
55	
56	
5/	
58	
50	
59	
60	

Experiment 1 and 2 key	Experiment 3 key variables	Auxiliary variables for
variables		experiments 1, 2 and 3
Age $(2 - 59 \text{ months})$	Age $(2 - 59 \text{ months})$	Gender (male/female)
Indrawing (present/absent)	Indrawing (present/absent)	Cough duration (days)
History of cough (yes/no)	History of cough (yes/no)	Crackles (present/absent)
Difficulty breathing (present/absent)	Difficulty breathing (present/absent)	Weight (Kg)
Level of consciousness – AVPU	Level of consciousness – AVPU	Pallor (0, +, +++)
(alert/verbal response/pain	(alert/verbal response/pain	
response/unresponsive)	response/unresponsive)	
	Oxygen ordered (yes/no)	Capillary refill (immediate, $1 - 2$
		secs, $3-6 \sec (> 6 \sec)$
	Cyanosis (present/absent)	Fever (present/absent)
	Inability to drink/breastfeed (yes/no)	Diarrhoea (present/absent)
	Grunting (present/absent)	Convulsions (present/absent)
•	Respiratory rate (breaths/min)	Vomiting (yes/no)
		Referral (yes/no)
		Length of illness (days)
		Number of fits
		Thrush (present/absent)
		Quinine/artesunate (prescribed/not
		prescribed)
		Weight for age z – score
		Wheeze (present/absent)
		Comorbidities (Malaria and or
		diarrhoea)

Table 1: Summary of key and auxiliary independent variables for experiments 1, 2 and 3^2

d) Sample size verification

Here, sample size verification uses the formula cited in (24):

$$ns = \frac{k+1}{k} \frac{\overline{p}(1-\overline{p})(Z_{\beta} + Z_{1-\alpha/2})^2}{(p_1 - p_2)^2}, \text{ where:}$$

ns = size of smaller group.

k = ratio of larger group to smaller group.

 $p_1 - p_2$ = clinical difference in proportions of the outcome.

 Z_{β} = corresponds to power of 80%

 $Z_{1-\alpha/2}$ = corresponds to two-tailed significance level (1.96 for α = .05).

 \overline{p} = corresponds to average of outcome proportions in two groups.

² Experiment 3 has more key variables than experiment 2 as it considers patient populations with "very severe, severe and non –severe pneumonia" – as classified in the previous WHO and Kenyan treatment guidelines. Therefore, in addition to variables used to classify severe pneumonia, other variables used to classify very severe and non-severe pneumonia are considered.

The value for \bar{p} is estimated from studies – two of which formed evidence for earlier WHO indrawing pneumonia treatment guidelines. See table 2 that shows the number of deaths per treatment arm reported in these studies.

Table 2: Summary	of some of	pneumonia	studies that	at informed	previous	WHO guidelines
------------------	------------	-----------	--------------	-------------	----------	----------------

Study	Treatment arms	Mortality	$ar{p}$
Shann et. al(1985)	Chloramphenicol alone	48/377	0.1470
	Chloraphenicol+Penicillin	62/371	
Addo – Yobo et. al (2002)	Injectable penicillin	7/845	0.0050
	Oral amoxicillin	2/857	
Agweyu (2015)	Injectable penicillin	3/264	0.008
•	Oral amoxicillin	1/263	

For assessment of sample size for indrawing pneumonia experiments, a weighted³ \bar{p} of 0.041 from these studies is used. The ratio r is varied between 1 and 3. Figure 1 was generated by fixing power and significance level at 80% and 5% respectively. Estimates of $\bar{p}(1-\bar{p})$ derived from WHO studies were substituted in the sample size formula and data simulated in order to see what detectable differences would be achieved by different sample sizes. A total sample size of about 4000 would be sufficient to detect a minimum difference of 1.5% (absolute difference e.g. a reduction of mortality from X% to X – 1.5%) in any of these experiments⁴.

[Insert figure 1]

Statistical and outcome Analysis

Statistical analysis will proceed in the following four steps:

Step 1 – subset of patients of interest for the experiments will be obtained.

³ Weighting was done using the total sample sizes per experiment.

⁴ A sample size of at least 4000 would be required for experiment 3 as this is the minimum sample for experiments 1 and 2 which are nested in experiment 3.

BMJ Open

- Experiment 1: First, missing clinical signs data will be multiply imputed⁵ (excluding outcome data) and then key clinical signs data used to impute (construct) a pneumonia severity level for all patients based on the algorithms in the pneumonia treatment protocol (9). Thereafter, a subset of patients with guideline-defined indrawing pneumonia (for each of the imputed datasets) will be obtained for further analyses.
 - Experiment 2: A subset of indrawing pneumonia patients (with severity as indicated by the clinicians) will be obtained from the raw dataset and clinical signs data imputed using multiple imputation (without the outcome data).
 - Experiment 3: The raw dataset containing all the patients with all forms of pneumonia severity will be used –and clinical signs data imputed using multiple imputation (without the outcome data).

Step 2 – patients in the alternative treatment arms will be matched using propensity score (PS) methods to overcome non – random treatment allocation. Standardised mean differences (and where necessary density plots) will be used as diagnostic checks for covariate balance and overlap (26, 27) between penicillin and penicillin plus gentamicin treatment groups. PS methods that utilise all the data (PS optimal full matching, weighting and sub classification) will be examined in experiments 1 and 2 (on each imputed dataset) and the method that results in the minimum average absolute standardised mean differences for the majority of the variables and retains the largest number of patients in the analysis will be considered appropriate (28). While only PS sub-classification will be used for experiment 3. As experiment 3 aims to investigate comparative effectiveness in all cases of pneumonia, propensity score will be used as a proxy for disease severity thus patients with lower

⁵ For the three experiments, 20 datasets will be multiply imputed using chained equations (25).

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

BMJ Open

propensity scores will be considered less ill while those with higher propensity scores will be considered more ill (grouped in propensity score subclasses for analysis).

Step 3: conducting outcome analysis.

For each imputed dataset (per experiment), outcome analysis will aim to investigate treatment causal effects across all the hospitals. Bayesian log binomial regression models (29) will be used to estimate overall treatment effects⁶. A hospital variable will be modelled as a fixed effect in the log binomial regression that measures treatment effects on pooled data. These models will be fitted on each imputed dataset (adjusting for other variables used in PS models) and results pooled using Rubin rules (30).

Step 4: sensitivity analysis will be conducted to investigate effects of unmeasured confounders and validity of estimates obtained through multiple imputation. Propensity score methods generate matched treated and (active) control patients whose distribution of measured covariates are as similar as possible. However, two patients with similar covariate distribution may differ in terms of unmeasured variables – and this may introduce bias in estimated treatment effects (31). On the other hand, if outcome and explanatory variables have missing data, then inclusion of outcome data in multiple imputation may contribute minor information in the substantive (outcome) model (32).

Exploring effects of unmeasured confounders

Sensitivity analysis for unmeasured confounders will involve the use of an instrumental variable (IV) (33) – weekend admission and PS trimming (34). A few IV sources in health

⁶ Bayesian models will be used to overcome any bias due to sparsity of data as PS sub-classification in itself reduces the effective sample size.

BMJ Open

studies have been described in Baiocchi (2014) (35). These include: distance to specialty, genes, insurance plan, timing of admission, calendar time and preference based IVs. Of relevance to this analysis would be timing of admission IVs. A study conducted by Berkley (2004) (36) in a Kenyan hospital demonstrated that children who were admitted during the weekend experienced higher mortality compared to those admitted during the weekdays – which is an indication of poor quality of care and treatment during the weekend. In other words, it is anticipated that children admitted during the weekdays would have better health outcomes. This, in theory, implies that the type of treatment and care received depend on the day of admission – and which later determines the type of health outcome of the patient.

Examining validity of multiple imputation

The analysis steps 1 - 3 above will exclude outcome data in the imputation model – however sensitivity analysis will include models in which the outcome variable is included in the imputation approach. This will aim to investigate if including outcome data in the imputation model has an influence⁷.

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

Ethics and dissemination

The primary data are held by hospitals participating in the Kenyan Clinical Information Network (CIN) project with de-identifed data shared with the KEMRI-Wellcome Trust Research Programme for agreed analyses. The analyses described in this protocol are part of this larger project (CIN) which was approved by the Kenya Medical Research Institute Scientific and Ethical Review Committee (Protocol number: 2465). This committee agreed the use of de-identified patient data derived from retrospective case record review without gaining individual patient consent as is common practice in service evaluation research. The

⁷ The primary interpretations will consider results of multiple imputations without outcome if results differ from those of MI with outcome – as is the standard recommendation to analysis of observational datasets in Rubin (2008) (37).

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool .

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

findings will be useful in understanding the external validity of current treatments – and will provide a platform on which to do more similar analyses for different (combinations of) treatments. The results of this analysis will be shared with the Kenyan Ministry of Health and will inform discussions on national pneumonia treatment guidelines to which the research team have made major prior contributions. The work will also be submitted for publication.

Competing Interests

The authors declare they have no competing interests.

Authors Contributions

The contributions of the authors were as follows: LM did an initial draft of this manuscript with the support of RP, EM and ME. Thereafter, all authors edited subsequent versions and approved the final copy.

Funding

We are grateful for the funds from the Wellcome Trust (#097170) that support ME through a fellowship and additional funds from a Wellcome Trust core grant awarded to the KEMRI-Wellcome Trust Research Programme (#092654) that supported this work. LM is supported by a Nuffield Department of Medicine Prize DPhil Studentship and Clarendon Scholarship (Oxford University). The funders had no role in drafting or submitting this manuscript.

References

1. Hospital Care for Children [Internet].; 2005 []. Available from: http://apps.who.int/iris/bitstream/10665/43206/1/9241546700.pdf.

2. Hospital Care for Children [Internet].; 2013 []. Available from: http://apps.who.int/iris/bitstream/10665/81170/1/9789241548373_eng.pdf.

3. Sazawal S, Black R. Pneumonia Case Management Trials Group. Lancet Infect Dis. 2003;3(9):547-56.

Agweyu A, Kibore M, Digolo L, Kosgei C, Maina V, Mugane S, et al. Prevalence and correlates of treatment failure among Kenyan children hospitalised with severe community-acquired pneumonia: a prospective study of the clinical effectiveness of WHO pneumonia case management guidelines. Tropical Medicine & International Health. 2014.
 Mulholland K, Carlin JB, Duke T, Weber M. Challenges of trials of antibiotics for pneumonia in low-income countries. The Lancet Respiratory Medicine. 2014;2(12):952-4.
 Ayieko P, Ogero M, Makone B, Julius T, Mbevi G, Nyachiro W, et al. Characteristics of admissions and variations in the use of basic investigations, treatments and outcomes in Kenyan hospitals within a new Clinical Information Network. Archives of Disease in Childhood. 2015.
 Agweyu A, Opiyo N, English M. Experience developing national evidence-based clinical guidelines for childhood pneumonia in a low-income setting - making the GRADE? BMC Pediatric. 2012.

8. Ayieko P, English M. Case Management of Childhood Pneumonia in Developing Countries. Pediatr Infect Dis J. 2007;26:432-40.

9. Basic Paediatric Protocols: November 2013 Edition [Internet].: Ministry of Health; 2013 []. Available from: <u>http://www.idoc-africa.org/index.php/86-clinical-guide/ken-guide/134-basic-paediatric-protocols-november-2013-edition</u>.

10. Basic paediatric protocols [Internet].: Kenyan Ministry of Health; 2016 []. Available from: <u>https://www.tropicalmedicine.ox.ac.uk/ asset/file/basic-paediatric-protocols-2016.pdf</u>.

11. Graham SM, English M, Hazir T, Enarson P, Duke T. Challenges to improving case management of childhood pneumonia at health facilities in resource limited settings. Bulletin of the WHO. 2015.

12. Atkinson M, et al. A multicentre randomised controlled equivalence trial comparing oral amoxicillin and intravenous benzyl penicillin for community acquired pneumonia in children PIVOT Trial. Thorax. 2007;61:1102-6.

13. Hazir T, et al. Ambulatory short-course high-dose oral amoxicillin for treatment of severe pneumonia in children: a randomised equivalency trial. Lancet. 2008;371:49-56.

14. Addo-Yobo E, Chisaka N, Hassan M, Hibberd P, Lozano JM, Jeena P, et al. Oral amoxicillin versus injectable penicillin for severe pneumonia in children aged 3 to 59 months: a randomised multicentre equivalency study. Lancet. 2004;364:1141-8.

15. Addo-Yobo E, et al. Outpatient treatment of children with severe pneumonia with oral amoxicillin in four countries: the MASS study. Tropical Medicine and International Health. 2011;16:995-1006.

16. IVAC. Pneumonia and Diarrhoea Progress Report 2014. John Hopkins Bloomberg School of Public Health; 2014.

17. Onyango D, Kikuvi G, Amukoye E, Omolo J. Risk factors of severe pneumonia among children aged 2-59 months in western Kenya: a case control study. The Pan African Medical Journal. 2012(13):45.

18. Agweyu A, Gathara D, Oliwa J, Muinga N, Edwards T, Allen E, et al. Oral amoxicillin versus benzyl penicillin for severe pneumonia among kenyan children: a pragmatic randomised controlled noninferiority trial. Clin Infect Dis. 2015.

19. Stopler E, Van Roeyn P, Van de Wiel M, Van Bokhoven M, Houben P, Van der Weijde T, et al. Consensus on gut feelings in general practice. BMC Family Practice. 2009.

20. Rubin DB. For Objective Causal Inference, Design Trumps Analysis. 2008;2(3):808-40.

21. Draft recommendation for management of children with severe febrile illness and impared circulation without signs of severly impaired circulation: Guideline Panel Meeting [Internet].: Health Services, Implementation Research and Clinical Excellence Collaboration; 2013 []. Available from: http://www.idoc-

africa.org/images/documents/guidelines/Panel%20recommendation%20on%20fluid%20resus citation%20I%20final.pdf.

22. Draft recommendations for care of umbilical cord in newborns: Guideline Panel Meeting. [Internet].: Health Services, Implementation Research and Clinical Excellence Collaboration; 2013 []. Available from: http://www.idoc-

africa.org/images/documents/guidelines/Panel%20recommendations%20on%20cord%20care %20final.pdf.

23. Draft recommendations for hospital management of children (less than 5 years) with sickle cell disease: Guideline Panel Meeting 2013. [Internet].: Health Services, Implementation Research and Clinical Excellence Collaboration; 2013 []. Available from: http://www.idocafrica.org/images/documents/guidelines/Panel%20recommendations%20on% 20sickle%20cell%20anaemia%20final.pdf.

24. Wittes J. Sample size calculations for randomised controlled trials. Epidemiologic Reviews. 2002;24(1).

25. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? International Journal of Methods in Psychiatric Research. 2011;20(1):40-9.

26. Austin PC. Assessing balance in measured baseline covariates when using many-to-one matching on the propensity-score. Pharmacoepidemiol Drug Saf. 2008 2008;17(12):1218-25.

27. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat Med. 2009 10 Nov 2009;28(25):3083-107.

28. Stuart EA. Matching methods for causal inference: A review and a look forward. Statist. Sci. 2010;25(1):1-21.

29. Fine J, Gray R. A Proportional Hazards Model for the Subdistribution of a Competing Risk. Journal of the American Statistical Association. 1999;94(446):496-509.

30. Rubin DB. An overview of Multiple Imputation. 1988.

31. Rosenbaum PR. Design sensitivity and efficiency in observational studies. Journal of the American Statistical Association. 2010;105:692-702.

32. Roderick JAL. Regression With Missing X's: A Review. Journal of the American Statistical Association. 1992;87(420):1227-37.

33. Chiba Y. Bias analysis of the instrumental variable estimator as an estimator of the average causal effect. Contemporary Clinical Trials. 2010 January 2010;31(1):12-7.

34. Lee BK, Lessler J, Stuart EA. Weight Trimming and Propensity Score Weighting. PLoS ONE [Electronic Resource]. 2011.

35. Baiocchi M, Cheng J, Small DS. Tutorial in Biostatistics: Instrumental Variable Methods for Causal Inference. Statistics in Medicine. 2014;33(13):2297-340.

36. Berkley JA, Brent A, Mwangi I, English M, Maitland K, Marsh K, et al. Mortality among Kenyan children admitted to a rural district hospital on weekends as compared with weekdays . Pediatrics. 2004;114:1737-8.

37. Rubin D.B. For Objective Causal Inference, Design Trumps Analysis. The Annals of Applied Statistics. 2008;2(3):808-40.

38. Tuti T, Bitok M, Malla L, Paton C, Muinga N, Gathara D, et al. Improving documentation of clinical care within a clinical information network: an essential initial step in efforts to understand and improve care in Kenyan hospitals. BMJ Global Health. 2016.

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool

Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies

i otal sample size

169x192mm (300 x 300 DPI)

BMJ Open

SPIRIT 2013 Checklist: Recommended items to address in a clinical trial protocol and related documents*

Section/ item	ltemNo	Description	Line Number
Administrative in	formatio	n	
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1 – 3
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	Not Applicable
	2b	All items from the World Health Organization Trial Registration Data Set	
Protocol version	3	Date and version identifier	Not Applicable
Funding	4	Sources and types of financial, material, and other support	304 – 308
Roles and responsibilities	5a	Names, affiliations, and roles of protocol contributors	300 – 303
	5b	Name and contact information for the trial sponsor	Not Applicable
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	308
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	Not Applicable
Introduction			

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

1
2
3
1
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
24
25
26
27
28
29
30
24
31
32
33
34
35
36
27
31
38
39
40
41
42
43
11
44 45
45
46
47
48
49
50
50
51
52
53
54
55
56
57
57
58
59

60

Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	57 – 103
	6b	Explanation for choice of comparators	57 – 103
Objectives	7	Specific objectives or hypotheses	104 – 152
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	158 – 170
Methods: Partici	pants, ir	terventions, and outcomes	
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	155
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	172 – 177
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	56 – 103
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	Not applicable
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	Not applicable
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	Not applicable

Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	197
Participant timeline	13	Time schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended (see Figure)	Not applicable
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	214 – 230
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	Not applicable
Methods: Assignr	ment of i	nterventions (for controlled trials)	
Allocation:			
Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	Not applicable
Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	Not applicable

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

1
2
2
3
4
5
6
7
0
ð
9
10
11
12
12
13
14
15
16
17
17
١ð
19
20
21
22
22
23
24
25
26
20
21
28
29
30
21
31
32
33
34
35
20
36
37
38
39
10
40
41
42
43
44
1
40
46
47
48
10
73 50
50
51
52
53
51
54 55
55
56
57
58
50
59
60

Implementation	16c	Who will generate the allocation sequence, who will enrol participants, and who will assign participants to interventions	Not applicable
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	Not applicable
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant's allocated intervention during the trial	Not applicable
Methods: Data co	llection,	management, and analysis	
Data collection methods	18a	Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	155
	18b	Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	Not applicable
Data management	19	Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	155
Statistical methods	20a	Statistical methods for analysing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	231 – 291

BMJ Open

	20b	Methods for any additional analyses (eg, subgroup and adjusted analyses)	
	20c	Definition of analysis population relating to protocol non-adherence (eg, as randomised analysis), and any statistical methods to handle missing data (eg, multiple imputation)	231 – 291
Methods: Monitor	ring		
Data monitoring	21a	Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent from the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	Not applicable
	21b	Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	Not applicable
Harms	22	Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	Not applicable
Auditing	23	Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent from investigators and the sponsor	Not applicable
Ethics and disser	nination		
Research ethics approval	24	Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	292 – 298
Protocol amendments	25	Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	Not applicable

BMJ Open: first published as 10.1136/bmjopen-2017-016784 on 18 September 2017. Downloaded from http://bmjopen.bmj.com/ on May 10, 2025 at Department GEZ-LTA Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

2	
3	
4	
4	
5	
6	
7	
1	
8	
g	
10	
10	
11	
12	
12	
13	
14	
15	
10	
16	
17	
18	
10	
19	
20	
21	
~ 1	
22	
23	
24	
27	
25	
26	
27	
21	
28	
29	
30	
50	
31	
32	
33	
55	
34	
35	
36	
30	
37	
38	
30	
39	
40	
41	
12	
42	
43	
44	
45	
40	
46	
47	
10	
40	
49	
50	
51	
51	
52	
53	
51	
54	
55	
56	
57	
57	
58	
59	
60	
00	

1

Consent or assent	26a	Who will obtain informed consent or assent from potential trial participants or authorised surrogates, and how (see Item 32)	Not applicable
	26b	Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	Not applicable
Confidentiality	27	How personal information about potential and enrolled participants will be collected, shared, and maintained in order to protect confidentiality before, during, and after the trial	Not applicable
Declaration of interests	28	Financial and other competing interests for principal investigators for the overall trial and each study site	298
Access to data	29	Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	Not applicable
Ancillary and post-trial care	30	Provisions, if any, for ancillary and post- trial care, and for compensation to those who suffer harm from trial participation	Not applicable
Dissemination policy	31a	Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data sharing arrangements), including any publication restrictions	295 – 296
	31b	Authorship eligibility guidelines and any intended use of professional writers	
	31c	Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	
Appendices			
Informed consent materials	32	Model consent form and other related documentation given to participants and authorised surrogates	

BMJ Open

Biological specimens	33	Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	
		specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	