

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Arm Based on LEg blood pressures (ABLE-BP): Can systolic leg blood pressure measurements predict systolic brachial blood pressure? Protocol for an individual participant data meta-analysis from the INTERPRESS-IPD Collaboration

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040481
Article Type:	Protocol
Date Submitted by the Author:	15-May-2020
Complete List of Authors:	McDonagh, Sinead; University of Exeter, Primary Care Research Group Sheppard, James; University of Oxford, Nuffield Department of Primary Care Health Sciences Warren, Fiona; University of Exeter, Primary Care Research Group Boddy, Kate; University of Exeter, NIHR CLAHRC South West Peninsula (PenCLAHRC) Farmer, Leon; Patient and Public Involvement Advisor Shore, Helen; Patient and Public Involvement Advisor Williams, Phil; Patient and Public Involvement Advisor Lewis, Philip; Stockport NHS Foundation Trust Baumber, Rachel ; Royal National Orthopaedic Hospital Stanmore, Fordham, A Jayne; Mid Devon Medical Practice Martin, Una; University of Birmingham, Institute of Clinical Sciences Aboyans, Victor; Centre Hospitalier Universitaire de Limoges, Department of Cardiology Clark, Christopher; University of Exeter, Primary Care Research Group
Keywords:	Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, CARDIOLOGY, PRIMARY CARE
	1

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Arm Based on LEg blood pressures (ABLE-BP): Can systolic

leg blood pressure measurements predict systolic brachial

blood pressure? Protocol for an individual participant data

meta-analysis from the INTERPRESS-IPD Collaboration

Sinead TJ McDonagh¹, James Sheppard², Fiona C Warren¹, Kate Boddy¹, Leon Farmer³, Helen Shore³ Phil Williams³, Philip S Lewis⁴, Rachel Baumber⁵, A Jayne Fordham⁶, Una Martin⁷, Victor Aboyans⁸, Christopher E Clark¹

on behalf of the INTERPRESS-IPD Collaborators (list at end).

1. University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter, Devon, England EX1 2LU

2. University of Oxford, Woodstock Road, Oxford, England OX2 6GG

3. Volunteer patient and public advisor

- 4. Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport, Cheshire SK2 7JE
- 5. Royal National Orthopaedic Hospital NHS Trust, Middlesex HA7 4LP
- 6. Mid Devon Medical Practice, Witheridge, Devon, England EX16 8EZ
- 7. University of Birmingham, Birmingham, England B15 2TT
- 8. Department of Cardiology, Dupuytren University Hospital, Limoges, France

Correspondence to Dr Christopher Clark

c.e.clark@exeter.ac.uk

Primary Care Research Group, Institute of Health Services Research, University of Exeter Medical School, College of Medicine & Health, Smeall Building, St Luke's Campus, Magdalen Road, Exeter, Devon, England, EX1 2LU

Word count excluding abstracts: 3025

Abstract

Introduction

Blood pressure (BP) is normally measured on the upper arm, and guidelines for the diagnosis and treatment of high BP are based on such measurements. Leg BP measurement can be an alternative to brachial measurement where the latter is impractical, due to injury or disability. Limited data exist to guide interpretation of leg BP values for hypertension diagnosis and treatment; study-level systematic review findings suggest that, on average, systolic BP (SBP) is 17 mmHg higher in the leg than the arm. However, uncertainty about the applicability of this figure in routine clinical practice remains, due to substantial heterogeneity between previous studies.

Aims: To examine the relationship between arm and leg SBP, develop and validate a multivariable model predicting arm SBP from leg SBP and investigate the prognostic association between leg SBP and cardiovascular disease and mortality.

Methods and analysis

Individual participant data meta-analyses using arm and leg SBP measurements for 38,795 individuals from 15 studies within the INTERPRESS-IPD Collaboration. We will explore cross-sectional relationships between arm and leg SBP using hierarchical linear regression with participants nested by study, in multivariable models. Prognostic models will be derived for all-cause and cardiovascular mortality, and cardiovascular events.

Ethics and dissemination

Data originate from studies with prior ethical approval and consent, and data sharing agreements are in place. Findings will be published in peer-reviewed journal articles and presentations at international conferences. A comprehensive dissemination strategy is in place, integrated with patient and public involvement, to translate findings into practice.

PROSPERO registration number CRD42015031227

Word count: 250

Plain English Abstract

Blood pressure is normally measured on the arm, but sometimes this is not possible due to strokerelated arm problems, missing arms (e.g. from birth, injury or surgical removal) or an arm disability. Blood pressure can be measured in the leg instead, however, leg readings are generally higher than in the arms. Guidance for blood pressure treatment is based on arm blood pressure readings only, so doctors and nurses cannot use this guidance to treat people who have leg blood pressure measurements.

This study aims to find a way to predict arm blood pressure using leg blood pressure, and to understand how leg blood pressure can be used to predict health outcomes.

We have collected arm and leg blood pressure readings from 38,795 people, from 15 completed studies around the world. We will use this data to investigate: (i) the relationship between blood pressures measured in the arm and leg in the same person; (ii) whether leg blood pressure and other patient characteristics (e.g. age) predict arm blood pressure; and (iii) how leg blood pressure predicts health events, such as heart attacks and strokes, and death.

Results from this study will provide people who cannot have arm blood pressure measurements with an accurate estimate of arm pressure from leg blood pressure so that doctors and nurses can interpret and apply current treatment guidelines appropriately. Working with our patient and public advisory group, we will make our findings widely available to other researchers, healthcare professionals and the public.

reliez oni

Word count: 246

Strengths and limitations of this study

- This individual participant data (IPD) meta-analysis uses the INTERPRESS-IPD Collaboration [IPD from 24 international cohorts, originally created to explore the association between inter-arm differences in blood pressure (BP) and mortality risk], the largest known dataset to allow an in-depth exploration of the relationship between arm and leg systolic BP (SBP) and the role of leg SBP in cardiovascular risk estimation.
- An IPD approach maximises statistical power and allows a consistent approach toward all available data that cannot be achieved with study level meta-analyses.
- Inclusion of a number of international cohorts in this IPD meta-analyses will maximise the generalisability of the findings.
- Methods of data collection and reporting of results vary between included cohorts and this is acknowledged as a limitation of the data. We are aware of other studies with arm and leg BP data that are not included in the INTERPRESS-IPD Collaboration. However, the dataset is large enough to allow robust analysis and sufficient subgroup and sensitivity analyses to answer questions that cannot be addressed by study-level meta-analyses.
- Patient and public involvement (PPI) activities have been, and will be, undertaken throughout every stage of this project and we include three PPI advisors and a PPI facilitator as co-authors.

Introduction

Blood pressure (BP) is normally measured on the upper arm, and all guidelines for the diagnosis and treatment of high BP are based on such measurements.¹⁻³ When brachial BP measurement is not possible, other measurement sites are required. Uncertainty over interpretation of non-brachial BP measurement may result in inaccurate BP estimates, leading to sub-optimal management of hypertension, risking avoidable cerebrovascular or ischaemic cardiac events.⁴ In the clinical setting, this may be a temporary problem due, for example, to fractures, wounds, vascular access devices or during surgical procedures. However, for some people, there are permanent barriers to brachial BP measurement, such as amputation, bilateral lymphoedema (e.g. after bilateral mastectomy for breast cancer) or phocomelia (e.g. secondary to thalidomide).⁵ Brachial BP measurement may also be inaccurate, and difficult to self-administer, where there is altered muscle tone or hemiplegia following stroke.⁶⁷ It is also unreliable in the presence of bilateral subclavian, axillary or brachial artery stenoses due to atheroma or arteritides.⁸ In any of these circumstances, measurement of BP in the leg is a suitable alternative for monitoring BP, diagnosing and treating hypertension. However, at present, only limited data exist to guide interpretation of the leg systolic BP (SBP) values. Historically, ranges of 10 to 40 mmHg have been suggested for the difference (i.e. leg minus arm) between SBP measured in the arm and leg in healthy individuals.^{9 10} Recently, a systematic review and study level meta-analysis of observational studies was published examining this relationship.¹¹ Based on 44 included studies, totalling 9,771 participants, ankle SBP was found to be 17.0 mmHg [95 % confidence intervals (CI) 15.4 to 21.3 mmHg] higher than arm BP in the general population; for diastolic BP there was no difference. These findings suggested that a threshold of 155/90 mmHg in the leg [equating to the National Institute for Health and Care Excellence (NICE) threshold of 140/90 mmHg in the arm]³ might be used for diagnosing hypertension when ankle BPs are the only measurements available. However, significant statistical heterogeneity was observed in all analyses, which could not be explained in subgroup or sensitivity analyses according to cardiovascular disease

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41 42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	

60

history, cardiovascular disease risk, measurement method and device or methodological quality. Meta-regression by age and arm SBP level was also uninformative.¹¹ Study-level aggregate meta-analyses are limited in the conclusions that can be drawn, because they combine studies with different patient characteristics (for example, age or co-existing disease), methodological choices (for example, posture in BP measurement or sequential versus simultaneous measurement) and analytical approaches. These limitations can potentially be overcome by obtaining the original individual participant data (IPD) from cohorts.¹² Such IPD meta-analyses, whilst time consuming, offer advantages, such as checking of modelling assumptions, analysing variables on continuous scales and the possibility of assessing for non-linear relationships. They offer the ability to uniformly adjust findings for other variables, thus potentially accounting and adjusting for heterogeneity between findings in a way that study-level meta-analyses cannot.¹³ We propose to undertake IPD meta-analyses to answer the following research questions:

 What is the mean difference, in the absence of peripheral arterial disease, between SBP measured in the arm and SBP measured in the leg in the same individuals? Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

- 2. To what extent do these differences vary according to patient characteristics and methods of measurement, and what are the impacts of cerebrovascular and cardiac diseases on the difference between arm and leg pressures?
- 3. Can a model be developed and validated to predict arm SBP, based on leg SBP measurements and other patient characteristics, to inform interpretation of individual leg SBP readings?
- 4. How does leg BP, in comparison with models based on arm BP, predict cardiovascular events and/or mortality?

Methods and analysis

Aims and objectives

This IPD meta-analysis has the following aims:

1. To examine the relationship between arm and leg SBP, taking into account patient characteristics such as age, baseline BP and medical history.

2. To derive and validate a prediction model to permit estimation of an equivalent brachial SBP based on leg SBP measurements.

3. To determine the independent prognostic value of leg SBP in predicting cardiovascular events and mortality risk.

Data sources and description of the dataset

This study will use an observational cohort design, undertaking IPD meta-analyses of data held by the Inter-arm BP difference (INTERPRESS-IPD) Collaboration, established to undertake IPD metaanalyses examining the independent contribution of inter-arm BP difference to prediction of mortality and cardiovascular events.¹⁴ The establishment of the Collaboration has been previously described.¹⁴ In brief, literature searches and author contacts were used to identify studies likely to hold records of BP in both arms. A subset of these studies measured ankle–brachial index (ABI) at recruitment, thus providing data for arm and leg BPs.¹⁵ Individual data sharing agreements are in place with the lead authors of each participating study; their consent has been obtained for the proposed analyses and corresponding authors for each participating study will contribute to publications arising from these analyses. Core data, held for the primary INTERPRESS-IPD research outputs, will undergo additional cleaning and merging of relevant additional variables prior to combination into a new, expanded, single dataset.

The new ABLE-BP dataset will include 38,795 individual records from 15 European, US and African studies that measured both arm and leg BP. Participants in the dataset have a mean age of 59 years (range: 18 to 99 years), 53 % are female and mean systolic/diastolic brachial BP is 136/80 mmHg. In total, 22,446 (58 %) have hypertension (defined as a formal clinical diagnosis and/or on

BMJ Open

antihypertensive treatment), 5,467 (14 %) have diabetes and 6,482 (17 %) have pre-existing ischaemic heart disease or stroke. Median follow-up period is 6.4 years, with 3,557 (9 %) participants experiencing cardiovascular events and 3,052 (8 %) dying within 10 years. We will present tables including descriptors (for example, country, method of BP measurement, description of cohort) of each study to assess comparability and describe the dataset. A summary of the included studies and their characteristics are given in Table 1.

Outcomes

The primary outcome (systolic arm-leg BP difference) for the analyses will be defined as the lower leg posterior tibial artery BP minus the higher arm BP measured on the brachial artery. The coprimary outcome will be arm SBP predicted from leg BP. Primary analyses will use observed data only (see missing data – below).

Secondary outcomes are the prognostic value of leg BPs for prediction of cardiovascular events and mortality.

Quality assessment

The methodological quality and risk of bias for studies contributing data has been assessed using the Quality assessment In Prognostic Studies (QUIPS) score, modified for IPD analysis.¹⁶ These assessments will be used to inform sensitivity analyses focusing on the highest quality studies. This quality assessment covers domains on selection bias, attrition, and accuracy of measurement, analysis and confounding.

Participant selection

Participants with ankle or arm BP missing at recruitment will be excluded from the analyses. We will also exclude participants with a diagnosis of peripheral arterial disease and low ABI (< 0.90).

Statistical analysis

Descriptive analyses

Descriptive statistics will be used to describe participant characteristics at the study level, including age, sex, ethnic group, body mass index (BMI), arm and leg BP, and history of cardiovascular diseases (and risk factors). Data will be presented as means with standard deviation, median with interquartile ranges, or proportions.

Investigation of relationship between leg and arm blood pressure

We will report the mean arm-leg differences for each study. These will be examined in a two-stage meta-analysis. Estimates of heterogeneity from these analyses will be used to determine whether to conduct a further one-stage analysis with study entered as a random or as a fixed effect. We will explore cross-sectional relationships between arm and leg BP in univariable and multivariable models with all available data, using hierarchical linear regression. Estimates will be adjusted for age, sex, baseline BP, smoking status, serum cholesterol and medical history at recruitment. As part of planned subgroup analyses, we will also test classes of drugs, and, if significant, they may be entered into final models.

Prediction Modelling of arm blood pressure using leg blood pressure

Using a subset of participants with complete case data for candidate variables both identified above, and set *a priori*, we will model brachial SBP on leg SBP using random effects meta-analysis models. We will use one-stage and two-stage methods, and assess heterogeneity using the I² and tau² statistics. One-stage models will comprise hierarchical linear regression models (participants nested by study). Further models will investigate the association between arm-leg difference and participant characteristics (using a series of models with one characteristic per model). Predictor variables to be included *a priori* in the modelling will include age, sex, BMI, smoking status, ethnicity, diagnosis of diabetes, hypertension or any cardiovascular disease, total cholesterol and baseline ankle BP.

BMJ Open

The predictive model for arm SBP will be developed using one-stage meta-analysis with hierarchical linear regression models, as described above. We will derive the model using a subset of the complete case data (derivation dataset) and validate the model using the remaining data (validation dataset).¹⁷ The primary studies will be allocated to the derivation or validation datasets such that both datasets include participants of both genders and reflect the geographical origin of the studies.

Prognostic modelling

Prognostic models based on leg SBP will be derived for all-cause and cardiovascular mortality and fatal or non-fatal cardiovascular events. Heterogeneity will be assessed using I² and tau². We will aim to perform one-stage random effects time-to-event models based on flexible parametric models; should such models fail to converge, we will use fixed effect Cox proportional hazards models, stratified by study. Using the covariates described above, and again dividing the dataset into a derivation and validation cohort, we will derive and validate a suitable model. For prognostic modelling, we will exclude participants with any pre-existing cardiovascular disease. Using internationally recognised 10-year risk scores, such as the European Systematic COronary Risk Evaluation (SCORE) and Atherosclerotic Cardiovascular Disease (ASCVD) pooled cohort equations, we will compare the outcome of such cardiovascular risk scores using arm based on leg SBP data with the *actual* arm SBP data.¹⁸⁻²¹ Besides their wide use in clinical practice, these two scores have been selected to assess two different outcomes, as SCORE predicts cardiovascular mortality, while ASCVD predicts fatal and non-fatal cardiovascular events (cardiovascular death, non-fatal MI and stroke). Model goodness of fit will be compared using the likelihood ratio test, the Akaike Information Criterion²², and for time-to-event models, the Harrell's C statistic.

Missing data and sensitivity analyses

For all included studies, the primary analyses will use observed data only. Participants from other cohorts included within the INTERPRESS-IPD Collaboration lack leg BP data but do have brachial BP measurements and ankle-brachial indices. We will explore whether accurate back-calculation of leg pressures is feasible using these data. To achieve this, we will establish a clear understanding of the

BMJ Open

> study formulae used to derive ABI, including discussion with authors as necessary. We will then trial this approach using datasets that do contain leg pressures to confirm validity. If feasible, we will back-calculate missing leg SBPs and add these data to the observed data for sensitivity analyses to check the primary models. We will also perform sensitivity analyses incorporating height into the final models, where available. Further sensitivity analyses, using multiple imputation of arm and/or leg SBP and participant data for the one-stage meta-analyses where arm-leg or arm SBP is the outcome, and for the time-to-event analyses will also be undertaken. The results of these models will be compared with the primary outcome models using observed data only. Finally, we will repeat the primary analyses excluding studies deemed to be of low or moderate quality based on modified QUIPS scores.

Publication and inclusion bias

Inclusion bias will be assessed by comparing the mean arm – leg SBP difference for studies included in the analyses with studies in our previous study-level systematic review.¹¹ Publication bias will not be assessed; we believe that there is limited potential for publication bias, as the primary studies from which we derive data were not originally designed to compare arm and leg BPs.

Patient and public involvement

The development of this protocol has had considerable patient and public involvement (PPI). Prior to funding, a draft was reviewed by three public advisors improving the overall clarity in general, and in specific areas, such as focussing the research questions on aspects of arm and leg BP that interest users. We convened two prefunding PPI workshops to raise awareness about involvement in systematic reviews and gain critical feedback for the project. This feedback resulted in a clearer definition of the population being studied, greater clarity about benefits for patients and reinforcement of our user dissemination plans. We have established a PPI advisory group for the project, led by KB (an academic PPI facilitator) and comprising one stroke survivor and two Thalidomide Trust beneficiaries; they will shape the research by fully participating in quarterly management meetings. The group have contributed toward drafting this protocol and the plain

BMJ Open

English abstract. We plan two key workshops to ensure that the review findings reach the end user in an accessible way. First, a summary writing workshop with the PPI advisory group to achieve a clear plain language summary and to co-produce a dissemination plan targeted at patients and the public. Second, we will convene a larger public event on the subject of understanding cardiovascular risk, within which the findings of this research can be presented in context.

Ethics and dissemination

This is a secondary analysis of anonymised IPD which has been obtained from studies where participants have already given consent and approval to participate. We have sought written permission for use of IPD from each individual study lead investigator included in the INTERPRESS-IPD Collaboration. We will therefore not seek further ethical approval to undertake these analyses.

The study will be reported in accordance with the Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data (PRISMA-IPD) statement. Findings will be published as open access articles in high-impact peer-reviewed journals and presented at international conferences. We will seek to inform national, European and global developers of clinical guidelines, including the UK NICE guidance, NHS commissioners, the British and Irish Hypertension Society and local healthcare providers. We will co-produce a targeted dissemination plan for the public and specific patient groups and our funding charities, in conjunction with the project PPI advisory group. We also plan to undertake a public dissemination event for patients, clinicians and providers or commissioners regarding the importance of, and relationship between, arm and leg BPs and understanding the importance of BP measurement in cardiovascular risk estimation – the findings from this study will be presented. The INTERPRESS-IPD Collaboration is a large, international dataset with both arm and leg BPs, and is available for further research activity in this area in the future.

Discussion

There are 1.2 million stroke survivors living in the United Kingdom (UK; State of the Nation Stroke statistics - January 2017: The Stroke Association) and 75 % of these individuals report weakness of

BMJ Open

> upper limb function that interferes with activities of daily living.²³ Self-monitoring and self-titration of BP lowering treatment achieves lower BPs in people at high risk of new or recurrent stroke.²⁴ However, this is either impossible or difficult for many stroke survivors with significantly impaired upper limb function, and for individuals with other barriers to BP measurement in the arm. Data suggest a prevalence of 12 to 13 individuals per 100,000 population have upper limb prostheses in the UK and Norway.^{25 26} In addition, over 1,700 amputations higher than wrist level occur annually in the UK.²⁷ Congenital upper limb deformities are also important; for example, the UK Thalidomide Trust has 460 beneficiaries who are now aged in their late-50s. Hypertension is a particular concern in this cohort, and over half of beneficiaries report upper limb damage.²⁸ Taking these data together, we conservatively estimate that between 6,000 and 10,000 adults may be living with significant congenital or acquired upper limb loss in the UK. As a population, these individuals are in particular need of accurate estimates of BP to understand and mitigate their cardiovascular risk, stroke being an important avoidable consequence.

> Thus, barriers to accurate upper arm BP measurement exist for a substantial minority of the UK population, and corresponding proportions across other countries. Whenever circumstances require leg BP measurement, it is important to be able to interpret the readings correctly. This is the focus of our proposal. Our data originate from cohorts across Europe, North America and Africa, therefore we expect our findings to be applicable across the globe.

To date, estimates suggest either a minimum difference of 15 mmHg in SBPs between arm and leg, or a conversion factor of x 0.88, as a rule of thumb.^{5 11} This study aims to provide the first evidencebased method for estimating individual brachial SBP and cardiovascular risk from leg SBP measurements. Our findings will support clinicians and patients in detecting and managing hypertension more effectively where leg measurements are required.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
20
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
55 54
55
56
57
58
59
60
00

References 1. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Journal of the American College of Cardiology 2017 doi: 10.1016/j.jacc.2017.11.006 [published Online First: 2017/11/18] 2. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. European Heart Journal 2018;39(33):3021-104. doi: 10.1093/eurheartj/ehy339 3. National Institute for Health and Clinical Excellence. Hypertension: The clinical management of primary hypertension in adults, CG127. London: National Institute for Health and Clinical Excellence 2011. 4. Hwang KO, Aigbe A, Ju H-H, et al. Barriers to Accurate Blood Pressure Measurement in the Medical Office. *Journal of primary care & community health* 2018;9:2150132718816929. doi: 10.1177/2150132718816929 5. Shiga T, Shimbo T, Yoshizawa A. Multicenter investigation of lifestyle-related diseases and visceral disorders in thalidomide embryopathy at around 50 years of age. Birth Defects Research Part A: Clinical and Molecular Teratology 2015;103(9):787-93. doi: doi:10.1002/bdra.23363 6. Dewar R, Sykes D, Mulkerrin E, et al. The effect of hemiplegia on blood pressure measurement in the elderly. Postgraduate Medical Journal 1992;68(805):888-91. 7. Maduagwu SM, Umeonwuka CI, Mohammad HH, et al. Reference Arm for Blood Pressure Measurement in Stroke Survivors. Middle East J Rehabil Health Stud 2018;5(1):e62368. doi: 10.5812/mejrh.62368 [published Online First: 2018-01-02] 8. Aboyans V, Kamineni A, Allison MA, et al. The epidemiology of subclavian stenosis and its association with markers of subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2010;211(1):266-70. doi: 10.1016/j.atherosclerosis.2010.01.013 [published Online First: 2010/02/09] 9. Pascarelli EF, Bertrand CA. Comparison of blood pressures in the arms and legs. N Engl J Med 1964;270:693-8. doi: 10.1056/nejm196404022701401 [published Online First: 1964/04/02] 10. Stewart HJ, Newman AA, Evans WF. Levels of blood pressure in both arms and legs in normal subjects and patients suffering from certain diseases. The American Journal of Medicine 1946;1(5):451-63. doi: 10.1016/0002-9343(46)90065-4 11. Sheppard JP, Albasri A, Franssen M, et al. Defining the relationship between arm and leg blood pressure readings: a systematic review and meta-analysis. Journal of Hypertension 2019;Publish Ahead of Print doi: 10.1097/hjh.000000000001958 12. Debray TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ 2017;356:i6460. doi: 10.1136/bmj.i6460 [published Online First: 2017/01/07] 13. Abo-Zaid G, Sauerbrei W, Riley RD. Individual participant data meta-analysis of prognostic factor studies: state of the art? BMCMedRes Methodol 2012;12:56. 14. Clark CE, Boddy K, Warren FC, et al. Associations between interarm differences in blood pressure and cardiovascular disease outcomes: protocol for an individual patient data meta-analysis and development of a prognostic algorithm. BMJ Open 2017;7:e016844. doi: 10.1136/bmjopen-2017-016844 15. Aboyans V, Criqui MH, Abraham P, et al. Measurement and Interpretation of the Ankle-Brachial Index. Circulation 2012 16. Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing Bias in Studies of Prognostic Factors. Annals of Internal Medicine 2013;158(4):280-+. 17. Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. BMJ (Clinical research ed) 2009;338:b605.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

- 18. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ 2008;336(7659):1475-82.
- 19. Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014;129(25 Suppl 2):S49-73. doi: 10.1161/01.cir.0000437741.48606.98
- 20. D'Agostino RB, Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008;117(6):743-53. doi: 10.1161/circulationaha.107.699579 [published Online First: 2008/01/24]
- 21. Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003;24(11):987-1003. [published Online First: 2003/06/06]
- 22. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automated Control 1974;19(6):716-23.
- 23. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. *Stroke* 2001;32(6):1279-84.
- 24. McManus RJ, Mant J, Haque MS, et al. Effect of Self-monitoring and Medication Self-titration on Systolic Blood Pressure in Hypertensive Patients at High Risk of Cardiovascular Disease: The TASMIN-SR Randomized Clinical TrialSelf-monitoring and Self-titration for HypertensionSelfmonitoring and Self-titration for Hypertension. JAMA 2014;312(8):799-808. doi: 10.1001/jama.2014.10057
- 25. Kyberd PJ, Beard DJ, Morrison JD. The population of users of upper limb prostheses attending the Oxford Limb Fitting Service. Prosthet Orthot Int 1997;21(2):85-91. doi: 10.3109/03093649709164535
- 26. Ostlie K, Skjeldal OH, Garfelt B, et al. Adult acquired major upper limb amputation in Norway: prevalence, demographic features and amputation specific features. A population-based survey. Disabil Rehabil 2011;33(17-18):1636-49. doi: 10.3109/09638288.2010.541973
- 27. Cordella F, Ciancio AL, Sacchetti R, et al. Literature Review on Needs of Upper Limb Prosthesis Users. Front Neurosci 2016;10:209-09. doi: 10.3389/fnins.2016.00209
- 28. Newbronner E, Glendinning C, Atkin K, et al. The health and quality of life of Thalidomide survivors as they age – Evidence from a UK survey. PLOS ONE 2019;14(1):e0210222. doi: 10.1371/journal.pone.0210222
- 29. Clark CE, Taylor RS, Butcher I, et al. Inter-arm blood pressure difference and mortality: a cohort study in an asymptomatic primary care population at elevated cardiovascular risk. British Journal of General Practice 2016;66(5):241-2. doi: 10.3399/bjgp16X684949
- 30. McGrae McDermott M, Greenland P, Liu K, et al. Leg symptoms in peripheral arterial disease: Associated clinical characteristics and functional impairment. JAMA 2001;286(13):1599-606. doi: 10.1001/jama.286.13.1599
- 31. Guerchet M, Mbelesso P, Ndamba-Bandzouzi B, et al. Epidemiology of dementia in Central Africa (EPIDEMCA): protocol for a multicentre population-based study in rural and urban areas of the Central African Republic and the Republic of Congo. SpringerPlus 2014;3:338. doi: 10.1186/2193-1801-3-338 [published Online First: 2014/07/22]
- 32. Lahoz C, Barrionuevo M, Garcia-Fernandez T, et al. Cardiovascular morbidity-mortality associated to ankle-brachial index in the general population. [Spanish]. Revista Clinica Espanola 2014;214(1):1-7.
- 33. Erbel R, Mohlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol 2010;56(17):1397-406. doi: 10.1016/j.jacc.2010.06.030 [published Online First: 2010/10/16]

60

1 2 3

4

5

6

7

8

- 34. Clark CE, Thomas D, Llewellyn D, et al. Inter-arm blood pressure and risk of cognitive decline in the elderly. *Br J Gen Pract* 2020; *;* DOI:https://doi.org/10.3399/bjgp20X709589; *published online 5/5/20*.
- 35. Espeland MA, Newman AB, Sink K, et al. Associations Between Ankle-Brachial Index and Cognitive Function: Results From the Lifestyle Interventions and Independence for Elders Trial. *Journal of the American Medical Directors Association* 2015;16(8):682-89.
- 36. Marti R, Garcia-Regalado N, Garcia-Gil M, et al. Improving interMediAte risk management. MARK study. *BMC Cardiovascular Disorders* 2011;11:61.
- 37. Espeland MA, Beavers KM, Gibbs BB, et al. Ankle-brachial index and inter-artery blood pressure differences as predictors of cognitive function in overweight and obese older adults with diabetes: Results from the Action for Health in Diabetes movement and memory study. *International Journal of Geriatric Psychiatry* 2015;30(10):999-1007.
- 38. Bild DE, Bluemke DA, Burke GL, et al. Multi-Ethnic Study of Atherosclerosis: Objectives and Design. *American Journal of Epidemiology* 2002;156(9):871-81.
- 39. Wassel CL, Loomba R, Ix JH, et al. Family History of Peripheral Artery Disease is associated with Prevalence and Severity of Peripheral Artery Disease: The San Diego Population Study (SDPS). Journal of the American College of Cardiology 2011;58(13):1386-92. doi: 10.1016/j.jacc.2011.06.023
- 40. Kranenburg G, Spiering W, de Jong PA, et al. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease. *International journal of cardiology* 2017;244:271-76. doi: 10.1016/j.ijcard.2017.06.044
- 41. Clark CE, Casanova F, Gooding K, et al. Inter-arm blood pressure difference and arterial stiffness. *Journal of Hypertension* 2014;32(eSuppl A):e30.
- 42. Dahl M, Frost L, Søgaard R, et al. A population-based screening study for cardiovascular diseases and diabetes in Danish postmenopausal women: acceptability and prevalence. *BMC cardiovascular disorders* 2018;18(1):20. doi: 10.1186/s12872-018-0758-8
- 43. White J, Mortensen LH, Kivimaki M, et al. Interarm differences in systolic blood pressure and mortality among US army veterans: aetiological associations and risk prediction in the Vietnam experience study. *EurJPrevCardiol* 2014;21(11):1394-400.

Competing interests

CEC has been loaned a bilateral blood pressure monitor for unrestricted evaluation by Microlife AG, and has received honoraria from Bayer AG. No company has had, or will have, any involvement in the design or conduct of this study.

Contributors

This protocol was first drafted by SM, CEC, FCW, JS, UM, KB and VA, then revised and edited by all authors. The final manuscript has been read and reviewed by all authors.

The following collaborating authors contributed data to the original INTERPRESS-IPD Collaboration and the subsequent ABLE-BP project: *Vietnam Experience Study*: James White; *AAA*: Jackie Price; *INCHIANTI*: Luigi Ferrucci; *Heinz-Nixdorf Recall Study*: Raimund Erbel; *SMART*: Jan Westerink; *San Diego Population Study*: Michael Criqui; *Fuencarral Health Center*: Carlos Lahoz; *EPIDEMCA*: Maëlenn Guerchet; *MESA*: Matthew Allison; *LIFE & WALCS*: Mary McDermott; *Look AHEAD*: Mark Espeland; *ViWoCo*: Marie Dahl; *SUMMIT*: Angela Shore; *MARK Study*: Rafel Ramos Blanes

Funding

The INTERPRESS-IPD Collaboration was established with a grant from the NIHR Research for Patient Benefit programme, grant no: PB-PG-0215-36009.

This current project is supported by the Stroke Association (SA PG 19/100043) and by the Thalidomide Trust.

Disclaimer

The views expressed are those of the authors and not necessarily those of the Stroke Association, the Thalidomide Trust, the NIHR, the NHS or the Department of Health.

Ethics approval and patient consent for publication

Not required.

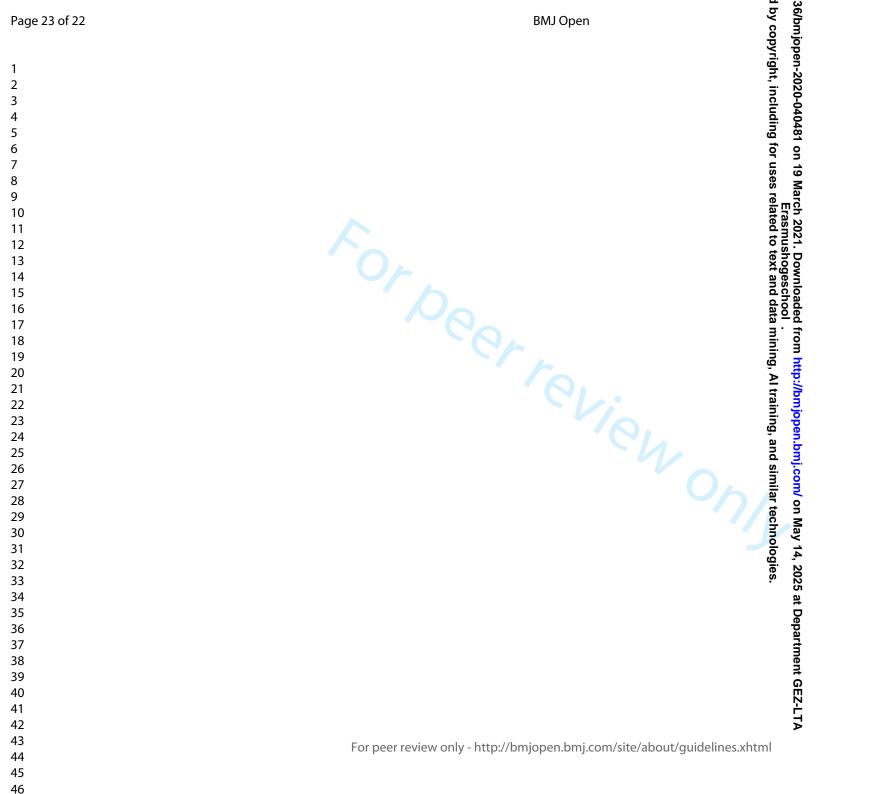
Provenance and peer review

Not commissioned; externally peer reviewed.

36/bmjopen-2020-040481 o 1 by copyright, including fo

Table 1 – characteristics of stud	lies included in the ABLE-BP dataset
-----------------------------------	--------------------------------------

Study name	Period of patient recruitment /Duration of trial	Sample size	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	Defficience hypertension	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event
Aspirin in Asymptomatic Atherosclerosis (AAA) ²⁹	April 1998- October 2008	3334	Scotland	Males and females, aged 50-75 years, living in central Scotland, free of clinical cardiovascular disease with an ABI < 0.95	Initial fatal or non- fatal coronary event or stroke or revascularisation	Single sequence of BP readings using a Doppler probe (Huntleigh Healthcare, Cardiff) and aneroid desk sphygmomanometer (Accoson;A.C. Cossor Ltd, London, UK) with patient supine	5 years with extended follow-up of 4.5 years. Mean 8.2 years	n fon in fon gaMarch 2021. Downloaded fro rititor by the Erasmushogeschool . Defaser elated to text and data mit	Self-reported diabetes	Cardiovascular death: Definite or probable fatal MI, death due to IHD, or fatal stroke due to infarction. <i>Non-fatal events</i> : MI, stroke or TIA, coronary or peripheral revascularisation. angina, PAD
Chicago Walking and Leg Circulation Study (WALCS) ³⁰	1998-2000	440	USA	Patients without lower extremity peripheral artery disease who were recruited for the non-PAD comparator group.	Subclavian stenosis as a marker for total and cardiovascular disease mortality	Two sequences of BP readings recorded using a 12-cm pneumatic cuff and a hand held Doppler probe (Nicolet Vascular Pocket Dop II, Golden, Colo) with patient supine	Mean follow- up was 4.8 years.	Patient history or ustor brand thereasy thereasy thereasy training and	Patient history or use of oral antidiabetic drugs and/or insulin	Cardiovascular death: Any fatal cardiovascular cause. <i>Non-fatal events</i> : MI, stroke, TIA, coronary of peripheral revascularisation, congestive heart failure, PAD, angina
Epidemiology of dementia in Central Africa (EPIDEMCA) ³¹	November 2011- December 2012	880	Central African Republic/ Republic of Congo	Males and females, aged ≥ 65 years living in areas of Central African Republic and Republic of Congo	Diagnosis of dementia and Alzheimer's disease and associated risk factors	Two sequences of BP measurements recorded using standard mercury sphygmomanometer, as part of ABI protocol with patients supine. BP rounded to nearest 5 mmHg	2-3 years	Selfing traatment; SBM≥140mmHg or DB₩≥90 B mHg DB₩chnologies.	Self-reported or blood glucose >126 mg/dL fasting or >200 mg/dL in non- fasting	Cardiovascular death: Stroke, MI or other cardiovascular or cerebrovascular diseases – based on interview of relatives during verbal autopsy at follow-up. Non-fatal events: Stroke, MI, other heart disease
Fuencarral Health Center ³²	2003-2004	1102	Spain	Males and females, aged 60-79 years, with no known PAD	Low ABI and incidence of death due to cardiovascular causes	BP measured sequentially with Doppler 8-MHz probe (Hadeco, Kawasaki, Japan) and calibrated mercury sphygmomanometer with patient supine	Mean follow- up 49.8 months	SBP ≥1409mmHg, DBP ≥90 mmHg or use of BP99wering treatmentp treatment EZ-LTA	Baseline glucose ≥126 mg/dl (>7 mmol/L) on 2 occasions or use of antidiabetic agents	Cardiovascular death: Fatal stroke, MI, sudden death without other cause, death after vascular surgen or procedure, death attributed to heart failure, bowel or limb infarction, any other death not


					BMJ C	pen		36/bmjopen-2020 4 by copyright, ir	Pa		
Study name	Period of patient recruitment /Duration of trial	Sample size	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	DefAitionof hypertenation n 48	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event	
								on 19 March for uses relat		categorically attributed to a non-vascular cause <i>Non-fatal events</i> : MI, stroke or cardiovascular event	
Heinz Nixdorf Recall Study ³³	2000-2003	4617	Germany	Males and females, aged 45-74 years, in an unselected urban population from the Ruhr area	Coronary artery calcium as predictor for fatal and non-fatal MI. Secondary endpoints included ABI as a stroke predictor factors	BP measured sequentially using Doppler probe (Logidop, Kranzbuhler, Germany) with patients supine	Mean follow up: 109 months	on 19 March 御母 or Era\$haushogeschool . SB bo text and data n	Existing diagnosis or use of anti- diabetic medication	Cardiovascular death or non-fatal event: First occurrence of MI based on symptoms, ECG signs, and enzymes, supported by necropsy if fatal	
Invecchiare in Chianti (InCHIANTI) ³⁴	August 1998- March 2000	1091	Italy	Males and females, aged ≥ 65 years, living in Greve and Bagno	Physiological factors influencing walking ability	Single pair of sequential brachial BP readings using standard mercury sphygmomanometer, with patients supine. BP rounded to nearest 5 mmHg. Posterior tibial arteries measured twice with a handheld Doppler stethoscope (Parks model 41-A; Parks Medical Electronics, Inc, Aloha, Ore).	N/S	Selftepored, existing, recorded diageosis ar use of BP jovering metication or SBP ≥140 immbg or DBP ≥90 immbg, and simila	Self-reported, existing recorded diagnosis, or use of anti-diabetic medication, or fasting glucose >7.0 mmol/L	Cardiovascular death: Not defined. <i>Non-fatal events:</i> Diagnosis of heart disease, MI or angina, stroke or TIA	
Lifestyle Interventions and Independence for Elders (LIFE) study ³⁵	2010-2011/ 2.6 years	1588	USA	Ambulant community dwelling individuals, aged 70-89 years with a sedentary lifestyle (<20min per week physical activity)	Major mobility disability Secondary: Association between ABI and cognitive function	Two pairs of sequential measurements recorded in each arm using handheld Doppler, with patients supine	2 years	r etaurrenaan Selteaurrenaan reannologies.	Self-reported	Cardiovascular fatal or non-fatal events: MI, angina, stroke or TIA, carotid artery disease, congestive heart failure or PAD requiring hospitalisation, outpatient revascularisation for PAD, ruptured abdominal aortic aneurysm	
Improving interMediAte RisK management (MARK) study ³⁶	N/S	2490	Spain	Males and females living in 3 regions of Spain, aged 35-74 years. Free of	Incidence of vascular events	Three pairs of BP measurements in each arm, using an OMRON 705, with patients	10 years	Patient reported, or use of BP B wering medication or SBP G FL TA	Patient reported, or use of antidiabetic treatment or	Cardiovascular death: not defined Non-fatal events:	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	21	of	22
------	----	----	----

			BMJ Open BMJ Open BMJ Open per Country of Eligibility criteria Primary Blood pressure Intended Definition of Definition of cardiovascular death							
Study name	Period of patient recruitment /Duration of trial	Sample size	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	ng ing ing	Definition of diabetes	Definition of cardiovascular death non-fatal cardiovascu event
			2	atherosclerotic disease, with an intermediate cardiovascular risk (10-year coronary risk of 5-15% or vascular death risk of 3-5%) selected at random		seated. Legs measured with Vasera device VS- 1500® (Fukuda Denshi)		≥140 mmH ≥90 mmH ≥90 mmH Erasmush Erasmush	fasting glucose ≥ 126 mg/dL	Stroke or TIA, MI, angi or revascularisation procedure
Action for Health in Diabetes (Look AHEAD) ³⁷	June 2001-March 2004	339	USA	Overweight and obese individuals with type 2 diabetes aged 45-76 years, and had a body mass index, 25 kg/m2, or ≥27 kg/m2 if taking insulin	A composite cardiovascular outcome: cardiovascular death, non-fatal MI, non-fatal stroke, hospitalized angina Secondary: Cognitive function	Two pairs of sequential BP measurements recorded in each arm, using continuous wave Doppler with a standard mercury sphygmomanometer, with patients supine	4-5 year follow up	≥14 mmHg By or DBP ≥14 mmHg By Ses related to text SBL by the bootstand I by the bootstand SBL by the bootstand I by t	Self-reported verified from medical records, current treatment, or fasting glucose of ≥126 mg/dL	Cardiovascular death: MI, congestive heart fai death after cardiovascu intervention, surgery or to arrhythmia, stroke, presumed cardiovascul death, rapid unexplaine cardiovascular death. <i>Non-fatal events</i> : Stroke, MI, angina, coronary artery bypass grafting or percutaneou coronary intervention, congestive heart failure carotid endarterectomy peripheral arterial bypa angioplasty
Multi Ethnic Study of Atherosclerosis (MESA) ³⁸	2000-2002	6770	USA	Males and females, aged 45-84 years, free of clinical cardiovascular diagnoses at baseline	Association of subclavian stenosis with markers of cardiovascular disease	Single pair of sequential BP measurements, using hand-held Doppler instrument and 5-mHz probe, with patients supine	5	witt Euse dBP low ting or SBP ≥ teommHg or DBP ≥ teommHg or DBP ≥ 0, 14,	glucose ≥126 mg/dl or use of oral hypoglycemic agents or insulin	Cardiovascular death: Death due to atherosclerotic coronar heart disease, stroke, c cardiovascular disease Non-fatal events: Stroke, TIA, MI, angina revascularisation proce
San Diego Population Study ³⁹	1994-1998	2388	USA	Males and females, aged 29-91 years, attending a clinic for assessment of PAD and venous disease	Prevalence of PAD	Two pairs of BP measurements, using a continuous-wave Doppler ultrasound, with patients supine	N/S	SB®≥14(2)mmHg or DBP ≥ 902,mmHg or use of BP4owering medication pa	Self-reported or use of antidiabetic medications	Cardiovascular death: not defined Non-fatal events: MI, stroke, angina, coro angioplasty or bypass o or carotid endarterecto
Second Manifestations of ARTerial disease (SMART) study ⁴⁰	January 2002 – February 2014	7600	The Netherlands	Males and females, aged 18-80 years, referred to University Medical	3 point MACE (combination of non-fatal myocardial	Single pair of sequential BP measurements, using a Vasoguard Doppler	Mean follow- up:5.9 years	Blood pressure >140/90 monHg at baseline of the use G EZ- LTA	Recorded diagnosis, self- reported diagnosis, use of	Cardiovascular death: Death from stroke, MI, congestive heart failure rupture of abdominal ad

					ВМЈ О	pen		36/bmjopen-2020		Pag
Study name	Period of patient recruitment /Duration of trial	Sample size	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	Defiliation hyperten n n 481	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event
			50	Center Utrecht, for treatment of clinically manifest vascular disease or cardiovascular risk factors	infarction, non- fatal stroke and death from vascular disease), total mortality and vascular mortality	probe, with patients supine		of bigod pessure lowering medication. By March 2021. Downloaded Erasmushogeschool datagenoted bistory.	blood glucose lowering medicati on, or fasting glucose >7 mmol/L at recruitment combined with initiation of glucose lowering medication within first year of follow-up. Type 1 diabetes excluded.	aneurysm or vascular death from other causes <i>Non-fatal events:</i> Stroke (infarction or haemorrhagic), MI, retinal infarction, heart failure
Surrogate markers for Micro- and Macrovascular hard endpoints as Innovative diabetes tools (SUMMIT) ⁴¹	November 2010 – June 2013	334	England	Adults over 18 with and without diabetes and/or cardiovascular disease	Prr	6 pairs of simultaneous BP readings using two Omron 705 devices swapped after 3 readings, with patients supine	N/S	of hypertension in g, AI	HbA1c ≥ 48 mmol/mol	Cardiovascular death: Fatal MI
Viborg Women Cohort (ViWoCo) ⁴²	October 2011- January 2013	1428	Denmark	Females born in 1936, 1941, 1946 and 1951 living in the Municipal of Viborg, Denmark	Presence of cardiovascular disease and diabetes mellitus	One pair of simultaneous BP readings, using Omron M2 devices, with patients supine, rounded to nearest 2mmHg	Median follow-up 3.3 years	SBB2≥900 mmHg or DBB2≥900 mHg ng, and	HbA1c ≥ 48 mmol/mol	Cardiovascular death: Fatal event as below Non-fatal event: MI or ischaemic stroke leading to hospitalisation
Vietnam Experience Study ⁴³	1986	4394	USA	Male US army veterans who participated in the Vietnam war	Inter-arm differences, all- cause and cardiovascular mortality	Two pairs of sequential BP measurements, using standard mercury sphygmomanometer, with patients seated	15 years	SBA 140 mmHg, DBE≥90 mmHg or useaf BP towering metations	Fasting plasma glucose ≥ 7.0 mmol/l and/or use of medication for diabetes	Cardiovascular death: Death due to major cardiovascular disease.
	<u>uic br, ind – ischael</u>	nic near us	ease, Mi – Hiyoc	ardiai imarcuon, iv/3 – no	<u>Ji stateu, r Ab – peripi</u>	ieral arterial disease, SBP = s	SYSTOILE DF, TIA -	14, 2025 at Department GEZ-LTA		logram

BMJ Open

Arm Based on LEg blood pressures (ABLE-BP): Can systolic leg blood pressure measurements predict systolic brachial blood pressure? Protocol for an individual participant data meta-analysis from the INTERPRESS-IPD Collaboration

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040481.R1
Article Type:	Protocol
Date Submitted by the Author:	14-Nov-2020
Complete List of Authors:	McDonagh, Sinead; University of Exeter, Primary Care Research Group Sheppard, James; University of Oxford, Nuffield Department of Primary Care Health Sciences Warren, Fiona; University of Exeter, Primary Care Research Group Boddy, Kate; University of Exeter, NIHR CLAHRC South West Peninsula (PenCLAHRC) Farmer, Leon; Patient and Public Involvement Advisor Shore, Helen; Patient and Public Involvement Advisor Williams, Phil; Patient and Public Involvement Advisor Lewis, Philip; Stockport NHS Foundation Trust Baumber, Rachel ; Royal National Orthopaedic Hospital Stanmore, Fordham, A Jayne; Mid Devon Medical Practice Martin, Una; University of Birmingham, Institute of Clinical Sciences Aboyans, Victor; Centre Hospitalier Universitaire de Limoges, Department of Cardiology Clark, Christopher; University of Exeter, Primary Care Research Group
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	General practice / Family practice
Keywords:	Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, CARDIOLOGY, PRIMARY CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Arm Based on LEg blood pressures (ABLE-BP): Can systolic

leg blood pressure measurements predict systolic brachial

blood pressure? Protocol for an individual participant data

meta-analysis from the INTERPRESS-IPD Collaboration

Sinead TJ McDonagh¹, James Sheppard², Fiona C Warren¹, Kate Boddy¹, Leon Farmer³, Helen Shore³ Phil Williams³, Philip S Lewis⁴, Rachel Baumber⁵, A Jayne Fordham⁶, Una Martin⁷, Victor Aboyans⁸, Christopher E Clark¹

on behalf of the INTERPRESS-IPD Collaborators (list at end).

1. University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter, Devon, England EX1 2LU

2. University of Oxford, Woodstock Road, Oxford, England OX2 6GG

3. Volunteer patient and public advisor

- 4. Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport, Cheshire SK2 7JE
- 5. Royal National Orthopaedic Hospital NHS Trust, Middlesex HA7 4LP
- 6. Mid Devon Medical Practice, Witheridge, Devon, England EX16 8EZ
- 7. University of Birmingham, Birmingham, England B15 2TT
- 8. Department of Cardiology, Dupuytren University Hospital, Limoges, France

Correspondence to Dr Christopher Clark

c.e.clark@exeter.ac.uk

Primary Care Research Group, Institute of Health Services Research, University of Exeter Medical School, College of Medicine & Health, Smeall Building, St Luke's Campus, Magdalen Road, Exeter, Devon, England, EX1 2LU

Word count excluding abstracts: 3129

Abstract

Introduction

Blood pressure (BP) is normally measured on the upper arm, and guidelines for the diagnosis and treatment of high BP are based on such measurements. Leg BP measurement can be an alternative when brachial BP measurement is impractical, due to injury or disability. Limited data exist to guide interpretation of leg BP values for hypertension management; study-level systematic review findings suggest that systolic BP (SBP) is 17 mmHg higher in the leg than the arm. However, uncertainty remains about the applicability of this figure in clinical practice due to substantial heterogeneity.

Aims: To examine the relationship between arm and leg SBP, develop and validate a multivariable model predicting arm SBP from leg SBP and investigate the prognostic association between leg SBP and cardiovascular disease and mortality.

Methods and analysis

Individual participant data meta-analyses using arm and leg SBP measurements for 33,710 individuals from 14 studies within the INTERPRESS-IPD Collaboration. We will explore cross-sectional relationships between arm and leg SBP using hierarchical linear regression with participants nested by study, in multivariable models. Prognostic models will be derived for all-cause and cardiovascular mortality, and cardiovascular events.

Ethics and dissemination

Data originate from studies with prior ethical approval and consent, and data sharing agreements are in place - no further approvals are required to undertake the secondary analyses proposed in this protocol. Findings will be published in peer-reviewed journal articles and presented at conferences. A comprehensive dissemination strategy is in place, integrated with patient and public involvement.

PROSPERO registration number

CRD42015031227

Word count: 249

Strengths and limitations of this study

- This individual participant data (IPD) meta-analysis uses the INTERPRESS-IPD Collaboration [IPD from 24 international cohorts, originally created to explore the association between inter-arm differences in blood pressure (BP) and mortality risk], the largest known dataset to allow an in-depth exploration of the relationship between arm and leg systolic BP (SBP) and the role of leg SBP in cardiovascular risk estimation.
- An IPD approach maximises statistical power and allows a consistent approach toward all available data that cannot be achieved with study level meta-analyses.
- Inclusion of a number of international cohorts in this IPD meta-analyses will maximise the generalisability of the findings.
- Methods of data collection and reporting of results vary between included cohorts and this is acknowledged as a limitation of the data. We are aware of other studies with arm and leg BP data that are not included in the INTERPRESS-IPD Collaboration. However, the dataset is large enough to allow robust analysis and sufficient subgroup and sensitivity analyses to answer questions that cannot be addressed by study-level meta-analyses.
- Patient and public involvement (PPI) activities have been, and will be, undertaken throughout every stage of this project and we include three PPI advisors and a PPI facilitator as co-authors.

Introduction

Blood pressure (BP) is normally measured on the upper arm, and all guidelines for the diagnosis and treatment of high BP are based on such measurements.¹⁻³ When brachial BP measurement is not possible, other measurement sites are required. Uncertainty over interpretation of non-brachial BP measurement may result in inaccurate BP estimates, leading to sub-optimal management of hypertension, risking avoidable cerebrovascular or ischaemic cardiac events.⁴ In the clinical setting, this may be a temporary problem due, for example, to fractures, wounds, vascular access devices or during surgical procedures. However, for some people, there are permanent barriers to brachial BP measurement, such as amputation, bilateral lymphoedema (e.g. after bilateral mastectomy for breast cancer) or phocomelia (e.g. secondary to thalidomide).⁵ Brachial BP measurement may also be inaccurate, and difficult to self-administer, where there is altered muscle tone or hemiplegia following stroke.⁶⁷ It is also unreliable in the presence of bilateral subclavian, axillary or brachial artery stenoses due to atheroma or arteritides.⁸ In any of these circumstances, measurement of BP in the leg is a suitable alternative for monitoring BP, diagnosing and treating hypertension. However, at present, only limited data exist to guide interpretation of the leg systolic BP (SBP) values. Historically, ranges of 10 to 40 mmHg have been suggested for the difference (i.e. leg minus arm) between SBP measured in the arm and leg in healthy individuals.^{9 10} Recently, a systematic review and study level meta-analysis of observational studies was published examining this relationship.¹¹ Based on 44 included studies, totalling 9,771 participants, ankle SBP was found to be 17.0 mmHg [95 % confidence intervals (CI) 15.4 to 21.3 mmHg] higher than arm BP in the general population; for diastolic BP there was no difference. These findings suggested that a threshold of 155/90 mmHg in the leg [equating to the National Institute for Health and Care Excellence (NICE) threshold of 140/90 mmHg in the arm]³ might be used for diagnosing hypertension when ankle BPs are the only measurements available. However, significant statistical heterogeneity was observed in all analyses, which could not be explained in subgroup or sensitivity analyses according to cardiovascular disease

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

> history, cardiovascular disease risk, measurement method and device or methodological quality. Meta-regression by age and arm SBP level was also uninformative.¹¹ Study-level aggregate meta-analyses are limited in the conclusions that can be drawn, because they combine studies with different patient characteristics (for example, age or co-existing disease), methodological choices (for example, posture in BP measurement or sequential versus simultaneous measurement) and analytical approaches. These limitations can potentially be overcome by obtaining the original individual participant data (IPD) from cohorts.¹² Such IPD meta-analyses, whilst time consuming, offer advantages, such as checking of modelling assumptions, analysing variables on continuous scales and the possibility of assessing for non-linear relationships¹³. They offer the ability to uniformly adjust findings for other variables, thus potentially accounting and adjusting for heterogeneity between findings in a way that study-level meta-analyses cannot.¹⁴

We propose to undertake IPD meta-analyses to answer the following research questions:

- What is the mean difference, in the absence of peripheral arterial disease, between SBP measured in the arm and SBP measured in the leg in the same individuals?
- 2. To what extent do these differences vary according to patient characteristics and methods of measurement, and what are the impacts of cerebrovascular and cardiac diseases on the difference between arm and leg pressures?
- 3. Can a model be developed and validated to predict arm SBP, based on leg SBP measurements and other patient characteristics, to inform interpretation of individual leg SBP readings?
- 4. How does leg BP, in comparison with models based on arm BP, predict cardiovascular events and/or mortality?

Methods and analysis

Aims and objectives

This IPD meta-analysis has the following aims:

1. To examine the relationship between arm and leg SBP, taking into account patient characteristics such as age, baseline BP and medical history.

2. To derive and validate a prediction model to permit estimation of an equivalent brachial SBP based on leg SBP measurements.

3. To determine the independent prognostic value of leg SBP in predicting cardiovascular events and mortality risk.

Data sources and description of the dataset

This study will use an observational cohort design, undertaking IPD meta-analyses of data held by the Inter-arm BP difference (INTERPRESS-IPD) Collaboration, established to undertake IPD metaanalyses examining the independent contribution of inter-arm BP difference to prediction of mortality and cardiovascular events.¹⁵ The establishment of the Collaboration has been previously described.¹⁵ In brief, literature searches and author contacts were used to identify studies likely to hold records of BP in both arms. A subset of these studies measured ankle–brachial index (ABI) at recruitment, thus providing data for arm and leg BPs.¹⁶ Individual data sharing agreements are in place with the lead authors of each participating study; their consent has been obtained for the proposed analyses and corresponding authors for each participating study will contribute to publications arising from these analyses. Core data, held for the primary INTERPRESS-IPD research outputs, will undergo additional cleaning and merging of relevant additional variables prior to combination into a new, expanded, single dataset.

The new ABLE-BP dataset will include 33,710 individual records from 14 European, US and African studies that measured both arm and leg BP. Participants in the dataset have a mean age of 58 years (range: 18 to 99 years), 45 % are female and mean systolic/diastolic brachial BP is 135/80 mmHg. In total, 20,191 (60 %) have hypertension (defined as a formal clinical diagnosis and/or on

antihypertensive treatment), 4,917 (15 %) have diabetes, 5,474 (17 %) have pre-existing ischaemic heart disease and 1,900 (6 %) have had a cerebrovascular event. Median follow-up period is 8.0 years, with 2,811 (9 %) participants experiencing cardiovascular events or death and 621 (2 %) dying within 10 years. We will present tables including descriptors (for example, country, method of BP measurement, description of cohort) of each study to assess comparability and describe the dataset. A summary of the included studies and their characteristics are given in Table 1.

Outcomes

The primary outcome (systolic arm-leg BP difference) for the analyses will be defined as the lower leg posterior tibial artery BP minus the higher arm BP measured on the brachial artery. The coprimary outcome will be arm SBP predicted from leg BP. Primary analyses will use observed data only (see missing data – below).

Secondary outcomes are the prognostic value of leg BPs for prediction of cardiovascular events and mortality.

Quality assessment

The methodological quality and risk of bias for studies contributing data has been assessed using the Quality assessment In Prognostic Studies (QUIPS) score, modified for IPD analysis.¹⁷ These assessments will be used to inform sensitivity analyses focusing on the highest quality studies. This quality assessment covers domains on selection bias, attrition, and accuracy of measurement, analysis and confounding.

Participant selection

Participants with ankle or arm BP missing at recruitment will be excluded from the analyses. We will also exclude participants with a diagnosis of peripheral arterial disease, low ABI (< 0.90) and those studies where participant entry criteria was based on selected ABI.

Statistical analysis

Descriptive analyses

Descriptive statistics will be used to describe participant characteristics at the study level, including age, sex, ethnic group, body mass index (BMI), arm and leg BP, and history of cardiovascular diseases (and risk factors). Data will be presented as means with standard deviation, median with interquartile ranges, or proportions.

Investigation of relationship between leg and arm blood pressure

We will report the mean arm-leg differences for each study. These will be examined in a two-stage meta-analysis. Estimates of heterogeneity from these analyses will be used to determine whether to conduct a further one-stage analysis with study entered as a random or as a fixed effect. We will explore cross-sectional relationships between arm and leg BP in univariable and multivariable models with all available data, using hierarchical linear regression. Estimates will be adjusted for age, sex, baseline BP, smoking status, serum cholesterol and medical history at recruitment. As part of planned subgroup analyses, we will also test classes of drugs, and, if significant, they may be entered into final models.

Prediction modelling of arm blood pressure using leg blood pressure

Using a subset of participants with complete case data for candidate variables both identified above, and set *a priori*, we will model brachial SBP on leg SBP using random effects meta-analysis models. We will use one-stage and two-stage methods, and assess heterogeneity using the l² and tau² statistics. One-stage models will comprise hierarchical linear regression models (participants nested by study). Further models will investigate the association between arm-leg difference and participant characteristics (using a series of models with one characteristic per model). Predictor variables to be included *a priori* in the modelling will include age, sex, BMI, smoking status, ethnicity, diagnosis of diabetes, hypertension or any cardiovascular disease, total cholesterol and baseline ankle BP.

The predictive model for arm SBP will be developed using one-stage meta-analysis with hierarchical linear regression models, as described above. We will derive the model using a subset of the complete case data (derivation dataset) and validate the model using the remaining data (validation dataset).¹⁸ The primary studies will be allocated to the derivation or validation datasets such that both datasets include participants of both genders and reflect the geographical origin of the studies.

Prognostic modelling

Prognostic models based on leg SBP will be derived for all-cause and cardiovascular mortality and fatal or non-fatal cardiovascular events. Heterogeneity will be assessed using I² and tau². We will aim to perform one-stage random effects time-to-event models based on flexible parametric models; should such models fail to converge, we will use fixed effect Cox proportional hazards models, stratified by study. Using the covariates described above, and again dividing the dataset into a derivation and validation cohort, we will derive and validate a suitable model. For prognostic modelling, we will exclude participants with any pre-existing cardiovascular disease. Using internationally recognised 10-year risk scores, such as the European Systematic COronary Risk Evaluation (SCORE) and Atherosclerotic Cardiovascular Disease (ASCVD) pooled cohort equations, we will compare the outcome of such cardiovascular risk scores using arm based on leg SBP data with the *actual* arm SBP data.¹⁹⁻²² Besides their wide use in clinical practice, these two scores have been selected to assess two different outcomes, as SCORE predicts cardiovascular mortality, while ASCVD predicts fatal and non-fatal cardiovascular events (cardiovascular death, non-fatal MI and stroke). Model goodness of fit will be compared using the likelihood ratio test, the Akaike Information Criterion²³, and for time-to-event models, the Harrell's C statistic.

Missing data and sensitivity analyses

For all included studies, the primary analyses will use observed data only. Participants from other cohorts included within the INTERPRESS-IPD Collaboration lack leg BP data but do have brachial BP measurements and ankle-brachial indices. We will explore whether accurate back-calculation of leg pressures is feasible using these data. To achieve this, we will establish a clear understanding of the

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

study formulae used to derive ABI, including discussion with authors as necessary. We will then trial this approach using datasets that do contain leg pressures to confirm validity. If feasible, we will back-calculate missing leg SBPs and add these data to the observed data for sensitivity analyses to check the primary models. We will also perform sensitivity analyses incorporating height into the final models, where available. Further sensitivity analyses, using multiple imputation of arm and/or leg SBP and participant data for the one-stage meta-analyses where arm-leg or arm SBP is the outcome, and for the time-to-event analyses will also be undertaken. The results of these models will be compared with the primary outcome models using observed data only. Finally, we will repeat the primary analyses excluding studies deemed to be of low or moderate quality based on modified QUIPS scores.

Publication and inclusion bias

Inclusion bias will be assessed by comparing our pooled estimate of the mean arm – leg SBP difference for studies included in the ABLE-BP analyses with studies using sequential blood pressure measurement methods in our previous study-level systematic review using a two-stage meta-analysis.¹¹ Publication bias will not be assessed; we believe that there is limited potential for publication bias, as the primary studies from which we derive data were not originally designed to compare arm and leg BPs. Although we are performing secondary analyses in a subset of an established dataset (INTERPRESS-IPD Collaboration), which is an efficient and cost-effective approach, we must acknowledge that the INTERPRESS-IPD dataset was not established for the purpose of defining the arm-leg SBP relationship and therefore there is a possibility that other data exist that fall outside the scope of the original search terms.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Patient and public involvement

The development of this protocol has had considerable patient and public involvement (PPI). Prior to funding, a draft was reviewed by three public advisors improving the overall clarity in general, and in specific areas, such as focussing the research questions on aspects of arm and leg BP that interest users. We convened two prefunding PPI workshops to raise awareness about involvement in

BMJ Open

> systematic reviews and gain critical feedback for the project. This feedback resulted in a clearer definition of the population being studied, greater clarity about benefits for patients and reinforcement of our user dissemination plans. We have established a PPI advisory group for the project, led by KB (an academic PPI facilitator) and comprising one stroke survivor and two Thalidomide Trust beneficiaries; they will shape the research by fully participating in quarterly management meetings. The group have contributed toward drafting this protocol and the plain English abstract. We plan two key workshops to ensure that the review findings reach the end user in an accessible way. First, a summary writing workshop with the PPI advisory group to achieve a clear plain language summary and to co-produce a dissemination plan targeted at patients and the public. Second, we will convene a larger public event on the subject of understanding cardiovascular risk, within which the findings of this research can be presented in context.

Ethics and dissemination

This is a secondary analysis of anonymised IPD which has been obtained from studies where participants have already given consent and approval to participate (see 'ethics approval and patient consent for publication' declaration). We have sought written permission for use of IPD from each individual study lead investigator included in the INTERPRESS-IPD Collaboration. We will therefore not seek further ethical approval to undertake these analyses.

The study will be reported in accordance with the Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data (PRISMA-IPD) statement²⁴. Findings will be published as open access articles in high-impact peer-reviewed journals and presented at international conferences. We will seek to inform national, European and global developers of clinical guidelines, including the UK NICE guidance, NHS commissioners, the British and Irish Hypertension Society and local healthcare providers. We will co-produce a targeted dissemination plan for the public and specific patient groups and our funding charities, in conjunction with the project PPI advisory group. We also plan to undertake a public dissemination event for patients, clinicians and providers or commissioners regarding the importance of, and relationship between,

BMJ Open

arm and leg BPs and understanding the importance of BP measurement in cardiovascular risk estimation – the findings from this study will be presented. The INTERPRESS-IPD Collaboration is a large, international dataset with both arm and leg BPs, and is available for further research activity in this area in the future.

Discussion

There are 1.2 million stroke survivors living in the United Kingdom (UK; State of the Nation Stroke statistics - January 2017: The Stroke Association) and 75 % of these individuals report weakness of upper limb function that interferes with activities of daily living.²⁵ Self-monitoring and self-titration of BP lowering treatment achieves lower BPs in people at high risk of new or recurrent stroke.²⁶ However, this is either impossible or difficult for many stroke survivors with significantly impaired upper limb function, and for individuals with other barriers to BP measurement in the arm. Data suggest a prevalence of 12 to 13 individuals per 100,000 population have upper limb prostheses in the UK and Norway.^{27 28} In addition, over 1,700 amputations higher than wrist level occur annually in the UK.²⁹ Congenital upper limb deformities are also important; for example, the UK Thalidomide Trust has 460 beneficiaries who are now aged in their late-50s. Hypertension is a particular concern in this cohort, and over half of beneficiaries report upper limb damage.³⁰ Taking these data together, we conservatively estimate that between 6,000 and 10,000 adults may be living with significant congenital or acquired upper limb loss in the UK. As a population, these individuals are in particular need of accurate estimates of BP to understand and mitigate their cardiovascular risk, stroke being an important avoidable consequence.

Thus, barriers to accurate upper arm BP measurement exist for a substantial minority of the UK population, and corresponding proportions across other countries. Whenever circumstances require leg BP measurement, it is important to be able to interpret the readings correctly. This is the focus of our proposal. Our data originate from cohorts across Europe, North America and Africa, therefore we expect our findings to be applicable across the globe.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

To date, estimates suggest either a minimum difference of 15 mmHg in SBPs between arm and leg, or a conversion factor of x 0.88, as a rule of thumb.^{5 11} This study aims to provide the first evidencebased method for estimating individual brachial SBP and cardiovascular risk from leg SBP measurements. Our findings will support clinicians and patients in detecting and managing hypertension more effectively where leg measurements are required.

to occure with only

1
2
3
4
5
6
7
8
9
10
11
13
14
15
16
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Deferer	
Referen	ICES
A D A G	on PK, Carey RM, Aronow WS, et al. 2017 CC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention vetection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the merican College of Cardiology/American Heart Association Task Force on Clinical Practice suidelines. <i>Journal of the American College of Cardiology</i> 2017 doi: 0.1016/j.jacc.2017.11.006 [published Online First: 2017/11/18]
h	ns B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial ypertension. <i>European Heart Journal</i> 2018;39(33):3021-104. doi: 0.1093/eurheartj/ehy339
3. Nation p	al Institute for Health and Clinical Excellence. Hypertension: The clinical management of rimary hypertension in adults, CG127. London: National Institute for Health and Clinical xcellence 2011.
Ν	KO, Aigbe A, Ju H-H, et al. Barriers to Accurate Blood Pressure Measurement in the Nedical Office. <i>Journal of primary care & community health</i> 2018;9:2150132718816929. doi 0.1177/2150132718816929
d A 6. Dewar	, Shimbo T, Yoshizawa A. Multicenter investigation of lifestyle-related diseases and visceral isorders in thalidomide embryopathy at around 50 years of age. <i>Birth Defects Research Par : Clinical and Molecular Teratology</i> 2015;103(9):787-93. doi: doi:10.1002/bdra.23363 R, Sykes D, Mulkerrin E, et al. The effect of hemiplegia on blood pressure measurement in the elderly. <i>Postgraduate Medical Journal</i> 1992;68(805):888-91.
7. Madua M 1	gwu SM, Umeonwuka CI, Mohammad HH, et al. Reference Arm for Blood Pressure Measurement in Stroke Survivors. <i>Middle East J Rehabil Health Stud</i> 2018;5(1):e62368. doi: 0.5812/mejrh.62368 [published Online First: 2018-01-02]
a A 1	ns V, Kamineni A, Allison MA, et al. The epidemiology of subclavian stenosis and its ssociation with markers of subclinical atherosclerosis: the Multi-Ethnic Study of therosclerosis (MESA). <i>Atherosclerosis</i> 2010;211(1):266-70. doi: 0.1016/j.atherosclerosis.2010.01.013 [published Online First: 2010/02/09] elli EF, Bertrand CA. Comparison of blood pressures in the arms and legs. <i>N Engl J Med</i>
10. Stewa si	964;270:693-8. doi: 10.1056/nejm196404022701401 [published Online First: 1964/04/02] art HJ, Newman AA, Evans WF. Levels of blood pressure in both arms and legs in normal ubjects and patients suffering from certain diseases. <i>The American Journal of Medicine</i> 946;1(5):451-63. doi: 10.1016/0002-9343(46)90065-4
р	bard JP, Albasri A, Franssen M, et al. Defining the relationship between arm and leg blood ressure readings: a systematic review and meta-analysis. <i>Journal of Hypertension</i> 019;Publish Ahead of Print doi: 10.1097/hjh.0000000000001958
n	ny TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction nodel performance. <i>BMJ</i> 2017;356:i6460. doi: 10.1136/bmj.i6460 [published Online First: 017/01/07]
13. Tudur Ir d	⁵ Smith C, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley R, Rovers MM, Williamson PR. ndividual participant data meta-analyses compared with meta-analyses based on aggregate ata. <i>Cochrane Database Syst Rev</i> 2016; 9(9): MR000007. doi: 0.1002/14651858.MR00007.pub3
14. Abo-Z st	aid G, Sauerbrei W, Riley RD. Individual participant data meta-analysis of prognostic factor tudies: state of the art? <i>BMCMedRes Methodol</i> 2012;12:56.
a a	CE, Boddy K, Warren FC, et al. Associations between interarm differences in blood pressure nd cardiovascular disease outcomes: protocol for an individual patient data meta-analysis nd development of a prognostic algorithm. <i>BMJ Open</i> 2017;7:e016844. doi: 0.1136/bmjopen-2017-016844
16. Aboya	ans V, Criqui MH, Abraham P, et al. Measurement and Interpretation of the Ankle-Brachial ndex. <i>Circulation</i> 2012

- 17. Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing Bias in Studies of Prognostic Factors. Annals of Internal Medicine 2013;158(4):280-+.
- 18. Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. *BMJ (Clinical research ed)* 2009;338:b605.

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56 57

58

59

- 19. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. *BMJ* 2008;336(7659):1475-82.
- 20. Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation* 2014;129(25 Suppl 2):S49-73. doi: 10.1161/01.cir.0000437741.48606.98
- 21. D'Agostino RB, Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. *Circulation* 2008;117(6):743-53. doi: 10.1161/circulationaha.107.699579 [published Online First: 2008/01/24]
- 22. Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. *Eur Heart J* 2003;24(11):987-1003. [published Online First: 2003/06/06]
- 23. Akaike H. A new look at the statistical model identification. *IEEE Transactions on Automated Control* 1974;19(6):716-23.
- 24. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF; PRISMA-IPD Development Group. PreferRed Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. *JAMA* 2015;313(16):1657-1665.
- 25. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. *Stroke* 2001;32(6):1279-84.
- 26. McManus RJ, Mant J, Haque MS, et al. Effect of Self-monitoring and Medication Self-titration on Systolic Blood Pressure in Hypertensive Patients at High Risk of Cardiovascular Disease: The TASMIN-SR Randomized Clinical TrialSelf-monitoring and Self-titration for HypertensionSelfmonitoring and Self-titration for Hypertension. JAMA 2014;312(8):799-808. doi: 10.1001/jama.2014.10057
- 27. Kyberd PJ, Beard DJ, Morrison JD. The population of users of upper limb prostheses attending the Oxford Limb Fitting Service. *Prosthet Orthot Int* 1997;21(2):85-91. doi: 10.3109/03093649709164535
- 28. Ostlie K, Skjeldal OH, Garfelt B, et al. Adult acquired major upper limb amputation in Norway: prevalence, demographic features and amputation specific features. A population-based survey. *Disabil Rehabil* 2011;33(17-18):1636-49. doi: 10.3109/09638288.2010.541973
- 29. Cordella F, Ciancio AL, Sacchetti R, et al. Literature Review on Needs of Upper Limb Prosthesis Users. *Front Neurosci* 2016;10:209-09. doi: 10.3389/fnins.2016.00209
- Newbronner E, Glendinning C, Atkin K, et al. The health and quality of life of Thalidomide survivors as they age – Evidence from a UK survey. *PLOS ONE* 2019;14(1):e0210222. doi: 10.1371/journal.pone.0210222
- McGrae McDermott M, Greenland P, Liu K, et al. Leg symptoms in peripheral arterial disease: Associated clinical characteristics and functional impairment. JAMA 2001;286(13):1599-606. doi: 10.1001/jama.286.13.1599
- 32. Guerchet M, Mbelesso P, Ndamba-Bandzouzi B, et al. Epidemiology of dementia in Central Africa (EPIDEMCA): protocol for a multicentre population-based study in rural and urban areas of the Central African Republic and the Republic of Congo. SpringerPlus 2014;3:338. doi: 10.1186/2193-1801-3-338 [published Online First: 2014/07/22]
- 33. Lahoz C, Barrionuevo M, Garcia-Fernandez T, et al. Cardiovascular morbidity-mortality associated to ankle-brachial index in the general population. [Spanish]. *Revista Clinica Espanola* 2014;214(1):1-7.
- 34. Erbel R, Mohlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis:

BMJ Open

35.	Cl
36.	Es
37.	N
38.	Es
39.	Bi
40.	W
41.	Kı
42.	C
43.	D
44.	w
	 36. 37. 38. 39. 40. 41. 42. 43.

- 5. Clark CE, Thomas D, Llewellyn D, et al. Inter-arm blood pressure and risk of cognitive decline in the elderly. *Br J Gen Pract* 2020; *;* DOI:https://doi.org/10.3399/bjgp20X709589; *published online* 5/5/20.
- 36. Espeland MA, Newman AB, Sink K, et al. Associations Between Ankle-Brachial Index and Cognitive Function: Results From the Lifestyle Interventions and Independence for Elders Trial. Journal of the American Medical Directors Association 2015;16(8):682-89.
- 37. Marti R, Garcia-Regalado N, Garcia-Gil M, et al. Improving interMediAte risk management. MARK study. *BMC Cardiovascular Disorders* 2011;11:61.
- 38. Espeland MA, Beavers KM, Gibbs BB, et al. Ankle-brachial index and inter-artery blood pressure differences as predictors of cognitive function in overweight and obese older adults with diabetes: Results from the Action for Health in Diabetes movement and memory study. *International Journal of Geriatric Psychiatry* 2015;30(10):999-1007.
- 39. Bild DE, Bluemke DA, Burke GL, et al. Multi-Ethnic Study of Atherosclerosis: Objectives and Design. *American Journal of Epidemiology* 2002;156(9):871-81.
- 40. Wassel CL, Loomba R, Ix JH, et al. Family History of Peripheral Artery Disease is associated with Prevalence and Severity of Peripheral Artery Disease: The San Diego Population Study (SDPS). Journal of the American College of Cardiology 2011;58(13):1386-92. doi: 10.1016/j.jacc.2011.06.023
- 41. Kranenburg G, Spiering W, de Jong PA, et al. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease. *International journal of cardiology* 2017;244:271-76. doi: 10.1016/j.ijcard.2017.06.044
- 42. Clark CE, Casanova F, Gooding K, et al. Inter-arm blood pressure difference and arterial stiffness. *Journal of Hypertension* 2014;32(eSuppl A):e30.
- 43. Dahl M, Frost L, Søgaard R, et al. A population-based screening study for cardiovascular diseases and diabetes in Danish postmenopausal women: acceptability and prevalence. *BMC cardiovascular disorders* 2018;18(1):20. doi: 10.1186/s12872-018-0758-8
- 44. White J, Mortensen LH, Kivimaki M, et al. Interarm differences in systolic blood pressure and mortality among US army veterans: aetiological associations and risk prediction in the Vietnam experience study. *EurJPrevCardiol* 2014;21(11):1394-400.

Competing interests

CEC has been loaned a bilateral blood pressure monitor for unrestricted evaluation by Microlife AG, and has received honoraria from Bayer AG. No company has had, or will have, any involvement in the design or conduct of this study.

Contributors

This protocol was first drafted by SM, CEC, FCW, JS, UM, LF, KB and VA, then revised and edited by all authors, including HS, PW, PL, RB and AJF. The final manuscript has been read and reviewed by all authors.

The following collaborating authors contributed data to the original INTERPRESS-IPD Collaboration and the subsequent ABLE-BP project: *Vietnam Experience Study*: James White; *INCHIANTI*: Luigi Ferrucci; *Heinz-Nixdorf Recall Study*: Raimund Erbel; *SMART*: Jan Westerink; *San Diego Population Study*: Michael Criqui; *Fuencarral Health Center*: Carlos Lahoz; *EPIDEMCA*: Maëlenn Guerchet; *MESA*: Matthew Allison; *LIFE & WALCS*: Mary McDermott; *Look AHEAD*: Mark Espeland; *ViWoCo*: Marie Dahl; *SUMMIT*: Angela Shore; *MARK Study*: Rafel Ramos Blanes

Funding

The INTERPRESS-IPD Collaboration was established with a grant from the NIHR Research for Patient Benefit programme, grant no: PB-PG-0215-36009.

This current project is supported by the Stroke Association (SA PG 19/100043) and by the Thalidomide Trust.

Disclaimer

The views expressed are those of the authors and not necessarily those of the Stroke Association, the Thalidomide Trust, the NIHR, the NHS or the Department of Health.

Ethics approval and patient consent for publication

Not required for secondary analyses of subset of INTERPRESS-IPD dataset.

A summary of the ethical approval granted for each individual study included in the ABLE-BP dataset are listed below (please see individual publications for more information):

WALCS: The protocol was approved by the North-western University Medical School and Catholic Health Partners Hospital institutional review boards.

EPIDEMCA: Ethical committees, supervised by Ministry of Public Health in Central African Republic and the CERSSA (Comité d'Ethique de la Recherche en Sciences de Santé) in the Repulic of Congo, approved the study protocol, as well as the CPP-SOOM-IV (Comité de la Protection des Personnes Sud-Ouest Outre-Mer) in France.

Fuencarral Health Center: The study was approved by the Comité de Ética e Investigación Clínica (CEIC) of the Hospital Carlos III in Madrid.

Heinz Nixdorf: The Medical Ethics Committee of Erasmus Medical Center approved the study.

InCHIANTI: Ethical approval for the InCHIANTI study was provided by the Italian National Research Council on Aging Ethical Committee.

MARK: The study received ethical approval from the Research Ethics Committee of the Institut d'Investigació en Atenció Primària Jordi Gol (Primary Care Research Institute Jordi Gol).

Look AHEAD: The Look AHEAD M&M protocol and consent forms were approved by local Institutional Review Boards prior to use.

MESA: The institutional review boards of the six field centers involved in the study approved the study protocol.

San Diego Population Study: The study received approval from the Committee on Investigations Involving Human Subjects at UCSD.

SMART: The study was approved by the Medical Ethics Committee of the University Medical Centre Utrecht.

SUMMIT: The study received ethical approval from the EU and all participating studies received insitutional ethics review and approval.

ViWoCo: The study was approved by the Regional Scientific Ethical Committee, a part of the Danish National Committee on Health Research Ethics (record number M-20100116) and the Danish Regional Data Protection Agency (record number 1–16–02-221-16).

Vietnam Experience Study: Ethical approval for the study protocol was given by the US Office for Technology Assessment, the Department of Health and Human Sciences Advisory Committee, the Agent Orange Working Group Science Panel, and a review panel from the US Centers for Disease Control.

Provenance and peer review

Not commissioned; externally peer reviewed.

Table 1 – characteristics of studies included in the ABLE-BP dataset

Гаble 1 – ch	naracteristic	s of st	udies inc	luded in the	вмл с ABLE-BP с			36/bmjopen-2020-040481 or 4 by copyright, including for		Ρ		
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	Pateness Pateness	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event		
Chicago Walking and Leg Circulation Study (WALCS) ³¹	1998-2000	440	USA	Patients without lower extremity peripheral artery disease who were recruited for the non-PAD comparator group.	Subclavian stenosis as a marker for total and cardiovascular disease mortality	Two sequences of BP readings recorded using a 12-cm pneumatic cuff and a hand held Doppler probe (Nicolet Vascular Pocket Dop II, Golden, Colo) with patient supine	Mean follow- up was 4.8 years.	Patenting used the shores boy the shores chool data minute Self Self Self Self Self Self Self Sel	Patient history or use of oral antidiabetic drugs and/or insulin	Cardiovascular death: Any fatal cardiovascular cause. <i>Non-fatal events</i> : MI, stroke, TIA, coronary o peripheral revascularisation, congestive heart failure, PAD, angina		
Epidemiology of dementia in Central Africa (EPIDEMCA) ³²	November 2011- December 2012	880	Central African Republic/ Republic of Congo	Males and females, aged ≥ 65 years living in areas of Central African Republic and Republic of Congo	Diagnosis of dementia and Alzheimer's disease and associated risk factors	Two sequences of BP measurements recorded using standard mercury sphygmomanometer, as part of ABI protocol with patients supine. BP rounded to nearest 5 mmHg	2-3 years	Selfgeported BP low,@ing treatment; SBP>1400mmHg or DBP>903mmHg mining, and normality, and	Self-reported or blood glucose >126 mg/dL fasting or >200 mg/dL in non- fasting	Cardiovascular death: Stroke, MI or other cardiovascular or cerebrovascular diseases - based on interview of relatives during verbal autopsy at follow-up. Non-fatal events: Stroke, MI, other heart disease		
Fuencarral Health Center ³³	2003-2004	1102	Spain	Males and females, aged 60-79 years, with no known PAD	Low ABI and incidence of death due to cardiovascular causes	BP measured sequentially with Doppler 8-MHz probe (Hadeco, Kawasaki, Japan) and calibrated mercury sphygmomanometer with patient supine	Mean follow- up 49.8 months	SB® 14 trimHg, DB⊞≥90 mHg or use the terms treatment on May 14, 2025 at Dep treatment on the terms of the terms of the terms treatment on the terms of te	Baseline glucose ≥126 mg/dl (>7 mmol/L) on 2 occasions or use of antidiabetic agents	Cardiovascular death: Fatal stroke, MI, sudden death without other cause, death after vascular surge or procedure, death attributed to heart failure, bowel or limb infarction, ar other death not categorically attributed to a non-vascular cause <i>Non-fatal events</i> : MI, stroke or cardiovascular event		
Heinz Nixdorf Recall Study ³⁴	2000-2003	4617	Germany	Males and females, aged 45-74 years, in an unselected urban population from the Ruhr area	Coronary artery calcium as predictor for fatal and non-fatal MI.	BP measured sequentially using Doppler probe (Logidop, Kranzbuhler, Germany) with patients supine	Mean follow up: 109 months	SBP >1400mmHg or DBP >900mmHg ent GEZ-LTA	Existing diagnosis or use of anti- diabetic medication	Cardiovascular death or non-fatal event: First occurrence of MI based on symptoms, ECG signs, and enzymes,		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open BMJ Open -2020 in 12020										
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	DefRuition hypein ng fo or	Definition of diabetes	Definition of cardiovascular d non-fatal cardiov event	
					Secondary endpoints included ABI as a stroke predictor factors			19 March Er uses relat		supported by necro fatal	
Invecchiare in Chianti (InCHIANTI) ³⁵	August 1998- March 2000	1091	Italy	Males and females, aged ≥ 65 years, living in Greve and Bagno	Physiological factors influencing walking ability	Single pair of sequential brachial BP readings using standard mercury sphygmomanometer, with patients supine. BP rounded to nearest 5 mmHg. Posterior tibial arteries measured twice with a handheld Doppler stethoscope (Parks model 41-A; Parks Medical Electronics, Inc, Aloha, Ore).	N/S	Selfate existence diageory solution BP xito solution metal solution	Self-reported, existing recorded diagnosis, or use of anti-diabetic medication, or fasting glucose >7.0 mmol/L	Cardiovascular de Not defined. Non-fatal events: Diagnosis of heart MI or angina, strok	
Lifestyle Interventions and Independence for Elders (LIFE) study ³⁶	2010-2011/ 2.6 years	1588	USA	Ambulant community dwelling individuals, aged 70-89 years with a sedentary lifestyle (<20min per week physical activity)	Major mobility disability Secondary: Association between ABI and cognitive function	Two pairs of sequential measurements recorded in each arm using handheld Doppler, with patients supine	2 years	Selainguren, and similar tech	Self-reported	Cardiovascular fat non-fatal events: MI, angina, stroke carotid artery disea congestive heart fa PAD requiring hospitalisation, out revascularisation f ruptured abdomina aneurysm	
Improving interMediAte RisK management (MARK) study ³⁷	N/S	2490	Spain	Males and females living in 3 regions of Spain, aged 35-74 years. Free of atherosclerotic disease, with an intermediate cardiovascular risk (10-year coronary risk of 5-15% or vascular death risk of 3-5%) selected at random	Incidence of vascular events	Three pairs of BP measurements in each arm, using an OMRON 705, with patients seated. Legs measured with Vasera device VS- 1500® (Fukuda Denshi)	10 years	Patient reported, or use of BP-lewering meterizations or SBP ≥1@mmH20 or DBP ≥90mmH25 at Department GEZ-LTA	Patient reported, or use of antidiabetic treatment or fasting glucose ≥ 126 mg/dL	Cardiovascular dea not defined Non-fatal events: Stroke or TIA, MI, i or revascularisation procedure	

					BMJ C	pen		Pa		
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	in 2005 Defluition hyperten mg for	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event
Action for Health in Diabetes (Look AHEAD) ³⁸	June 2001-March 2004	339	USA	Overweight and obese individuals with type 2 diabetes aged 45-76 years, and had a body mass index, 25 kg/m2, or ≥27 kg/m2 if taking insulin	A composite cardiovascular outcome: cardiovascular death, non-fatal MI, non-fatal stroke, hospitalized angina Secondary: Cognitive function	Two pairs of sequential BP measurements recorded in each arm, using continuous wave Doppler with a standard mercury sphygmomanometer, with patients supine	4-5 year follow up	SBL≥140 nmHg, ≥D9 SpmHg or to text and data mining	Self-reported verified from medical records, current treatment, or fasting glucose of ≥126 mg/dL	Cardiovascular death: MI, congestive heart failur death after cardiovascular intervention, surgery or du to arrhythmia, stroke, presumed cardiovascular death, rapid unexplained cardiovascular death. <i>Non-fatal events</i> : Stroke, MI, angina, coronary artery bypass grafting or percutaneous coronary intervention, congestive heart failure, carotid endarterectomy, peripheral arterial bypass angioplasty
Multi Ethnic Study of Atherosclerosis (MESA) ³⁹	2000-2002	6770	USA	Males and females, aged 45-84 years, free of clinical cardiovascular diagnoses at baseline	Association of subclavian stenosis with markers of cardiovascular disease	Single pair of sequential BP measurements, using hand-held Doppler instrument and 5-mHz probe, with patients supine	N/S	Self control distory with the sed SBP low ding m metter and sed set of the sed or SBP ≥ the sed set of the sed or SBP ≥ the sed set of the s	Fasting blood glucose ≥126 mg/dl or use of oral hypoglycemic agents or insulin	Cardiovascular death: Death due to atherosclerotic coronary heart disease, stroke, oth cardiovascular disease. Non-fatal events: Stroke, TIA, MI, angina, revascularisation procedu
San Diego Population Study ⁴⁰	1994-1998	2388	USA	Males and females, aged 29-91 years, attending a clinic for assessment of PAD and venous disease	Prevalence of PAD	Two pairs of BP measurements, using a continuous-wave Doppler ultrasound, with patients supine	N/S	SB∯≥140mmHg or DBB≥≥ 90mmHg or use∯f BP towering metations May	Self-reported or use of antidiabetic medications	Cardiovascular death: not defined Non-fatal events: MI, stroke, angina, coron angioplasty or bypass gra or carotid endarterectom
Second Manifestations of ARTerial disease (SMART) study ⁴¹	January 2002 – February 2014	7600	The Netherlands	Males and females, aged 18-80 years, referred to University Medical Center Utrecht, for treatment of clinically manifest vascular disease or cardiovascular risk factors	3 point MACE (combination of non-fatal myocardial infarction, non- fatal stroke and death from vascular disease), total mortality and vascular mortality	Single pair of sequential BP measurements, using a Vasoguard Doppler probe, with patients supine	Mean follow- up:5.9 years	Blog pressure >140,90 miniHg at baskine the use of blood pessure lowering radication. Department GEZ-LTA	Recorded diagnosis, self- reported diagnosis, use of blood glucose lowering medicati on, or fasting glucose >7 mmol/L at recruitment combined with initiation of	Cardiovascular death: Death from stroke, MI, congestive heart failure, rupture of abdominal aort aneurysm or vascular dea from other causes <i>Non-fatal events</i> : Stroke (infarction or haemorrhagic), MI, retina infarction, heart failure

					BMJ C	open		36/bmjopen-2020 4 by copyright, indition		
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	ing f	Definition of diabetes	Definition of cardiovascu non-fatal car event
								or uses related bistory of uses related bistory of bext and definition Selforext and definition Banining, A	glucose lowering medication within first year of follow-up. Type 1 diabetes excluded.	
Surrogate markers for Micro- and Macrovascular hard endpoints as Innovative diabetes tools (SUMMIT) ⁴²		334	England	Adults over 18 with and without diabetes and/or cardiovascular disease		6 pairs of simultaneous BP readings using two Omron 705 devices swapped after 3 readings, with patients supine	N/S	Selferend history of hyperfection of hyperfection of hyperfection and download	HbA1c ≥ 48 mmol/mol	Cardiovascula Fatal MI
Viborg Women Cohort (ViWoCo) ⁴³	October 2011- January 2013	1428	Denmark	Females born in 1936, 1941, 1946 and 1951 living in the Municipal of Viborg, Denmark	Presence of cardiovascular disease and diabetes mellitus	One pair of simultaneous BP readings, using Omron M2 devices, with patients supine, rounded to nearest 2mmHg	Median follow-up 3.3 years	SB∰2000 DB∰2000 DB∰1000 DB DB DB DB DB DB DB DB DB DB DB DB DB	HbA1c ≥ 48 mmol/mol	Cardiovascula Fatal event as Non-fatal even MI or ischaem leading to hos
Vietnam Experience Study44	1986	4394	USA	Male US army veterans who participated in the Vietnam war	Inter-arm differences, all- cause and cardiovascular mortality	Two pairs of sequential BP measurements, using standard mercury sphygmomanometer, with patients seated	15 years	SBP>2140 mmHg, DBA≥90 mmHg or use af BP to wering met ation	Fasting plasma glucose ≥ 7.0 mmol/l and/or use of medication for diabetes	Cardiovascula Death due to cardiovascula
						heral arterial disease, SBP = s		nj.com/ on May 14, 2025 at Department GEZ-LTA d similar technologies.		

Arm Based on LEg blood pressures (ABLE-BP): Can systolic leg blood pressure measurements predict systolic brachial blood pressure? Protocol for an individual participant data meta-analysis from the INTERPRESS-IPD Collaboration

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-040481.R2
Article Type:	Protocol
Date Submitted by the Author:	13-Dec-2020
Complete List of Authors:	McDonagh, Sinead; University of Exeter, Primary Care Research Group Sheppard, James; University of Oxford, Nuffield Department of Primary Care Health Sciences Warren, Fiona; University of Exeter, Primary Care Research Group Boddy, Kate; University of Exeter, NIHR CLAHRC South West Peninsula (PenCLAHRC) Farmer, Leon; Patient and Public Involvement Advisor Shore, Helen; Patient and Public Involvement Advisor Williams, Phil; Patient and Public Involvement Advisor Lewis, Philip; Stockport NHS Foundation Trust Baumber, Rachel ; Royal National Orthopaedic Hospital Stanmore, Fordham, A Jayne; Mid Devon Medical Practice Martin, Una; University of Birmingham, Institute of Clinical Sciences Aboyans, Victor; Centre Hospitalier Universitaire de Limoges, Department of Cardiology Clark, Christopher; University of Exeter, Primary Care Research Group
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	General practice / Family practice
Keywords:	Risk management < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, CARDIOLOGY, PRIMARY CARE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

Arm Based on LEg blood pressures (ABLE-BP): Can systolic

leg blood pressure measurements predict systolic brachial

blood pressure? Protocol for an individual participant data

meta-analysis from the INTERPRESS-IPD Collaboration

Sinead TJ McDonagh¹, James Sheppard², Fiona C Warren¹, Kate Boddy¹, Leon Farmer³, Helen Shore³ Phil Williams³, Philip S Lewis⁴, Rachel Baumber⁵, A Jayne Fordham⁶, Una Martin⁷, Victor Aboyans⁸, Christopher E Clark¹

on behalf of the INTERPRESS-IPD Collaborators (list at end).

1. University of Exeter Medical School, St Luke's Campus, Magdalen Road, Exeter, Devon, England EX1 2LU

2. University of Oxford, Woodstock Road, Oxford, England OX2 6GG

3. Volunteer patient and public advisor

- 4. Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport, Cheshire SK2 7JE
- 5. Royal National Orthopaedic Hospital NHS Trust, Middlesex HA7 4LP
- 6. Mid Devon Medical Practice, Witheridge, Devon, England EX16 8EZ
- 7. University of Birmingham, Birmingham, England B15 2TT
- 8. Department of Cardiology, Dupuytren University Hospital, Limoges, France

Correspondence to Dr Christopher Clark

c.e.clark@exeter.ac.uk

Primary Care Research Group, Institute of Health Services Research, University of Exeter Medical School, College of Medicine & Health, Smeall Building, St Luke's Campus, Magdalen Road, Exeter, Devon, England, EX1 2LU

Word count excluding abstracts: 3209

Abstract

Introduction

Blood pressure (BP) is normally measured on the upper arm, and guidelines for the diagnosis and treatment of high BP are based on such measurements. Leg BP measurement can be an alternative when brachial BP measurement is impractical, due to injury or disability. Limited data exist to guide interpretation of leg BP values for hypertension management; study-level systematic review findings suggest that systolic BP (SBP) is 17 mmHg higher in the leg than the arm. However, uncertainty remains about the applicability of this figure in clinical practice due to substantial heterogeneity.

Aims: To examine the relationship between arm and leg SBP, develop and validate a multivariable model predicting arm SBP from leg SBP and investigate the prognostic association between leg SBP and cardiovascular disease and mortality.

Methods and analysis

Individual participant data meta-analyses using arm and leg SBP measurements for 33,710 individuals from 14 studies within the INTERPRESS-IPD Collaboration. We will explore cross-sectional relationships between arm and leg SBP using hierarchical linear regression with participants nested by study, in multivariable models. Prognostic models will be derived for all-cause and cardiovascular mortality, and cardiovascular events.

Ethics and dissemination

Data originate from studies with prior ethical approval and consent, and data sharing agreements are in place - no further approvals are required to undertake the secondary analyses proposed in this protocol. Findings will be published in peer-reviewed journal articles and presented at conferences. A comprehensive dissemination strategy is in place, integrated with patient and public involvement.

PROSPERO registration number

CRD42015031227

Word count: 249

Strengths and limitations of this study

- This individual participant data (IPD) meta-analysis uses the INTERPRESS-IPD Collaboration [IPD from 24 international cohorts, originally created to explore the association between inter-arm differences in blood pressure (BP) and mortality risk], the largest known dataset to allow an in-depth exploration of the relationship between arm and leg systolic BP (SBP) and the role of leg SBP in cardiovascular risk estimation.
- An IPD approach maximises statistical power and allows a consistent approach toward all available data that cannot be achieved with study level meta-analyses.
- Inclusion of a number of international cohorts in this IPD meta-analyses will maximise the generalisability of the findings.
- Methods of data collection and reporting of results vary between included cohorts and this is acknowledged as a limitation of the data. We are aware of other studies with arm and leg BP data that are not included in the INTERPRESS-IPD Collaboration. However, the dataset is large enough to allow robust analysis and sufficient subgroup and sensitivity analyses to answer questions that cannot be addressed by study-level meta-analyses.
- Patient and public involvement (PPI) activities have been, and will be, undertaken throughout every stage of this project and we include three PPI advisors and a PPI facilitator as co-authors.

Introduction

Blood pressure (BP) is normally measured on the upper arm, and all guidelines for the diagnosis and treatment of high BP are based on such measurements.¹⁻³ When brachial BP measurement is not possible, other measurement sites are required. Uncertainty over interpretation of non-brachial BP measurement may result in inaccurate BP estimates, leading to sub-optimal management of hypertension, risking avoidable cerebrovascular or ischaemic cardiac events.⁴ In the clinical setting, this may be a temporary problem due, for example, to fractures, wounds, vascular access devices or during surgical procedures. However, for some people, there are permanent barriers to brachial BP measurement, such as amputation, bilateral lymphoedema (e.g. after bilateral mastectomy for breast cancer) or phocomelia (e.g. secondary to thalidomide).⁵ Brachial BP measurement may also be inaccurate, and difficult to self-administer, where there is altered muscle tone or hemiplegia following stroke.⁶⁷ It is also unreliable in the presence of bilateral subclavian, axillary or brachial artery stenoses due to atheroma or arteritides.⁸ In any of these circumstances, measurement of BP in the leg is a suitable alternative for monitoring BP, diagnosing and treating hypertension. However, at present, only limited data exist to guide interpretation of the leg systolic BP (SBP) values. Historically, ranges of 10 to 40 mmHg have been suggested for the difference (i.e. leg minus arm) between SBP measured in the arm and leg in healthy individuals.^{9 10} Recently, a systematic review and study level meta-analysis of observational studies was published examining this relationship.¹¹ Based on 44 included studies, totalling 9,771 participants, ankle SBP was found to be 17.0 mmHg [95 % confidence intervals (CI) 15.4 to 21.3 mmHg] higher than arm BP in the general population; for diastolic BP there was no difference. These findings suggested that a threshold of 155/90 mmHg in the leg [equating to the National Institute for Health and Care Excellence (NICE) threshold of 140/90 mmHg in the arm]³ might be used for diagnosing hypertension when ankle BPs are the only measurements available. However, significant statistical heterogeneity was observed in all analyses, which could not be explained in subgroup or sensitivity analyses according to cardiovascular disease

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

BMJ Open

> history, cardiovascular disease risk, measurement method and device or methodological quality. Meta-regression by age and arm SBP level was also uninformative.¹¹ Study-level aggregate meta-analyses are limited in the conclusions that can be drawn, because they combine studies with different patient characteristics (for example, age or co-existing disease), methodological choices (for example, posture in BP measurement or sequential versus simultaneous measurement) and analytical approaches. These limitations can potentially be overcome by obtaining the original individual participant data (IPD) from cohorts.¹² Such IPD meta-analyses, whilst time consuming, offer advantages, such as checking of modelling assumptions, analysing variables on continuous scales and the possibility of assessing for non-linear relationships¹³. They offer the ability to uniformly adjust findings for other variables, thus potentially accounting and adjusting for heterogeneity between findings in a way that study-level meta-analyses cannot.¹⁴

We propose to undertake IPD meta-analyses to answer the following research questions:

- What is the mean difference, in the absence of peripheral arterial disease, between SBP measured in the arm and SBP measured in the leg in the same individuals?
- 2. To what extent do these differences vary according to patient characteristics and methods of measurement, and what are the impacts of cerebrovascular and cardiac diseases on the difference between arm and leg pressures?
- 3. Can a model be developed and validated to predict arm SBP, based on leg SBP measurements and other patient characteristics, to inform interpretation of individual leg SBP readings?
- 4. How does leg BP, in comparison with models based on arm BP, predict cardiovascular events and/or mortality?

Methods and analysis

Aims and objectives

This IPD meta-analysis has the following aims:

1. To examine the relationship between arm and leg SBP, taking into account patient characteristics such as age, baseline BP and medical history.

2. To derive and validate a prediction model to permit estimation of an equivalent brachial SBP based on leg SBP measurements.

3. To determine the independent prognostic value of leg SBP in predicting cardiovascular events and mortality risk.

Data sources and description of the dataset

This study will use an observational cohort design, undertaking IPD meta-analyses of data held by the Inter-arm BP difference (INTERPRESS-IPD) Collaboration, established to undertake IPD metaanalyses examining the independent contribution of inter-arm BP difference to prediction of mortality and cardiovascular events.¹⁵ The establishment of the Collaboration has been previously described.¹⁵ In brief, literature searches and author contacts were used to identify studies likely to hold records of BP in both arms. A subset of these studies measured ankle–brachial index (ABI) at recruitment, thus providing data for arm and leg BPs.¹⁶ Individual data sharing agreements are in place with the lead authors of each participating study; their consent has been obtained for the proposed analyses and corresponding authors for each participating study will contribute to publications arising from these analyses. Core data, held for the primary INTERPRESS-IPD research outputs, will undergo additional cleaning and merging of relevant additional variables prior to combination into a new, expanded, single dataset.

The new ABLE-BP dataset will include 33,710 individual records from 14 European, US and African studies that measured both arm and leg BP. Participants in the dataset have a mean age of 58 years (range: 18 to 99 years), 45 % are female and mean systolic/diastolic brachial BP is 135/80 mmHg. In total, 20,191 (60 %) have hypertension (defined as a formal clinical diagnosis and/or on

antihypertensive treatment), 4,917 (15 %) have diabetes, 5,474 (17 %) have pre-existing ischaemic heart disease and 1,900 (6 %) have had a cerebrovascular event. Median follow-up period is 8.0 years, with 2,811 (9 %) participants experiencing cardiovascular events or death and 621 (2 %) dying within 10 years. We will present tables including descriptors (for example, country, method of BP measurement, description of cohort) of each study to assess comparability and describe the dataset. A summary of the included studies and their characteristics are given in Table 1.

Outcomes

The primary outcome (systolic arm-leg BP difference) for the analyses will be defined as the lower leg posterior tibial artery BP minus the higher arm BP measured on the brachial artery. The coprimary outcome will be arm SBP predicted from leg BP. Primary analyses will use observed data only (see missing data – below).

Secondary outcomes are the prognostic value of leg BPs for prediction of cardiovascular events and mortality.

Quality assessment

The methodological quality and risk of bias for studies contributing data has been assessed using the Quality assessment In Prognostic Studies (QUIPS) score, modified for IPD analysis.¹⁷ These assessments will be used to inform sensitivity analyses focusing on the highest quality studies. This quality assessment covers domains on selection bias, attrition, and accuracy of measurement, analysis and confounding.

Participant selection

Participants with ankle or arm BP missing at recruitment will be excluded from the analyses. We will also exclude participants with a diagnosis of peripheral arterial disease, low ABI (< 0.90) and those studies where participant entry criteria was based on selected ABI.

Statistical analysis

Descriptive analyses Descriptive statistics will be used to describe participant characteristics at the study level, including age, sex, ethnic group, body mass index (BMI), arm and leg BP, and history of cardiovascular diseases (and risk factors). Data will be presented as means with standard deviation, median with interguartile ranges, or proportions.

Investigation of relationship between leg and arm blood pressure

We will report the mean arm-leg differences for each study. These will be examined in a two-stage meta-analysis. Estimates of heterogeneity from these analyses will be used to determine whether to conduct a further one-stage analysis with study entered as a random or as a fixed effect. We will explore cross-sectional relationships between arm and leg BP in univariable and multivariable models with all available data, using hierarchical linear regression. Estimates will be adjusted for age, sex, baseline BP, smoking status, serum cholesterol and medical history at recruitment. Recording of medication use varies across cohorts; we will perform secondary analyses that include use of specific classes of antihypertensive medication (e.g. calcium channel blockers, renin-angiotensin system blockers) using data from only those studies that recorded the relevant information. Should drug use be a significant predictor of outcome when included with other significant variables, it will be retained in the models derived from these secondary analyses. Depending on the results of our quality assessment of primary studies, we will perform sensitivity analyses to include only those studies evaluated to be at low risk of bias. No further secondary or sensitivity analyses are planned.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Prediction modelling of arm blood pressure using leg blood pressure

Using a subset of participants with complete case data for candidate variables both identified above, and set *a priori*, we will model brachial SBP on leg SBP using random effects meta-analysis models. We will use one-stage and two-stage methods, and assess heterogeneity using the I² and tau² statistics. One-stage models will comprise hierarchical linear regression models (participants nested by study). Further models will investigate the association between arm-leg difference and

participant characteristics (using a series of models with one characteristic per model). Predictor variables to be included *a priori* in the modelling will include age, sex, BMI, smoking status, ethnicity, diagnosis of diabetes, hypertension or any cardiovascular disease, total cholesterol and baseline ankle BP.

The predictive model for arm SBP will be developed using one-stage meta-analysis with hierarchical linear regression models, as described above. We will derive the model using a subset of the complete case data (derivation dataset) and validate the model using the remaining data (validation dataset).¹⁸ The primary studies will be allocated to the derivation or validation datasets such that both datasets include participants of both genders and reflect the geographical origin of the studies.

Prognostic modelling

Prognostic models based on leg SBP will be derived for all-cause and cardiovascular mortality and fatal or non-fatal cardiovascular events. Heterogeneity will be assessed using I² and tau². We will aim to perform one-stage random effects time-to-event models based on flexible parametric models; should such models fail to converge, we will use fixed effect Cox proportional hazards models, stratified by study. Using the covariates described above, and again dividing the dataset into a derivation and validation cohort, we will derive and validate a suitable model. For prognostic modelling, we will exclude participants with any pre-existing cardiovascular disease. Using internationally recognised 10-year risk scores, such as the European Systematic COronary Risk Evaluation (SCORE) and Atherosclerotic Cardiovascular Disease (ASCVD) pooled cohort equations, we will compare the outcome of such cardiovascular risk scores using arm based on leg SBP data with the *actual* arm SBP data.¹⁹⁻²² Besides their wide use in clinical practice, these two scores have been selected to assess two different outcomes, as SCORE predicts cardiovascular mortality, while ASCVD predicts fatal and non-fatal cardiovascular events (cardiovascular death, non-fatal MI and stroke). Model goodness of fit will be compared using the likelihood ratio test, the Akaike Information Criterion²³, and for time-to-event models, the Harrell's C statistic.

Missing data and sensitivity analyses

For all included studies, the primary analyses will use observed data only. Participants from other cohorts included within the INTERPRESS-IPD Collaboration lack leg BP data but do have brachial BP measurements and ankle-brachial indices. We will explore whether accurate back-calculation of leg pressures is feasible using these data. To achieve this, we will establish a clear understanding of the study formulae used to derive ABI, including discussion with authors as necessary. We will then trial this approach using datasets that do contain leg pressures to confirm validity. If feasible, we will back-calculate missing leg SBPs and add these data to the observed data for sensitivity analyses to check the primary models. We will also perform sensitivity analyses incorporating height into the final models, where available. Further sensitivity analyses, using multiple imputation of arm and/or leg SBP and participant data for the one-stage meta-analyses where arm-leg or arm SBP is the outcome, and for the time-to-event analyses will also be undertaken. The results of these models will be compared with the primary outcome models using observed data only. Finally, we will repeat the primary analyses excluding studies deemed to be of low or moderate quality based on modified QUIPS scores.

Publication and inclusion bias

Inclusion bias will be assessed by comparing our pooled estimate of the mean arm – leg SBP difference for studies included in the ABLE-BP analyses with studies using sequential blood pressure measurement methods in our previous study-level systematic review using a two-stage meta-analysis.¹¹ Publication bias will not be assessed; we believe that there is limited potential for publication bias, as the primary studies from which we derive data were not originally designed to compare arm and leg BPs. Although we are performing secondary analyses in a subset of an established dataset (INTERPRESS-IPD Collaboration), which is an efficient and cost-effective approach, we must acknowledge that the INTERPRESS-IPD dataset was not established for the purpose of defining the arm-leg SBP relationship and therefore there is a possibility that other data exist that fall outside the scope of the original search terms.

Patient and public involvement

The development of this protocol has had considerable patient and public involvement (PPI). Prior to funding, a draft was reviewed by three public advisors improving the overall clarity in general, and in specific areas, such as focussing the research questions on aspects of arm and leg BP that interest users. We convened two prefunding PPI workshops to raise awareness about involvement in systematic reviews and gain critical feedback for the project. This feedback resulted in a clearer definition of the population being studied, greater clarity about benefits for patients and reinforcement of our user dissemination plans. We have established a PPI advisory group for the project, led by KB (an academic PPI facilitator) and comprising one stroke survivor and two Thalidomide Trust beneficiaries; they will shape the research by fully participating in quarterly management meetings. The group have contributed toward drafting this protocol and the plain English abstract. We plan two key workshops to ensure that the review findings reach the end user in an accessible way. First, a summary writing workshop with the PPI advisory group to achieve a clear plain language summary and to co-produce a dissemination plan targeted at patients and the public. Second, we will convene a larger public event on the subject of understanding cardiovascular risk, within which the findings of this research can be presented in context.

Ethics and dissemination

This is a secondary analysis of anonymised IPD which has been obtained from studies where participants have already given consent and approval to participate (see 'ethics approval and patient consent for publication' declaration). We have sought written permission for use of IPD from each individual study lead investigator included in the INTERPRESS-IPD Collaboration. We will therefore not seek further ethical approval to undertake these analyses.

The study will be reported in accordance with the Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data (PRISMA-IPD) statement²⁴. Findings will be published as open access articles in high-impact peer-reviewed journals and presented at international conferences. We will seek to inform national, European and global developers of

BMJ Open

clinical guidelines, including the UK NICE guidance, NHS commissioners, the British and Irish Hypertension Society and local healthcare providers. We will co-produce a targeted dissemination plan for the public and specific patient groups and our funding charities, in conjunction with the project PPI advisory group. We also plan to undertake a public dissemination event for patients, clinicians and providers or commissioners regarding the importance of, and relationship between, arm and leg BPs and understanding the importance of BP measurement in cardiovascular risk estimation – the findings from this study will be presented. The INTERPRESS-IPD Collaboration is a large, international dataset with both arm and leg BPs, and is available for further research activity in this area in the future.

Discussion

There are 1.2 million stroke survivors living in the United Kingdom (UK; State of the Nation Stroke statistics - January 2017: The Stroke Association) and 75 % of these individuals report weakness of upper limb function that interferes with activities of daily living.²⁵ Self-monitoring and self-titration of BP lowering treatment achieves lower BPs in people at high risk of new or recurrent stroke.²⁶ However, this is either impossible or difficult for many stroke survivors with significantly impaired upper limb function, and for individuals with other barriers to BP measurement in the arm. Data suggest a prevalence of 12 to 13 individuals per 100,000 population have upper limb prostheses in the UK and Norway.^{27 28} In addition, over 1,700 amputations higher than wrist level occur annually in the UK.²⁹ Congenital upper limb deformities are also important; for example, the UK Thalidomide Trust has 460 beneficiaries who are now aged in their late-50s. Hypertension is a particular concern in this cohort, and over half of beneficiaries report upper limb damage.³⁰ Taking these data together, we conservatively estimate that between 6,000 and 10,000 adults may be living with significant congenital or acquired upper limb loss in the UK. As a population, these individuals are in particular need of accurate estimates of BP to understand and mitigate their cardiovascular risk, stroke being an important avoidable consequence.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Erasmushogeschool . Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies.

Thus, barriers to accurate upper arm BP measurement exist for a substantial minority of the UK population, and corresponding proportions across other countries. Whenever circumstances require leg BP measurement, it is important to be able to interpret the readings correctly. This is the focus of our proposal. Our data originate from cohorts across Europe, North America and Africa, therefore we expect our findings to be applicable across the globe.

To date, estimates suggest either a minimum difference of 15 mmHg in SBPs between arm and leg, or a conversion factor of x 0.88, as a rule of thumb.⁵¹¹ This study aims to provide the first evidencebased method for estimating individual brachial SBP and cardiovascular risk from leg SBP measurements. Our findings will support clinicians and patients in detecting and managing hypertension more effectively where leg measurements are required.

1
2
3
4
5
6
7
8
9
10
11
13
14
15
16
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Deferer	
Referen	ICES
A D A G	on PK, Carey RM, Aronow WS, et al. 2017 CC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention vetection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the merican College of Cardiology/American Heart Association Task Force on Clinical Practice suidelines. <i>Journal of the American College of Cardiology</i> 2017 doi: 0.1016/j.jacc.2017.11.006 [published Online First: 2017/11/18]
h	ns B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial ypertension. <i>European Heart Journal</i> 2018;39(33):3021-104. doi: 0.1093/eurheartj/ehy339
3. Nation p	al Institute for Health and Clinical Excellence. Hypertension: The clinical management of rimary hypertension in adults, CG127. London: National Institute for Health and Clinical xcellence 2011.
Ν	KO, Aigbe A, Ju H-H, et al. Barriers to Accurate Blood Pressure Measurement in the Nedical Office. <i>Journal of primary care & community health</i> 2018;9:2150132718816929. doi 0.1177/2150132718816929
d A 6. Dewar	, Shimbo T, Yoshizawa A. Multicenter investigation of lifestyle-related diseases and visceral isorders in thalidomide embryopathy at around 50 years of age. <i>Birth Defects Research Par : Clinical and Molecular Teratology</i> 2015;103(9):787-93. doi: doi:10.1002/bdra.23363 R, Sykes D, Mulkerrin E, et al. The effect of hemiplegia on blood pressure measurement in the elderly. <i>Postgraduate Medical Journal</i> 1992;68(805):888-91.
7. Madua M 1	gwu SM, Umeonwuka CI, Mohammad HH, et al. Reference Arm for Blood Pressure Measurement in Stroke Survivors. <i>Middle East J Rehabil Health Stud</i> 2018;5(1):e62368. doi: 0.5812/mejrh.62368 [published Online First: 2018-01-02]
a A 1	ns V, Kamineni A, Allison MA, et al. The epidemiology of subclavian stenosis and its ssociation with markers of subclinical atherosclerosis: the Multi-Ethnic Study of therosclerosis (MESA). <i>Atherosclerosis</i> 2010;211(1):266-70. doi: 0.1016/j.atherosclerosis.2010.01.013 [published Online First: 2010/02/09] elli EF, Bertrand CA. Comparison of blood pressures in the arms and legs. <i>N Engl J Med</i>
10. Stewa si	964;270:693-8. doi: 10.1056/nejm196404022701401 [published Online First: 1964/04/02] art HJ, Newman AA, Evans WF. Levels of blood pressure in both arms and legs in normal ubjects and patients suffering from certain diseases. <i>The American Journal of Medicine</i> 946;1(5):451-63. doi: 10.1016/0002-9343(46)90065-4
р	bard JP, Albasri A, Franssen M, et al. Defining the relationship between arm and leg blood ressure readings: a systematic review and meta-analysis. <i>Journal of Hypertension</i> 019;Publish Ahead of Print doi: 10.1097/hjh.0000000000001958
n	ny TP, Damen JA, Snell KI, et al. A guide to systematic review and meta-analysis of prediction nodel performance. <i>BMJ</i> 2017;356:i6460. doi: 10.1136/bmj.i6460 [published Online First: 017/01/07]
13. Tudur Ir d	⁵ Smith C, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley R, Rovers MM, Williamson PR. ndividual participant data meta-analyses compared with meta-analyses based on aggregate ata. <i>Cochrane Database Syst Rev</i> 2016; 9(9): MR000007. doi: 0.1002/14651858.MR00007.pub3
14. Abo-Z st	aid G, Sauerbrei W, Riley RD. Individual participant data meta-analysis of prognostic factor tudies: state of the art? <i>BMCMedRes Methodol</i> 2012;12:56.
a a	CE, Boddy K, Warren FC, et al. Associations between interarm differences in blood pressure nd cardiovascular disease outcomes: protocol for an individual patient data meta-analysis nd development of a prognostic algorithm. <i>BMJ Open</i> 2017;7:e016844. doi: 0.1136/bmjopen-2017-016844
16. Aboya	ans V, Criqui MH, Abraham P, et al. Measurement and Interpretation of the Ankle-Brachial ndex. <i>Circulation</i> 2012

- 17. Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing Bias in Studies of Prognostic Factors. Annals of Internal Medicine 2013;158(4):280-+.
- 18. Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognostic model. *BMJ (Clinical research ed)* 2009;338:b605.

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56 57

58

59

- 19. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. *BMJ* 2008;336(7659):1475-82.
- 20. Goff DC, Jr., Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation* 2014;129(25 Suppl 2):S49-73. doi: 10.1161/01.cir.0000437741.48606.98
- 21. D'Agostino RB, Sr., Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. *Circulation* 2008;117(6):743-53. doi: 10.1161/circulationaha.107.699579 [published Online First: 2008/01/24]
- 22. Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. *Eur Heart J* 2003;24(11):987-1003. [published Online First: 2003/06/06]
- 23. Akaike H. A new look at the statistical model identification. *IEEE Transactions on Automated Control* 1974;19(6):716-23.
- 24. Stewart LA, Clarke M, Rovers M, Riley RD, Simmonds M, Stewart G, Tierney JF; PRISMA-IPD Development Group. PreferRed Reporting Items for Systematic Review and Meta-Analyses of individual participant data: the PRISMA-IPD Statement. *JAMA* 2015;313(16):1657-1665.
- 25. Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. *Stroke* 2001;32(6):1279-84.
- 26. McManus RJ, Mant J, Haque MS, et al. Effect of Self-monitoring and Medication Self-titration on Systolic Blood Pressure in Hypertensive Patients at High Risk of Cardiovascular Disease: The TASMIN-SR Randomized Clinical TrialSelf-monitoring and Self-titration for HypertensionSelfmonitoring and Self-titration for Hypertension. JAMA 2014;312(8):799-808. doi: 10.1001/jama.2014.10057
- 27. Kyberd PJ, Beard DJ, Morrison JD. The population of users of upper limb prostheses attending the Oxford Limb Fitting Service. *Prosthet Orthot Int* 1997;21(2):85-91. doi: 10.3109/03093649709164535
- 28. Ostlie K, Skjeldal OH, Garfelt B, et al. Adult acquired major upper limb amputation in Norway: prevalence, demographic features and amputation specific features. A population-based survey. *Disabil Rehabil* 2011;33(17-18):1636-49. doi: 10.3109/09638288.2010.541973
- 29. Cordella F, Ciancio AL, Sacchetti R, et al. Literature Review on Needs of Upper Limb Prosthesis Users. *Front Neurosci* 2016;10:209-09. doi: 10.3389/fnins.2016.00209
- Newbronner E, Glendinning C, Atkin K, et al. The health and quality of life of Thalidomide survivors as they age – Evidence from a UK survey. *PLOS ONE* 2019;14(1):e0210222. doi: 10.1371/journal.pone.0210222
- McGrae McDermott M, Greenland P, Liu K, et al. Leg symptoms in peripheral arterial disease: Associated clinical characteristics and functional impairment. JAMA 2001;286(13):1599-606. doi: 10.1001/jama.286.13.1599
- 32. Guerchet M, Mbelesso P, Ndamba-Bandzouzi B, et al. Epidemiology of dementia in Central Africa (EPIDEMCA): protocol for a multicentre population-based study in rural and urban areas of the Central African Republic and the Republic of Congo. SpringerPlus 2014;3:338. doi: 10.1186/2193-1801-3-338 [published Online First: 2014/07/22]
- 33. Lahoz C, Barrionuevo M, Garcia-Fernandez T, et al. Cardiovascular morbidity-mortality associated to ankle-brachial index in the general population. [Spanish]. *Revista Clinica Espanola* 2014;214(1):1-7.
- 34. Erbel R, Mohlenkamp S, Moebus S, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis:

BMJ Open

35.	Cl
36.	Es
37.	N
38.	Es
39.	Bi
40.	W
41.	Kı
42.	C
43.	D
44.	w
	 36. 37. 38. 39. 40. 41. 42. 43.

- 5. Clark CE, Thomas D, Llewellyn D, et al. Inter-arm blood pressure and risk of cognitive decline in the elderly. *Br J Gen Pract* 2020; *;* DOI:https://doi.org/10.3399/bjgp20X709589; *published online* 5/5/20.
- 36. Espeland MA, Newman AB, Sink K, et al. Associations Between Ankle-Brachial Index and Cognitive Function: Results From the Lifestyle Interventions and Independence for Elders Trial. Journal of the American Medical Directors Association 2015;16(8):682-89.
- 37. Marti R, Garcia-Regalado N, Garcia-Gil M, et al. Improving interMediAte risk management. MARK study. *BMC Cardiovascular Disorders* 2011;11:61.
- 38. Espeland MA, Beavers KM, Gibbs BB, et al. Ankle-brachial index and inter-artery blood pressure differences as predictors of cognitive function in overweight and obese older adults with diabetes: Results from the Action for Health in Diabetes movement and memory study. *International Journal of Geriatric Psychiatry* 2015;30(10):999-1007.
- 39. Bild DE, Bluemke DA, Burke GL, et al. Multi-Ethnic Study of Atherosclerosis: Objectives and Design. *American Journal of Epidemiology* 2002;156(9):871-81.
- 40. Wassel CL, Loomba R, Ix JH, et al. Family History of Peripheral Artery Disease is associated with Prevalence and Severity of Peripheral Artery Disease: The San Diego Population Study (SDPS). Journal of the American College of Cardiology 2011;58(13):1386-92. doi: 10.1016/j.jacc.2011.06.023
- 41. Kranenburg G, Spiering W, de Jong PA, et al. Inter-arm systolic blood pressure differences, relations with future vascular events and mortality in patients with and without manifest vascular disease. *International journal of cardiology* 2017;244:271-76. doi: 10.1016/j.ijcard.2017.06.044
- 42. Clark CE, Casanova F, Gooding K, et al. Inter-arm blood pressure difference and arterial stiffness. *Journal of Hypertension* 2014;32(eSuppl A):e30.
- 43. Dahl M, Frost L, Søgaard R, et al. A population-based screening study for cardiovascular diseases and diabetes in Danish postmenopausal women: acceptability and prevalence. *BMC cardiovascular disorders* 2018;18(1):20. doi: 10.1186/s12872-018-0758-8
- 44. White J, Mortensen LH, Kivimaki M, et al. Interarm differences in systolic blood pressure and mortality among US army veterans: aetiological associations and risk prediction in the Vietnam experience study. *EurJPrevCardiol* 2014;21(11):1394-400.

Competing interests

CEC has been loaned a bilateral blood pressure monitor for unrestricted evaluation by Microlife AG, and has received honoraria from Bayer AG. No company has had, or will have, any involvement in the design or conduct of this study.

Contributors

This protocol was first drafted by SM, CEC, FCW, JS, UM, LF, KB and VA, then revised and edited by all authors, including HS, PW, PL, RB and AJF. The final manuscript has been read and reviewed by all authors.

The following collaborating authors contributed data to the original INTERPRESS-IPD Collaboration and the subsequent ABLE-BP project: *Vietnam Experience Study*: James White; *INCHIANTI*: Luigi Ferrucci; *Heinz-Nixdorf Recall Study*: Raimund Erbel; *SMART*: Jan Westerink; *San Diego Population Study*: Michael Criqui; *Fuencarral Health Center*: Carlos Lahoz; *EPIDEMCA*: Maëlenn Guerchet; *MESA*: Matthew Allison; *LIFE & WALCS*: Mary McDermott; *Look AHEAD*: Mark Espeland; *ViWoCo*: Marie Dahl; *SUMMIT*: Angela Shore; *MARK Study*: Rafel Ramos Blanes

Funding

The INTERPRESS-IPD Collaboration was established with a grant from the NIHR Research for Patient Benefit programme (award/grant number: PB-PG-0215-36009).

This current project is supported by the Stroke Association (award/grant number: SA PG 19/100043) and by the Thalidomide Trust (award/grant number: not applicable).

Disclaimer

The views expressed are those of the authors and not necessarily those of the Stroke Association, the Thalidomide Trust, the NIHR, the NHS or the Department of Health.

Ethics approval and patient consent for publication

Not required for secondary analyses of subset of INTERPRESS-IPD dataset.

A summary of the ethical approval granted for each individual study included in the ABLE-BP dataset are listed below (please see individual publications for more information):

WALCS: The protocol was approved by the North-western University Medical School and Catholic Health Partners Hospital institutional review boards.

EPIDEMCA: Ethical committees, supervised by Ministry of Public Health in Central African Republic and the CERSSA (Comité d'Ethique de la Recherche en Sciences de Santé) in the Repulic of Congo, approved the study protocol, as well as the CPP-SOOM-IV (Comité de la Protection des Personnes Sud-Ouest Outre-Mer) in France.

Fuencarral Health Center: The study was approved by the Comité de Ética e Investigación Clínica (CEIC) of the Hospital Carlos III in Madrid.

Heinz Nixdorf: The Medical Ethics Committee of Erasmus Medical Center approved the study.

InCHIANTI: Ethical approval for the InCHIANTI study was provided by the Italian National Research Council on Aging Ethical Committee.

MARK: The study received ethical approval from the Research Ethics Committee of the Institut d'Investigació en Atenció Primària Jordi Gol (Primary Care Research Institute Jordi Gol).

Look AHEAD: The Look AHEAD M&M protocol and consent forms were approved by local Institutional Review Boards prior to use.

MESA: The institutional review boards of the six field centers involved in the study approved the study protocol.

San Diego Population Study: The study received approval from the Committee on Investigations Involving Human Subjects at UCSD.

SMART: The study was approved by the Medical Ethics Committee of the University Medical Centre Utrecht.

SUMMIT: The study received ethical approval from the EU and all participating studies received insitutional ethics review and approval.

ViWoCo: The study was approved by the Regional Scientific Ethical Committee, a part of the Danish National Committee on Health Research Ethics (record number M-20100116) and the Danish Regional Data Protection Agency (record number 1–16–02-221-16).

Vietnam Experience Study: Ethical approval for the study protocol was given by the US Office for Technology Assessment, the Department of Health and Human Sciences Advisory Committee, the Agent Orange Working Group Science Panel, and a review panel from the US Centers for Disease Control.

Provenance and peer review

Not commissioned; externally peer reviewed.

Table 1 – characteristics of studies included in the ABLE-BP dataset

Гаble 1 – ch	naracteristic	s of st	udies inc	luded in the	вмл с ABLE-BP с			36/bmjopen-2020-040481 or 4 by copyright, including for		Ρ		
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	Pateness Pateness	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event		
Chicago Walking and Leg Circulation Study (WALCS) ³¹	1998-2000	440	USA	Patients without lower extremity peripheral artery disease who were recruited for the non-PAD comparator group.	Subclavian stenosis as a marker for total and cardiovascular disease mortality	Two sequences of BP readings recorded using a 12-cm pneumatic cuff and a hand held Doppler probe (Nicolet Vascular Pocket Dop II, Golden, Colo) with patient supine	Mean follow- up was 4.8 years.	Patenting used the shores boy the shores chool data minute Self Self Self Self Self Self Self Sel	Patient history or use of oral antidiabetic drugs and/or insulin	Cardiovascular death: Any fatal cardiovascular cause. <i>Non-fatal events</i> : MI, stroke, TIA, coronary o peripheral revascularisation, congestive heart failure, PAD, angina		
Epidemiology of dementia in Central Africa (EPIDEMCA) ³²	November 2011- December 2012	880	Central African Republic/ Republic of Congo	Males and females, aged ≥ 65 years living in areas of Central African Republic and Republic of Congo	Diagnosis of dementia and Alzheimer's disease and associated risk factors	Two sequences of BP measurements recorded using standard mercury sphygmomanometer, as part of ABI protocol with patients supine. BP rounded to nearest 5 mmHg	2-3 years	Selfgeported BP low,@ing treatment; SBP>1400mmHg or DBP>903mmHg mining, and normality, and	Self-reported or blood glucose >126 mg/dL fasting or >200 mg/dL in non- fasting	Cardiovascular death: Stroke, MI or other cardiovascular or cerebrovascular diseases - based on interview of relatives during verbal autopsy at follow-up. Non-fatal events: Stroke, MI, other heart disease		
Fuencarral Health Center ³³	2003-2004	1102	Spain	Males and females, aged 60-79 years, with no known PAD	Low ABI and incidence of death due to cardiovascular causes	BP measured sequentially with Doppler 8-MHz probe (Hadeco, Kawasaki, Japan) and calibrated mercury sphygmomanometer with patient supine	Mean follow- up 49.8 months	SB® 14 trimHg, DB⊞≥90 mHg or use the terms treatment on May 14, 2025 at Dep treatment on the terms of the terms of the terms treatment on the terms of te	Baseline glucose ≥126 mg/dl (>7 mmol/L) on 2 occasions or use of antidiabetic agents	Cardiovascular death: Fatal stroke, MI, sudden death without other cause, death after vascular surge or procedure, death attributed to heart failure, bowel or limb infarction, ar other death not categorically attributed to a non-vascular cause <i>Non-fatal events</i> : MI, stroke or cardiovascular event		
Heinz Nixdorf Recall Study ³⁴	2000-2003	4617	Germany	Males and females, aged 45-74 years, in an unselected urban population from the Ruhr area	Coronary artery calcium as predictor for fatal and non-fatal MI.	BP measured sequentially using Doppler probe (Logidop, Kranzbuhler, Germany) with patients supine	Mean follow up: 109 months	SBP >1400mmHg or DBP >900mmHg nt GEZ-LTA	Existing diagnosis or use of anti- diabetic medication	Cardiovascular death or non-fatal event: First occurrence of MI based on symptoms, ECG signs, and enzymes,		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	BMJ Open BMJ Open-2020										
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	DefRuition hypein ng fo or	Definition of diabetes	Definition of cardiovascular d non-fatal cardiov event	
					Secondary endpoints included ABI as a stroke predictor factors			19 March Er uses relat		supported by necro fatal	
Invecchiare in Chianti (InCHIANTI) ³⁵	August 1998- March 2000	1091	Italy	Males and females, aged ≥ 65 years, living in Greve and Bagno	Physiological factors influencing walking ability	Single pair of sequential brachial BP readings using standard mercury sphygmomanometer, with patients supine. BP rounded to nearest 5 mmHg. Posterior tibial arteries measured twice with a handheld Doppler stethoscope (Parks model 41-A; Parks Medical Electronics, Inc, Aloha, Ore).	N/S	Selfate existence diageory solution BP xito solution metal solution	Self-reported, existing recorded diagnosis, or use of anti-diabetic medication, or fasting glucose >7.0 mmol/L	Cardiovascular de Not defined. Non-fatal events: Diagnosis of heart MI or angina, strok	
Lifestyle Interventions and Independence for Elders (LIFE) study ³⁶	2010-2011/ 2.6 years	1588	USA	Ambulant community dwelling individuals, aged 70-89 years with a sedentary lifestyle (<20min per week physical activity)	Major mobility disability Secondary: Association between ABI and cognitive function	Two pairs of sequential measurements recorded in each arm using handheld Doppler, with patients supine	2 years	Selainguren, and similar tech	Self-reported	Cardiovascular fat non-fatal events: MI, angina, stroke carotid artery disea congestive heart fa PAD requiring hospitalisation, out revascularisation f ruptured abdomina aneurysm	
Improving interMediAte RisK management (MARK) study ³⁷	N/S	2490	Spain	Males and females living in 3 regions of Spain, aged 35-74 years. Free of atherosclerotic disease, with an intermediate cardiovascular risk (10-year coronary risk of 5-15% or vascular death risk of 3-5%) selected at random	Incidence of vascular events	Three pairs of BP measurements in each arm, using an OMRON 705, with patients seated. Legs measured with Vasera device VS- 1500® (Fukuda Denshi)	10 years	Patient reported, or use of BP-lewering meterizations or SBP ≥1@mmH20 or DBP ≥90mmH25 at Department GEZ-LTA	Patient reported, or use of antidiabetic treatment or fasting glucose ≥ 126 mg/dL	Cardiovascular dea not defined Non-fatal events: Stroke or TIA, MI, i or revascularisation procedure	

				BMJ Open				36/bmjopen-2020 J by copyright, in		Ρ		
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	n Deffaition hyperten in g for or	Definition of diabetes	Definition of cardiovascular death and non-fatal cardiovascular event		
Action for Health in Diabetes (Look AHEAD) ³⁸	June 2001-March 2004	339	USA	Overweight and obese individuals with type 2 diabetes aged 45-76 years, and had a body mass index, 25 kg/m2, or ≥27 kg/m2 if taking insulin	A composite cardiovascular outcome: cardiovascular death, non-fatal MI, non-fatal stroke, hospitalized angina Secondary: Cognitive function	Two pairs of sequential BP measurements recorded in each arm, using continuous wave Doppler with a standard mercury sphygmomanometer, with patients supine	4-5 year follow up	SBI2140 mmHg, ≥D9 mmHg or to text and data mining	Self-reported verified from medical records, current treatment, or fasting glucose of ≥126 mg/dL	Cardiovascular death: MI, congestive heart failur death after cardiovascular intervention, surgery or du to arrhythmia, stroke, presumed cardiovascular death, rapid unexplained cardiovascular death. <i>Non-fatal events</i> : Stroke, MI, angina, coronary artery bypass grafting or percutaneous coronary intervention, congestive heart failure, carotid endarterectomy, peripheral arterial bypass angioplasty		
Multi Ethnic Study of Atherosclerosis (MESA) ³⁹	2000-2002	6770	USA	Males and females, aged 45-84 years, free of clinical cardiovascular diagnoses at baseline	Association of subclavian stenosis with markers of cardiovascular disease	Single pair of sequential BP measurements, using hand-held Doppler instrument and 5-mHz probe, with patients supine	N/S	Self control distory with the despendence low ding m metations, or SEP ≥ 120mmHg or DBP ≥ 00mmHg and b	Fasting blood glucose ≥126 mg/dl or use of oral hypoglycemic agents or insulin	Cardiovascular death: Death due to atherosclerotic coronary heart disease, stroke, oth cardiovascular disease. Non-fatal events: Stroke, TIA, MI, angina, revascularisation procedu		
San Diego Population Study ⁴⁰	1994-1998	2388	USA	Males and females, aged 29-91 years, attending a clinic for assessment of PAD and venous disease	Prevalence of PAD	Two pairs of BP measurements, using a continuous-wave Doppler ultrasound, with patients supine	N/S	SB∯≥140 mmHg or DBB≥≥ 90 mmHg or use∯f BP towering mettations May	Self-reported or use of antidiabetic medications	Cardiovascular death: not defined Non-fatal events: MI, stroke, angina, coron angioplasty or bypass gra or carotid endarterectom		
Second Manifestations of ARTerial disease (SMART) study ⁴¹	January 2002 – February 2014	7600	The Netherlands	Males and females, aged 18-80 years, referred to University Medical Center Utrecht, for treatment of clinically manifest vascular disease or cardiovascular risk factors	3 point MACE (combination of non-fatal myocardial infarction, non- fatal stroke and death from vascular disease), total mortality and vascular mortality	Single pair of sequential BP measurements, using a Vasoguard Doppler probe, with patients supine	Mean follow- up:5.9 years	Blog pressure >140,90 miniHg at baskine the use of blood pressure lowering medication. Department GEZ-LTA	Recorded diagnosis, self- reported diagnosis, use of blood glucose lowering medicati on, or fasting glucose >7 mmol/L at recruitment combined with initiation of	Cardiovascular death: Death from stroke, MI, congestive heart failure, rupture of abdominal aort aneurysm or vascular dea from other causes <i>Non-fatal events</i> : Stroke (infarction or haemorrhagic), MI, retina infarction, heart failure		

	BMJ Open BMJ Open Period of patient Sample Country of Eligibility criteria Primary Blood pressure Intended Definition of diabatos									
Study name	Period of patient recruitment /Duration of trial	Sample size (n enrolle d in study)	Country of origin	Eligibility criteria	Primary outcome measure	Blood pressure measurement methods	Intended maximum duration of follow up	ing f	Definition of diabetes	Definition of cardiovascu non-fatal car event
								or uses related bistory of uses related bistory of bext and definition Selforext and definition Banining, A	glucose lowering medication within first year of follow-up. Type 1 diabetes excluded.	
Surrogate markers for Micro- and Macrovascular hard endpoints as Innovative diabetes tools (SUMMIT) ⁴²		334	England	Adults over 18 with and without diabetes and/or cardiovascular disease		6 pairs of simultaneous BP readings using two Omron 705 devices swapped after 3 readings, with patients supine	N/S	Selferend history of hyperfection of hyperfection of hyperfection and download	HbA1c ≥ 48 mmol/mol	Cardiovascula Fatal MI
Viborg Women Cohort (ViWoCo) ⁴³	October 2011- January 2013	1428	Denmark	Females born in 1936, 1941, 1946 and 1951 living in the Municipal of Viborg, Denmark	Presence of cardiovascular disease and diabetes mellitus	One pair of simultaneous BP readings, using Omron M2 devices, with patients supine, rounded to nearest 2mmHg	Median follow-up 3.3 years	SB∰2000 DB∰2000 DB∰1000 DB DB DB DB DB DB DB DB DB DB DB DB DB	HbA1c ≥ 48 mmol/mol	Cardiovascula Fatal event as Non-fatal even MI or ischaem leading to hos
Vietnam Experience Study ⁴⁴	1986	4394	USA	Male US army veterans who participated in the Vietnam war	Inter-arm differences, all- cause and cardiovascular mortality	Two pairs of sequential BP measurements, using standard mercury sphygmomanometer, with patients seated	15 years	SBP>2140 mmHg, DBA≥90 mmHg or use af BP to wering met ation	Fasting plasma glucose ≥ 7.0 mmol/l and/or use of medication for diabetes	Cardiovascula Death due to cardiovascula
						heral arterial disease, SBP = s	0	nj.com/ on May 14, 2025 at Department GEZ-LTA d similar technologies.		