Article Text
Abstract
Objective Measuring the incidence of healthcare-associated infections (HAI) is of increasing importance in current healthcare delivery systems. Administrative data algorithms, including (combinations of) diagnosis codes, are commonly used to determine the occurrence of HAI, either to support within-hospital surveillance programmes or as free-standing quality indicators. We conducted a systematic review evaluating the diagnostic accuracy of administrative data for the detection of HAI.
Methods Systematic search of Medline, Embase, CINAHL and Cochrane for relevant studies (1995–2013). Methodological quality assessment was performed using QUADAS-2 criteria; diagnostic accuracy estimates were stratified by HAI type and key study characteristics.
Results 57 studies were included, the majority aiming to detect surgical site or bloodstream infections. Study designs were very diverse regarding the specification of their administrative data algorithm (code selections, follow-up) and definitions of HAI presence. One-third of studies had important methodological limitations including differential or incomplete HAI ascertainment or lack of blinding of assessors. Observed sensitivity and positive predictive values of administrative data algorithms for HAI detection were very heterogeneous and generally modest at best, both for within-hospital algorithms and for formal quality indicators; accuracy was particularly poor for the identification of device-associated HAI such as central line associated bloodstream infections. The large heterogeneity in study designs across the included studies precluded formal calculation of summary diagnostic accuracy estimates in most instances.
Conclusions Administrative data had limited and highly variable accuracy for the detection of HAI, and their judicious use for internal surveillance efforts and external quality assessment is recommended. If hospitals and policymakers choose to rely on administrative data for HAI surveillance, continued improvements to existing algorithms and their robust validation are imperative.
- EPIDEMIOLOGY
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Statistics from Altmetric.com
Supplementary materials
Supplementary Data
This web only file has been produced by the BMJ Publishing Group from an electronic file supplied by the author(s) and has not been edited for content.
- Data supplement 1 - Online supplement