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ABSTRACT
Objectives Heart failure (HF) is a commonly occurring 
health problem with high mortality and morbidity. If 
potential cases could be detected earlier, it may be 
possible to intervene earlier, which may slow progression 
in some patients. Preferably, it is desired to reuse already 
measured data for screening of all persons in an age 
group, such as general practitioner (GP) data. Furthermore, 
it is essential to evaluate the number of people needed to 
screen to find one patient using true incidence rates, as 
this indicates the generalisability in the true population. 
Therefore, we aim to create a machine learning model 
for the prediction of HF using GP data and evaluate the 
number needed to screen with true incidence rates.
Design, settings and participants GP data from 8543 
patients (−2 to −1 year before diagnosis) and controls 
aged 70+ years were obtained retrospectively from 
01 January 2012 to 31 December 2019 from the Nivel 
Primary Care Database. Codes about chronic illness, 
complaints, diagnostics and medication were obtained. 
Data were split in a train/test set. Datasets describing 
demographics, the presence of codes (non- sequential) and 
upon each other following codes (sequential) were created. 
Logistic regression, random forest and XGBoost models 
were trained. Predicted outcome was the presence of HF 
after 1 year. The ratio case:control in the test set matched 
true incidence rates (1:45).
Results Sole demographics performed average (area 
under the curve (AUC) 0.692, CI 0.677 to 0.706). Adding 
non- sequential information combined with a logistic 
regression model performed best and significantly 
improved performance (AUC 0.772, CI 0.759 to 0.785, 
p<0.001). Further adding sequential information did not 
alter performance significantly (AUC 0.767, CI 0.754 to 
0.780, p=0.07). The number needed to screen dropped 
from 14.11 to 5.99 false positives per true positive.
Conclusion This study created a model able to identify 
patients with pending HF a year before diagnosis.

INTRODUCTION
Heart failure (HF) is a commonly occur-
ring health problem, with an estimated inci-
dence and point prevalence of 14.4 in 1000 
and 7% in patients aged 55 years or older, 

respectively.1 It is expected that the preva-
lence is still growing, with an 22.7% increase 
in the USA in the period 2012–2030.2 The 
costs of HF are significant, adding up to 2% 
of healthcare expenses.3 4 Despite all care 
given, morbidity and mortality remain high. 
Of the patients diagnosed with HF, mortality 
after 30 days is 10.4%, which increases to 22% 
and 42.3% after 1 year and 5 years, respec-
tively.5 If newly diagnosed patients can be 
detected earlier on as potential cases, it may 
be possible to intervene. Intervening may slow 
the progression to diagnosed HF in a number 
of patients and thereby improve quality of 
life, healthcare costs and life expectancy.6 
Furthermore, early detection of patients may 
help in the creation of prospective studies to 
test the effect of (new) interventions, as the 
patients are not yet identified and thus the 
optimal intervention not yet defined.

Several options have been investigated 
which may help to diagnose HF in an early 
stage, but these all depend on additional 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ A promising model for the prediction of heart failure 
based on both sequential and non- sequential gener-
al practitioner (GP) data was developed, outperform-
ing simple demographics.

 ⇒ The prediction model shows a relatively low number 
of people needed to screen, which may be even fur-
ther diminished when combined with an additional 
low- cost and non- invasive method such as ECG.

 ⇒ This study uses the true incidence ratio of heart fail-
ure in patients older than 70 years, indicating the 
performance is generalisable to the true population.

 ⇒ Sequential GP data did not include duration of the 
codes, potentially limiting performance.

 ⇒ Included algorithms are fairly basic. More advanced 
algorithms such as recurrent neural networks may 
increase performance further.

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 12, 2025
 

h
ttp

://b
m

jo
p

en
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

30 A
u

g
u

st 2022. 
10.1136/b

m
jo

p
en

-2021-060458 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-6233-9101
http://dx.doi.org/10.1136/bmjopen-2021-060458
http://dx.doi.org/10.1136/bmjopen-2021-060458
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjopen-2021-060458&domain=pdf&date_stamp=2022-08-30
http://bmjopen.bmj.com/


2 Bennis FC, et al. BMJ Open 2022;12:e060458. doi:10.1136/bmjopen-2021-060458

Open access 

measurements such as ECG, Positron Emission Tomog-
raphy (PET)- CT, specific laboratory tests, etc.7–9 In addi-
tion to the extra work involved, there already has to be 
a suspicion of HF to perform these measurements, indi-
cating that this is not a true screening measurement. 
Furthermore, this approach may lead to the testing of 
a lot of patients to detect HF in relatively few patients, 
leading to high costs and high loads on patients and 
clinicians. Predicting the probability of pending HF for 
every person in a (selection of a) population by reusing 
standard gathered data, that is, general practitioner (GP) 
data, minimises extra tests to high- chance patients only 
while creating a true screening method. This may result 
in less testing and thus a patient- friendly and cost- friendly 
screening tool. Since it is expected that patients with HF 
already have complaints, but that these are not indicated 
as such or related to a different disease, we hypothe-
sise that the existing information for a screening tool is 
rich enough for early prediction of HF. However, for a 
screening tool, specificity should be high, because when 
combined with a low incidence, a model will quickly lead 
to a high number of false- positive predictions. Therefore, 
such a tool may be more beneficial when implemented 
in the GP practice to alert the GP of an increased risk 
of HF in the patient they are seeing at that moment, 
prompting further questioning about the complaints and 
the possible presence of HF.

A possible way to achieve such a tool is the application of 
machine learning models to diagnose or predict disease in 
patients. It is suggested that machine learning models can 
enhance GP care,10 11 that is, machine learning models 
based on electronic health record (EHR) data are capable 
of predicting HF before diagnosis with reasonable accu-
racy in a dataset with an artificial case:control ratio.12 13 
However, clinical use is limited because (1) the artificial 
case:control ratio does not reflect the true population, 
which makes the performance upon implementation 
unknown, (2) patients are matched on age and gender, 
which helps in evaluating how well the machine learning 
model itself performs. However, since age and gender 
influence the chance of HF, it is an important variable to 
take into account in a screening algorithm, and (3) these 
models do not exploit interpretable time dependencies, 
for example, the development of ankle oedema after 
Chronic Obstructive Pulmonary Disease (COPD), which 
may improve the prediction of HF. Models that do exploit 
time dependencies for the prediction of HF are not inter-
pretable or interpretable only for the influence of sepa-
rate variables over time instead of the influence of the 
combination of sequential variables.13 14 Since interpret-
ability is necessary for implementation, this limits clin-
ical use. Interpretable sequences however may improve 
accuracy, as previous studies predicting colorectal cancer 
using GP data and heparin- induced thrombocytopenia 
use interpretable sequences which improve prediction 
accuracy.15 16

We hypothesise that a machine learning model incor-
porating EHR data from the GP as well as temporal 

patterns is able to give interpretable results on represent-
able patient populations which are accurate enough to 
allow progress towards the next step, which is external 
validation followed by evaluation in a clinical setting. 
Therefore, our aim is to develop a model which is able 
to identify HF 1 year before the diagnosis occurred at the 
GP using data readily available from GP care, evaluated 
on a real- world incidence rate.

METHODS
Data
Included data
General practice care data from the Nivel Primary Care 
Database were used, containing approximately 10% of 
the Dutch population, which is more than 1.7 million 
patients and a representative sample of the Dutch popu-
lation.17 Data were obtained from the period 01 January 
2012 up to 31 December 2019. Only patients of 70 
years or older were selected, since incidence of patients 
younger than 70 years is very low (ie, 1.4 in 1000 person- 
years in the age range 55–59 years).1 Data consisted of 
patient demographics, health complaints, medication, 
diagnostics and chronic diseases. Patient demographics 
compromised an anonymised patient code, year of birth, 
gender, anonymised GP practice ID and start and end of 
the registration of the patient in the GP practice per 3 
months. Health complaints were recorded as specified by 
the International Classification of Primary Care—version 
1 (ICPC- 1).18 The ICPC comprises codes to be used by 
the GP for the classification of complaints, diagnoses and 
symptoms, that is, code K77 for HF. GPs follow the guide-
lines of the Dutch Society of General Practitioners for the 
diagnosis of HF, which did not alter between 2012 and 
2019. Medication was classified according to the Anatom-
ical Therapeutic Chemical (ATC) scheme.19 The ATC 
scheme classifies medication into groups with a hierarchy 
up to five levels, from anatomical through therapeutic 
and pharmacological subgroups to a chemical subgroup. 
The ATC codes in this study were clipped to the second 
level (eg, beta- blocking agents, C07). The second level is 
selected as it contains relevant information while more 
detailed levels may lead to too much sparsity, resulting in 
less accurate predictions. Diagnostics contains each phys-
ical, laboratory or other measurement (ie, lifestyle advice, 
smoking or the advice to stop smoking) as performed 
by the GP and is described using the provided Dutch 
GP codes for diagnostics (NHG codes). For diagnostic 
measurements, both the measurement code and the 
corresponding outcome were extracted. Furthermore, 
dates corresponding to ICPC codes, ATC codes and diag-
nostics were present. In addition, chronic diseases or 
diseases in the past with a minimal duration of 1 year were 
specified as chronic diseases with the ICPC code and the 
corresponding start date.20

Excluded data
Patients were excluded if no valid continuous data period 
of at least 3 years was present between 01 January 2012 and 
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31 December 2019. A period of 3 years is selected, since 
data selection from a patient starts 2 years before diag-
nosis. Because diagnosis occurs randomly during a year 
instead of at the end of an included year, at least 3 contin-
uous years are necessary. Furthermore, if data supplied 
from the GP office were incomplete (missing at least half 
of a quartile at the start or the end of a year) or if the 
GP practice contributed less than 500 patients, the corre-
sponding year of the patients of the GP was excluded, as 
the average number of patients per full- time GP is 2095. 
If either medication data, ICPC data or diagnostics data 
were supplied less than 46 weeks in a year, the corre-
sponding year for the GP was removed from the database. 
As the GP practice may be closed several weeks, this was 
not set at 52 weeks. Furthermore, the study administrative 
data underwent a quality improvement process, which is 
standard Nivel policy. For each participating practice, we 
checked whether they registered a meaningful ICPC code 
in at least 70% of their consultations.17 20 Meaningful 
ICPC codes were defined as codes in the range 1–29 or 
70–99. R44 (vaccinations) and X37 (Pap smear) were also 
considered meaningful. ICPC codes A97 (no disease) 
and A99 (generalised illness) were not considered mean-
ingful. This removal was performed since bad registration 
of ICPC codes leads to underestimation of the true inci-
dence. In addition, in 85% of the cells containing medi-
cation, a valid ATC code should be registered. Patients 
with missing age or gender or with known HF before data 
collection were removed from the database.

Patient and public involvement
Patients or the public were not involved in the design, 
or conduct, or reporting, or dissemination plans of our 
research. It would be feasible to include patient feedback 
on the acceptability of the implementation of such an 
algorithm in the GP.

Additional preprocessing data
Diagnostic information was removed if the diagnostic 
code did not exist in the NHG database. Diagnostic 
codes 1966, 3850, 3581 and 1968 (four measures for 
(pro-) brain natriuretic peptide) are commonly but inter-
changeably measured indicators when HF is suspected. 
Due to the suspected importance of these variables and 
the similarity of the measurements, these were grouped 
together to give for each one of the four codes the same 
code, named ‘BNP’.

Data extraction
Target selection
The target variable was the diagnosis of HF (ICPC code 
K77). This target variable was indicated to be 1 if the 
patient had a GP consultation with the ICPC- 1 code 
‘K77’. The first consultation with this ICPC code was used 
as the date of diagnosis. For each case, a random control 
from the same GP practice was selected. Age and gender 
were not matched to cases, although age did have to be 
above the threshold of 70 years. The starting date of the 

control was randomly selected within the period of avail-
able data for the control while still leaving a long enough 
period of data. For each case, a control was present. Each 
control was included only once in the whole dataset. For 
each case, an observation window of 1 year ranging from 
−2 years to −1 year prior to the diagnosis was selected 
(figure 1A). This observation window of 1 year has shown 
to result in high accuracy,21 while the prediction window 
(1 year before the diagnosis) of 1 year ensures the possi-
bility to start prevention in an early stage.

Dataset creation
Two separate datasets were created: a non- sequential and 
a sequential dataset. The non- sequential dataset described 
whether a health complaint (ICPC code), chronic disease 
(an episode with an ICPC code), a prescription (ATC 
code) or diagnostic code (NHG code) was present in the 
selected interval. Therefore, no time- dependent infor-
mation is included. The sequential dataset was designed 
to include time- dependent information in and between 
the ICPC, chronic ICPC, ATC and diagnostic codes in the 
form of upon each other following codes (eg, myocardial 
infarction followed by beta- blocking medication). An 
overview of the calculation of sequential data is given in 
figure 1. These codes define a sequence, hence the name 
sequential dataset. The datasets differed on the included 
variables but contained the same patients. The datasets 
were used to predict the extracted target variable HF.

Non-sequential dataset
For each code except chronic ICPC, it was checked 
whether the starting date of the code fell into the selected 
interval. For chronic ICPC, it was checked if the starting 
date was before the end of the interval. If these conditions 
were satisfied, the corresponding ICPC code, chronic 
ICPC code, ATC code or diagnostic code variable was set 
to the value ‘1’. As additional variables, the presence of a 
visit 0 up to but not including 1 month, 1–2 months, 2–3 
months and 3–12 months before the end of the selected 
interval is added. Variables which were present both in 
less than 5% of the patients and in less than 5% of the 
controls were removed, because the inclusion of too many 
variables leads to overfitting, which decreases perfor-
mance of the model on a new dataset.22 In the created 
dataset, each row represents a patient and each column 
a variable, with the cell value (1 or 0) indicating whether 
that variable was present for that patient in the interval.

Sequential dataset
To include sequence information in and between the 
ICPC, chronic ICPC, ATC and diagnostic codes, both the 
code and the date of the code were taken into account. 
Furthermore, additional preprocessing was necessary.

Additional preprocessing
For the sequential dataset, chronic ICPC codes, ATC 
codes and diagnostic codes were additionally prepro-
cessed. The date of chronic ICPC codes was set to the start 
of the selected interval (as the code occurred prior to the 
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first date in the interval). Temporal information among 
chronic codes was not taken into account. ATC codes 
which occurred at least three times 180 days before to 
90 days after the start of the interval were interpreted as 
chronic medication, which is commonly repeated every 90 
days, and included only once with the date corresponding 
to the start of the selected interval. For diagnostic codes, 
only numerical and categorical codes and corresponding 
values were taken into account. Numerical codes without 
a numerical value (eg, free text, signs, ranges or no value) 
were excluded. For categorical codes, we included each 
value per code as a separate variable since the value is not 
ordinal and thus hampering linear models, for example, 
1739_1, 1739_3 and 1739_4 is yes, no and previously on 
the question if the patient is smoking, respectively. The 
numerical value of a laboratory measurement should be 
related to a reference value to make sense, that is, to iden-
tify if a measured value is too high, normal or too low. 
In this study, each numerical value is compared with the 
previous numerical value for the same diagnostic code in 
the patient, indicating an increased, decreased or stable 
(with an allowed level of fluctuation) measurement with 
regard to the previous measurement (code+‘_up’, ‘_
down’ or ‘_norm’), creating three possible options. The 
first value was compared with the mean of the population 
in a similar manner since no previous measurement was 
available.

The list of codes per patient was ordered according to 
date. The time interval was subsequently binned in 12 bins 
of equal width, corresponding to a bin width of 1 month 
(figure 1B). The date of each code was set according to 
the first date of the bin they occupied and each code was 
included only once in a bin. This ensures that (1) equal 
codes in a small region of time were not repeated, and 
(2) different codes which were correlated with the same 
problem but not measured on the same date (eg, diag-
nostic codes after ICPC codes) were set to the same day. 
The duration of each code was set to a single day, since no 
accurate information on true duration was known.

Sequence calculation
Sequences are defined as the occurrence of an event in 
a bin with a different event in the same bin (co- occur-
rence) or with an event in a bin later in time (figure 1C). 
Since nearly infinite number of sequences can be present, 
leading to a high number of rare sequences without added 
value, decreased generalisability and computational inef-
ficiency, it is necessary to be selective, that is, only select 
sequences which were present in a certain threshold 
(here 10% due to a high increase of features and cost 
of time at lower levels) of cases or controls. The length 
of a sequence varies in this study from one event (ie, 
hypertension) to three events (ie, hypertension followed 
by antithrombotic agents together with diuretics). It has 
to be noted that the duration of a code (ie, how long a 

Figure 1 (A) Data are collected −2 to −1 year before the diagnosis by the general practitioner. (B) For this example, the 
data contain four different codes. N bins of equal width in time are created. Codes are divided into these bins. (C) Sequential 
information (length 1, 2 or 3) is extracted from the bins and the corresponding codes. Codes in the same bin are indicated as 
co- occurrent (+), while codes in different bins are following upon each other (−>). All possible combinations with these four 
codes are shown in C.
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patient has a complaint) is set to 1 day, as the true dura-
tion is unknown. Therefore, it is not possible to find an 
ongoing code during which another code starts (co- oc-
currence). Co- occurrence in this study indicates that 
both codes start at the same time (or the same bin). Since 
chronic ICPC and ATC codes are set to the first available 
date, co- occurrence with these chronic codes during the 
rest of the period is not possible. This is done to ensure 
the sequences indicate new information: if a certain ICPC 
code or medication code is present, it is not just a regular 
medication or check- up for a chronic disease, which may 
limit the information in sequences, but something new 
the patient visits the GP for. A more detailed explana-
tion on the calculation of sequences can be found from 
Kop et al and Batal et al.15 16 The implementation of the 
algorithm used in our study is based on scripts provided 
by Kop et al.15 Pattern identification resulted in a table 
similar to the non- sequential dataset, but instead of the 
presence of a code, each column indicates the presence 
of a pattern.

Learning subsets
Six subsets were created which allow for the evaluation of 
specific variable groups (demographics, non- sequential 
and sequential). The following six subsets were defined 
for training of the algorithm (table 1):
1. Demographic data: in this subset, only age and gen-

der were included as variables, since it is expected 
that these variables contribute significantly to the 
prediction.

2. Non- sequential data: this subset includes the variables 
as described in the non- sequential dataset, as well as 
information if the patient had contact with the GP 0–1, 
1–2, 2–3 or 3–12 months before the end of the data 
collection (yes/no). Age and gender are not included.

3. Extended non- sequential data: this subset combines 
demographic data and non- sequential data from sub-
sets 1 and 2.

4. Sequential data: this subset includes the sequence vari-
ables as well as information if the patient had contact 
with the GP 0–1, 1–2, 2–3 or 3–12 months before the 
end of the data collection (yes/no). Age and gender 
are not included.

5. Extended sequential data: this subset includes sequen-
tial data and demographic data from subsets 1 and 4 
combined.

6. Complete data: this subset includes demographic data, 
non- sequential data and sequential data from subsets 
1, 2 and 4. Variables which were present multiple times 
were only taken into account once.

Model development
The model was trained according to the method in 
figure 2 for each of the six described subsets. Further-
more, the model was trained using a logistic regression, 
a random forest23 and an XGBoost algorithm,24 since 
these algorithms are known to be able to provide good 
results.25 Data were divided once into a stratified 80% 
training set and a 20% test set. The selected patients and 
controls in the train and test set were the same for each 
dataset. Per algorithm, subsequently variable selection 
(step 1), hyperparameter optimisation (step 2), model 
training on the training set (step 3) and model testing 
on the test set (step 4) were performed. A plot indicating 
the number of patients screened versus the number of 
correctly identified patients is used for clinical evaluation 
per algorithm and per dataset. Furthermore, a receiver 
operator characteristics (ROC) curve indicates optimal 
model performance, while the confusion matrix and 
sensitivity, specificity and accuracy at the Youden index 
(the best combination of sensitivity and specificity) are 
provided for further inspection of each model.

Step 1: variable selection
Variable selection was performed on the training set using 
a greedy forward variable selection (FFS) algorithm with 

Table 1 Variables included in each dataset

Dataset

Demographic Non- sequential
Extended non- 
sequential Sequential

Extended 
sequential Complete

Age+gender Yes No Yes No Yes Yes

Contact with GP No Yes Yes Yes Yes Yes

Presence of Consultations No Yes Yes No No Yes

Medication No Yes Yes No No Yes

Diagnostics No Yes Yes No No Yes

Chronic diseases No Yes Yes No No Yes

Patterns in Consultations No No No Yes Yes Yes

Medication No No No Yes Yes Yes

Diagnostics No No No Yes Yes Yes

Chronic diseases No No No Yes Yes Yes

GP, general practitioner.
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internal fivefold stratified cross- validation. FFS tests the 
performance of the algorithm with every single variable, 
of which the best is included. Subsequently, the perfor-
mance of the best variable in addition to the selected vari-
able is selected and repeated, until the performance does 
not improve further, resulting in the optimal variable 
set.26 The algorithm used was the same as the algorithm 
to be used in hyperparameter optimisation and model 
training, although default hyperparameter settings were 
used for each algorithm (online supplemental appendix 
A, table A1). The area under the curve (AUC) score was 
used as the performance metric. A maximum of 100 vari-
ables could be selected, as it was found performance did 
not increase with higher numbers of variables. All vari-
ables were scaled to mean zero with unit variance (known 
as the z- score) for the whole dataset. This prevents the 
range of a parameter to influence the algorithm. As the 
currently used algorithms are relatively robust to this, it is 
especially important for future algorithms which may be 
used on the current data.

Step 2: hyperparameter optimisation
After variable selection, the optimal hyperparameters 
for the selected algorithm with the optimal number of 
variables were selected. Variable selection itself does not 
depend on the hyperparameter selection process. Selec-
tion of the optimal hyperparameters lets the algorithm 
perform better on the available dataset. To this end, a 
grid search (evaluation of the performance using every 

combination of hyperparameters) was performed for 
each combination of preselected hyperparameter config-
urations (online supplemental appendix A, table A2), 
using fivefold stratified cross- validation with optimisation 
based on the AUC. Scaling to zero mean and unit vari-
ance was performed each time on the training folds and 
applied to the test fold to prevent data leakage between 
training and testing folds.

Step 3: model training
After hyperparameter optimisation, the optimal variables 
combined with the optimal hyperparameters for these 
variables were known. The model was trained on the full 
training set with scaling to zero mean and unit variance. 
The prediction model was trained on a dataset with a 1:1 
ratio of cases:controls, as a severely non- balanced ratio 
may push the algorithm to a prediction biased towards 
the dominant class.

Step 4: model testing
To investigate the performance of the model in a true clin-
ical population, we added control subjects to the test set 
to obtain a ratio of 1:45 cases to controls corresponding to 
the true incidence of the selected population. The addi-
tional controls were randomly selected without matching 
for GP but with a minimum age of 70 and preprocessed 
in a similar manner to the original controls. The variables 
identified for the 1:1 ratio for both the non- sequential 
and the sequential datasets were selected. Scaling was 

Figure 2 Flow chart of the algorithm for variable selection, hyperparameter optimisation and model training and testing. From 
preprocessing, the bold lines are to be followed, while the dotted lines indicate data to be used. The four steps are indicated 
separately. This flow chart is followed for each algorithm on each dataset. AUC, area under the curve.

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies.
 . 

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 12, 2025
 

h
ttp

://b
m

jo
p

en
.b

m
j.co

m
/

D
o

w
n

lo
ad

ed
 fro

m
 

30 A
u

g
u

st 2022. 
10.1136/b

m
jo

p
en

-2021-060458 o
n

 
B

M
J O

p
en

: first p
u

b
lish

ed
 as 

https://dx.doi.org/10.1136/bmjopen-2021-060458
https://dx.doi.org/10.1136/bmjopen-2021-060458
https://dx.doi.org/10.1136/bmjopen-2021-060458
http://bmjopen.bmj.com/


7Bennis FC, et al. BMJ Open 2022;12:e060458. doi:10.1136/bmjopen-2021-060458

Open access

performed according to the scaling obtained during 
model training. The trained model was used to test the 
performance of this upscaled test set. Significance was 
tested between ROC curves using a script by Kazeev with 
an implementation of the method of Sun and Xu.27 28

RESULTS
Demographics
In total, 25 939 unique patients had a first diagnosis of HF 
between 2014 (first date on which HF could be present 
with 2 years of preceding data) and 2019. Of these 25 939 
patients, 12 068 patients had 3 years of consecutive data 
registered correctly by the GP, as indicated by the exclu-
sion criteria. Of these 12 068 patients, 8543 patients had 
the needed time period (2 years) of data before diagnosis. 
Therefore, a total of 8543 patients and 8543 controls were 
included in the 1:1 ratio dataset. Patient characteristics 
are given in table 2. The test set consisted of 20% of the 
dataset, which is 1709 patients and 1709 controls. An 
additional 75 196 unique controls were included in the 
1:45 ratio test dataset. The non- sequential dataset initially 
consisted of 2245 variables, of which 1966 variables were 
removed as they were not present in 5% of the cases or 
controls. The final six datasets consisted of 2, 279, 281, 
1193, 1195 and 1407 variables, respectively. A total of 171 
(2.00%) patients and 417 (4.88%) controls did not visit the 
GP (no ICPC code present) in the selected time period. 
In the non- sequential dataset, 4 variables described the 
number of ICPC codes in the selected time period, 58 
variables were chronic ICPC codes, 36 were symptom 
ICPC codes, 147 were diagnostic codes and 34 were ATC 
codes. In the sequential dataset, 136 sequences consisted 
of one variable, 604 of two variables and 449 of three 
variables. Four variables described the number of ICPC 
codes in the selected time period. Of the 136 sequences 
consisting of one variable, 30 sequences contained 
chronic ICPC codes, 8 contained symptom ICPC codes, 73 
contained diagnostic codes and 25 contained ATC codes. 
Of the original 17 086 patients, BNP measurements were 
performed in 1018 (6.0%) patients, of which 724 (8.5%) 
cases and 294 (3.4%) controls. These BNP measurements 
are done in the evaluated time period, that is, −2 to −1 
year before the diagnosis of HF. Therefore, the number 

of measurements is lower than expected when used for 
diagnosis of HF in the Dutch GP care.

Model performance
The used hyperparameters for the FFS algorithm are 
given in online supplemental appendix A, table A1. A full 
list of searched and selected hyperparameters for each 
algorithm and each dataset is given in online supple-
mental appendix A, table A2. The variables selected per 
step in the FFS algorithm for the extended non- sequential 
dataset and the complete dataset combined with the 
logistic regression algorithm are given in online supple-
mental appendix A, table A3. Only the combination of 
these datasets and algorithms is shown, as these resulted 
in the highest predictive performance.

Model performance is assessed on the 1:45 ratio test set 
(table 3 and figure 3). Figure 3A only shows the logistic 
regression model, as this was the best performing model. 
For both ratios, a clear increase in the area under the 
ROC curve was seen for the extended non- sequential 
dataset compared with the demographic or the non- 
sequential dataset. The sequential dataset as well as the 
extended sequential dataset improved the AUC over the 
demographic dataset. Combining all data in the complete 
dataset did not improve performance further. For almost 
all datasets, the logistic regression algorithm performed 
best. Confusion matrices for the best performing models 
are provided in online supplemental appendix B, table 
B1- B3.

In the GP setting, the ‘optimal’ performance is ambig-
uous; the goal is to identify as many patients as possible, 
but without too many false positives, which would lead 
to alarm fatigue, unnecessary testing and overtreatment. 
Therefore, although accuracy, sensitivity, specificity and 
confusion matrices are provided at the highest Youden 
index, the performances are additionally provided in a 
plot of correct diagnoses versus number needed to screen 
(figure 3B) and the number of needed to screen when 
10% of the cases are aimed to find (table 4).

Variable importance
The variable importance for the logistic regression model 
on the extended non- sequential dataset and the complete 
dataset is shown in figure 4. It has to be noted that due 
to interactions, the variable importance only shows an 
indication. As expected, age is the most important vari-
able for the prediction of HF for both the extended 
non- sequential dataset as the complete dataset. For both 
datasets, multiple important variables can be related 
to the physiology of HF or known risk factors, such as 
a myocardial infarction, atrial fibrillation, presence of 
diabetes mellitus type 2 and smoking. Several variables 
tend to show a conflicting weight, that is, the presence 
of ankle oedema reduces the chance of HF, while it is a 
known risk factor. This is due to the nature of the model 
and possible correlation between variables, and as shown 
in online supplemental appendix C, tables C1 and C2, 
with the correlation coefficient, a negative weight is often 

Table 2 Patient characteristics

Cases 
(n=8543)

Controls 
(n=8543) P value

Age (median, IQR) 81 (76–87) 76 (72–81) <0.01

Gender (% female) 54.4 56.7 <0.01

Unique 
codes per 
patient 
(median, 
IQR)

Symptom ICPC 3 (2–5) 2 (1–3) <0.01

Chronic ICPC 7 (5–9) 5 (3–7) <0.01

Medication 8 (5–11) 5 (3–8) <0.01

Diagnostics 22 (4–39) 18 (1–35) <0.01

ICPC, International Classification of Primary Care.
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not accompanied with a negative correlation coefficient. 
Furthermore, several variables show which are hard to 
explain, such as arthrosis of the knee or sexual dysfunc-
tion. Possible reasons may be the interactions between 
variables, indicating that variables actually represent a 
different disease. Furthermore, the presence of a variable 
may in some cases trigger investigation of HF, such that 
it will only be predictive in this setup closer to the HF 
diagnosis.

DISCUSSION
This study aimed to develop a model able to predict HF 
1 year before diagnosis registered by the GP based on GP 
data collected over the previous year. As expected, age 
was an important variable, resulting in the finding that 
the models using the demographic dataset achieved an 
adequate AUC while not being very specific. The addi-
tion of non- sequential variables improved performance 
significantly without overlapping 95% CI of the AUCs and 
increased the specificity of the model to a level in which 
it can be interesting for risk assessment in the population 
of the GP practice. Adding sequential variables to the 
(extended) non- sequential model resulted in a slightly 
lower performance as measured by the AUC. The 95% 
CIs of the AUC curves of the extended non- sequential 
and the complete dataset show a large overlap without 

a significant difference. Interestingly, while the AUC 
was not the highest, the logistic regression algorithm on 
the complete dataset had the fewest false positives when 
aiming to find 10% of the cases.

Sequential variables did not improve the prediction. 
Comparing the performance of the extended non- 
sequential dataset with the extended sequential dataset, 
the extended sequential dataset resulted in a lower AUC 
although with overlapping CI, even though the majority 
of the variables present in the extended non- sequential 
dataset were also present in the extended sequential 
dataset by design (sequence codes with a length of one 
can be seen as non- sequential codes indicating presence 
of a code). Furthermore, the addition of sequences to 
the extended non- sequential dataset did not result in 
an increase in the performance. A possible explanation 
could be that sequential data are build up from non- 
sequential information, and therefore partly incorporate 
the same information. Sequential data may therefore add 
limited information compared with the number of vari-
ables introduced. However, other studies using sequential 
data found that temporal sequences increased prediction 
accuracy.15 16 Yet, the variables used were also correlated, 
as they were for instance repetitions of one code.15 There-
fore, we expect that this approach will have additional 
value in some problems, while it has lower additional 

Table 3 Performance on the test set with ratio 1:45 per algorithm per dataset

AUROC (CI) Accuracy Sensitivity Specificity

P value compared with

Baseline* Best**

Demographic 
dataset

LR 0.692 (0.677 to 0.706) 0.671 0.617 0.672 – <0.001

RF 0.691 (0.677 to 0.705) 0.671 0.617 0.672 0.394 <0.001

XGBoost 0.691 (0.677 to 0.705) 0.671 0.617 0.672 0.540 <0.001

Non- sequential 
dataset

LR 0.743 (0.729 to 0.756) 0.654 0.716 0.653 <0.001 <0.001

RF 0.738 (0.724 to 0.752) 0.684 0.675 0.684 <0.001 <0.001

XGBoost 0.742 (0.729 to 0.756) 0.732 0.635 0.734 <0.001 <0.001

Extended non- 
sequential dataset

LR 0.772 (0.759 to 0.785) 0.655 0.761 0.653 <0.001 –

RF 0.770 (0.756 to 0.783) 0.648 0.766 0.645 <0.001 0.239

XGBoost 0.772 (0.759 to, 0.785) 0.637 0.782 0.634 <0.001 0.927

Sequential dataset LR 0.730 (0.716 to 0.744) 0.666 0.683 0.665 <0.001 <0.001

RF 0.730 (0.716 to 0.744) 0.674 0.673 0.674 <0.001 <0.001

XGBoost 0.724 (0.710 to 0.737) 0.634 0.701 0.633 <0.001 <0.001

Extended 
sequential dataset

LR 0.762 (0.749 to 0.775) 0.668 0.727 0.667 <0.001 <0.001

RF 0.764 (0.751 to 0.778) 0.662 0.741 0.660 <0.001 <0.01

XGBoost 0.761 (0.748 to 0.775) 0.650 0.750 0.648 <0.001 <0.001

Complete dataset LR 0.766 (0.753 to 0.780) 0.638 0.770 0.635 <0.001 <0.01

RF 0.767 (0.754 to 0.781) 0.657 0.750 0.655 <0.001 0.066

XGBoost 0.763 (0.750 to 0.777) 0.655 0.745 0.653 <0.001 <0.001

The baseline (*) is selected as the best performing model on the demographic dataset, with the p values the significance between the baseline 
and the other model. The best (**) model is the global best performing model, with the p values the significance between the best and the 
other model.
AUROC, area under the receiver operator characteristics curve; LR, logistic regression; RF, random forest.
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value in other problems such as studied here. Further-
more, it has to be noted that (1) co- occurrence was not 
precisely the same due to data limitations and (2) the 

percentage for cases or controls in which the sequence 
should be present differed. These differences may alter 
the effect of sequence incorporation.

Since diagnosis by the GP is the current standard, 
each true positive- identified patient is identified 1 year 
earlier than normal. Before actual implementation, 
further development of the model is necessary. There are 
important considerations to address during further devel-
opment and implementation. First, the number of false 
positives: screening of the whole population would result 
in a large number of false positives, resulting in both over-
testing in the GP and subsequent patient stress, which is 
already present in GP care.29–31 Subsequently, clinicians 
may experience alarm fatigue, resulting in reduced sensi-
tivity for alarms.32 In this study, the false- positive rate is 
reduced by identifying the patients of which the model is 
most confident: correctly identifying 170 patients (±10%) 
corresponds to a total of 1189 patients classified positive, 
of which 1019 incorrect (5.99 false positives per case, 
table 4). This means that if a single GP practice has 20 
cases of HF per year, identifying 2 cases a year earlier with 
subsequent early intervention results in 12 patients being 
identified as false positives. All 14 patients will be identi-
fied as at risk. In a future model setting, we envision that 
at- risk patients can be followed up by the GP to further 
reduce the false- positive rate. Second, the follow- up 
performed: the model may give the GP an indication that 
the patient is at risk of future development of HF. The GP 
can subsequently decide to do further testing with a non- 
invasive and time- effective method such as an ECG or 
laboratory measurement (such as BNP levels, which have 
a high diagnostic value),7 33 which may enable further 
narrowing down the set of patients. If more at risk, an 
echo can be performed, which indicates severity and may 
help for further prognostication.34 The best steps in the 
follow- up will depend on future research but also on clin-
ical preference, time needed and patient impact. A higher 
number of patients in which the GP performs follow- up 
may result in earlier identification in more patients. At 
the same time, follow- up and testing may cause among 
others an increased amount of stress, in which a balance 
has to be found.

After further development of the model, for instance, 
by using more complex learning algorithms, the value of 
traditional measures such as BNP in patients selected by 
the developed model should be evaluated. Afterwards, 
the efficacy of the model and experience of the clini-
cian combined should be compared against the current 
standard, which is the clinician itself. Care should be 
given to keep incorporating the skill and experience 
of clinicians by adding value to these factors, instead of 
replacing them with the model prediction. Furthermore, 
although early intervention at high- risk patients did show 
a reduced development of HF,6 the effect of early diag-
nosis and sequential intervention as proposed still has to 
been studied. Given a positive effect, the model may be 
implemented in the general GP system, directly showing 
whether the patient is at risk of HF development per 

Figure 3 Receiver operator characteristics curve (A) and 
correct diagnoses versus number needed to screen (B) 
for the logistic regression model using the demographic, 
extended non- sequential and complete dataset with a 1:45 
ratio. AUC, area under the curve.

Table 4 Number of patients identified as cases (both true 
and false positives) and the number of false positives called 
up for the detection of a single case if 10% of the cases are 
to be found in the 1:45 ratio set (true incidence)

Logistic 
regression

Random 
forests XGBoost

Demographic 
dataset

2577 (14.16) 3377 (18.86) 2568 (14.11)

Non- sequential 
dataset

1288 (6.58) 1451 (7.54) 1386 (7.15)

Extended non- 
sequential dataset

1196 (6.04) 1387 (7.16) 1266 (6.45)

Sequential dataset 1572 (8.25) 1519 (7.94) 1766 (9.39)

Extended 
sequential dataset

1269 (6.46) 1450 (7.53) 1591 (8.36)

Complete dataset 1189 (5.99) 1277 (6.51) 1406 (7.27)

The best performance is found for the complete dataset with 
logistic regression.
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patient if asked. It has to be noted that the model is devel-
oped using the electronic files of Dutch GP practices, 
and therefore is currently focused on implementation in 
the Dutch healthcare system. If such an approach works, 
this may be expanded using local data sources. Similar 
models may be developed for different diseases,15 35 which 
can lead to an overload of alarms for the GP. Ideally, to 
prevent this, multiple models should be combined in a 
single dashboard. This dashboard could be implemented 
in the GP systems, reducing the need to use a standalone 
tool. It is recommended that a standardised roadmap be 
used for the development of such a multitude of tools for 
implementation in the clinic.36

Compared with earlier studies, performance seems to 
be similar. However, to the best of our knowledge, none 

of the earlier studies evaluated the accuracy of the model 
on the true incidence and used controls without age and 
gender matching, even though these are important vari-
ables. Therefore, the current study shows for the first 
time the performance of a prediction model for HF 
based on GP data comparable with daily clinical practice. 
Compared with studies which predicted HF at varying 
times before diagnosis using logistic regression and 
random forests, the current study had a similar to a better 
AUC,21 37 with the notion that the data in these studies 
were not precisely the same and that age and gender 
were not used. The same data examined with recurrent 
neural networks improved performance slightly.38 Inter-
estingly, these studies showed that increasing the obser-
vation window to 2–3 years can further increase the 

Figure 4 Variable importance of the 20 most important variables using the logistic regression algorithm for the extended non- 
sequential dataset (A) and the complete dataset (B). BP, blood pressure; DM, diabetes mellitus; GP, general oractitioner; HDL, 
high- density lipoprotein; LDL, low- density lipoprotein; RAAS, renin- angiotensin- aldosterone system.
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performance, which can be taken into account in future 
research. Other studies using recurrent neural networks 
and a derived algorithm did result in high AUCs (up to 
0.883),13 14 39 but used data leading up to the moment of 
diagnosis, which effectively removes the potential health 
gained by earlier prediction. However, a constant in these 
studies is the better performance from a recurrent neural 
network than a logistic regression model. Therefore, it 
would be interesting to implement a recurrent neural 
network to evaluate if this further improves performance, 
since it does not always outperform the temporal patterns 
used in this study.40

This study has some limitations. First, the duration of a 
code is unknown (ie, how long a symptom as stated by an 
ICPC code continues), and thus set to 1 day. Therefore, 
sequences indicating co- occurrence of codes indicate 
that codes start in the same bin, instead of, for example, 
an ongoing code with a new code starting halfway. Future 
research should examine the effect of the use of a stan-
dard duration per code. Second, since related codes 
may occur close to each other, codes are grouped per 
month. However, if related codes happen on the border 
of a month, codes may be grouped in separate months. 
Although presumably a small effect, future algorithms 
may benefit from a soft border.41 Third, the included algo-
rithms, especially logistic regression, are fairly basic. More 
complex algorithms, including deep neural networks able 
to capture temporal patterns, may improve prediction 
accuracy.13 It has to be noted that this may come at the 
cost of less insight in the algorithm. Fourth, although the 
sequences included temporal aspects, it did not include 
the duration between codes, meaning it did not matter if 
a sequence occurred in, example given, a timespan of 2 
months or 8 months. Furthermore, it did not matter if the 
sequence occurred early or later on in the data. There-
fore, corrections for these aspects may improve perfor-
mance with the sequences used. Fifth, a high correlation 
between the parameters exists. Therefore, although it 
does give an indication what important parameters are, 
the interpretability of the model is limited. This is seen in 
figure 4 and online supplemental appendix C, tables C1 
and C2, where findings sometimes contrast logic. Lastly, 
although the prediction task at hand may be difficult, the 
model performance is currently not yet good enough for 
clinical implementation and should be improved further. 
Furthermore, and this may be the most important limita-
tion before implementation, the current model perfor-
mance is based on internal cross- validation. Although it 
is not expected due to the characteristics of the dataset 
that the performance will drop substantially, an external 
validation cohort is needed to validate this hypothesis.

Conclusion
This study created a model which was able to identify 
patients with pending HF a year before the diagnosis 
occurred by the GP. Furthermore, the current study used 
for the first time true incidence rates for the evaluation 
of the model performance. Information on the presence 

of health complaints, medication and diagnostic codes 
contained important information, while sequential infor-
mation did not significantly improve performance. We 
recommend further improving predictive performance 
and subsequent validation in an external cohort before 
moving to testing the model in the GP office for recog-
nising pending HF.
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