Appendices

Number of treatments in the networks	Theoretical number of	Non-connecte n (%		
	possible NMAs	Treatment response	Treatment discontinuation	
2	231	132 (57.1)	97 (58.0)	
3	1 540	414 (26.9)	435 (28.3)	
4	7 315	924 (12.6)	980 (13.4)	
5	26 334	2 030 (7.71)	2030 (7.71)	
6	74 613	4 529 (6.07)	4333 (5.81)	
7	170 544	8 995 (5.27)	8284 (4.86)	
8	319 770	13 779 (4.31)	12 555 (3.93)	
9	497 420	15 946 (3.20)	14 590 (2.93)	
10	646 646	14 068 (2.18)	13 014 (2.01)	
11	705 432	9 548 (1.35)	8 955 (1.27)	
12	646 646	4 990 (0.77)	4 795 (0.73)	
13	497 420	1987 (0.40)	1 919 (0.39)	
14	319 770	585 (0.18)	575 (0.18)	
15	170 544	122 (0.07)	121 (0.07)	
16	74 613	16 (0.02)	16 (0.02)	
17	26 334	1 (0.01)	1 (0.01)	
18	7 315	0 (0)	0 (0)	
19	1 540	0 (0)	0 (0)	
20	231	0 (0)	0 (0)	
21	22	0 (0)	0 (0)	
22	1	0 (0)	0 (0)	

e-Table 1: Number of possible NMAs (combinations of 22 treatments) and non-connected networks depending on the number of treatments per network.

	Treatment r	Treatment response			Treatment discontinuation				
	Number of p	Number of patients included in NMAs Num		Number of direct	Number of patients included in NMAs		ed in NMAs		direct
	min	max	median	comparisons	min	max	median	comparisons	
Agomelatine	202	5 035	2 905	6	202	4 153	2 848		6
Amitriptyline	51	5 099	2 641	11	41	4 270	2 465		12
Bupropion	63	4 502	2 954	7	63	3 363	2 808		8
Citalopram	57	5 513	2 795	12	25	4 013	2 577		12
Clomipramine	41	1 414	876	8	20	1 201	799		7
Desvenlafaxine	315	2 962	2 647	2	315	2 647	2 647		2
Duloxetine	152	7 218	3 855	8	152	4 557	3 633		8
Escitalopram	227	7 500	4 174	9	227	5 726	4 082		9
Fluoxetine	70	12 872	6 580	18	70	9 443	6 178		17
Fluvoxamine	34	1 589	914	10	20	1 708	1 016		10
Levomilnacipran	1 603	1 603	1 603	1	1 693	1 693	1 693		1
Milnacipran	27	1 410	832	6	27	1 358	780		5
Mirtazapine	137	3 458	1813	9	137	2 974	1 769		9
Nefazodone	55	1 150	887	5	55	1 226	963		5
Paroxetine	85	13 559	7328	17	85	11 329	7 484		17
Placebo	553	35 721	17 046	19	18	27 225	16 371		20
Reboxetine	80	2 745	1 478	5	229	1 866	1 478		4
Sertraline	26	6 431	3 414	14	26	5 268	3 416		14
Trazodone	57	1 672	892	9	61	1 362	840		8
Venlafaxine	77	9 245	4 768	16	28	7 454	4 505		15
Vilazodone	104	2 939	2 009	3	583	1 662	1 662		2
Vortioxetine	423	5 767	3 921	3	423	4 134	3 921		3

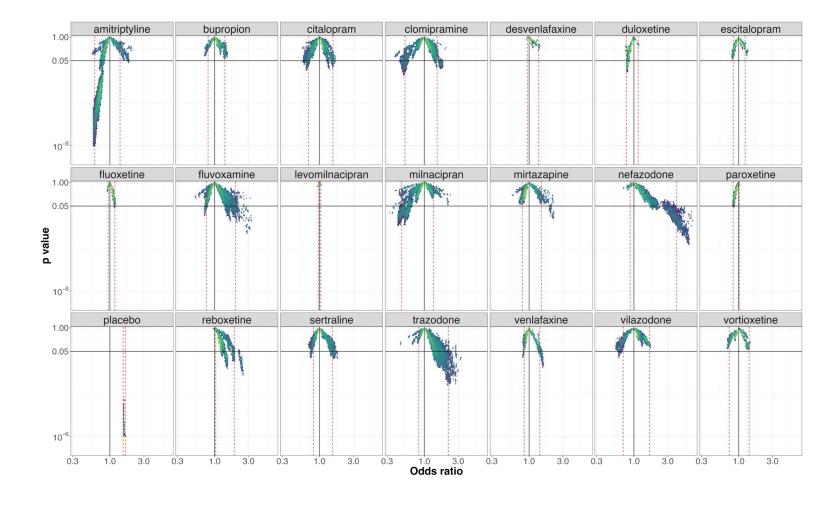
e-Table 2: Number of patients included in all the NMAs (min, max and median) depending on treatments and the number of existing direct comparisons. The maximum number (max) corresponds to the number of patients included in the Cipriani et al. NMA.

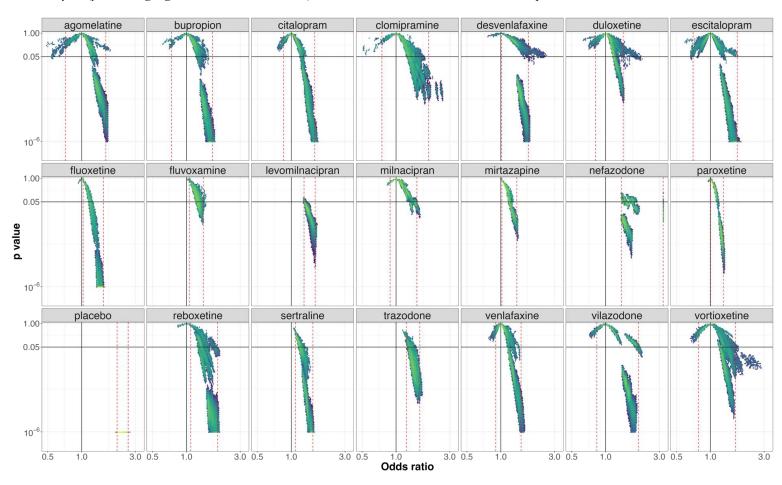
Treatment 1	Treatment 2	Direct Comparison	Indirect Comparison	p-value
Amitriptyline	Agomelatine	NA	0.2628545818	NA
Amitriptyline	Bupropion	NA	0.3110530164	NA
Amitriptyline	Citalopram	-0.102606077	0.3280538690	0.0401724996
Amitriptyline	Clomipramine	NA	0.3018895237	NA
Amitriptyline	Desvenlafaxine	NA	0.3475326245	NA
Amitriptyline	Duloxetine	NA	0.1358470515	NA
Amitriptyline	Escitalopram	NA	0.2189727794	NA
Amitriptyline	Fluoxetine	0.053795624	0.3603247403	0.0487600664
Amitriptyline	Fluvoxamine	0.071775816	0.2419257631	0.4768777906
Amitriptyline	Levomilnacipran	NA	0.2523685911	NA
Amitriptyline	Milnacipran	0.172384032	0.2296723273	0.8506146699
Amitriptyline	Mirtazapine	0.223224804	0.1222418836	0.5217504540
Amitriptyline	Nefazodone	1.174985267	0.2524544792	0.0280999326
Amitriptyline	Paroxetine	0.048965005	0.2736055923	0.0426094518
Amitriptyline	Placebo	0.938820547	0.5969926131	0.0003148894
Amitriptyline	Reboxetine	NA	0.4731170934	NA
Amitriptyline	Sertraline	0.244999893	0.2642421676	0.8792579720
Amitriptyline	Trazodone	0.320605494	0.3231299644	0.9906336973
Amitriptyline	Venlafaxine	0.178736978	0.2004497470	0.9348442571
Amitriptyline	Vilazodone	NA	0.3124340953	NA
Amitriptyline	Vortioxetine	NA	0.2380257250	NA
Bupropion	Agomelatine	NA	-0.0481984346	NA
Bupropion	Citalopram	NA	-0.0257216582	NA
Bupropion	Clomipramine	NA	-0.0091634926	NA
Bupropion	Desvenlafaxine	NA	0.0364796081	NA
Bupropion	Duloxetine	NA NA	-0.1752059648	NA
Bupropion	Escitalopram	-0.067277902	-0.0958556599	0.8767945398
Bupropion	Fluoxetine	-0.194336191	0.0461107766	0.1329183528
Bupropion	Fluvoxamine	NA NA	-0.0935871195	NA

Bupropion	Levomilnacipran	NA	-0.0586844252	NA
Bupropion	Milnacipran	NA	-0.0880709175	NA
Bupropion	Mirtazapine	NA	-0.1647516505	NA
Bupropion	Nefazodone	NA	0.0001118567	NA
Bupropion	Paroxetine	0.008178822	-0.1034383063	0.6892787799
Bupropion	Placebo	0.372328212	0.5398674615	0.1377180963
Bupropion	Reboxetine	NA	0.1620640770	NA
Bupropion	Sertraline	0.050941715	-0.0800414091	0.3784752254
Bupropion	Trazodone	0.739667196	-0.0358130579	0.0417853746
Bupropion	Venlafaxine	-0.061897187	-0.1204992482	0.7199084725
Bupropion	Vilazodone	NA	0.0013810790	NA
Bupropion	Vortioxetine	NA	-0.0730272914	NA
Citalopram	Agomelatine	NA	-0.0224767764	NA
Citalopram	Clomipramine	-0.566756975	0.0535395153	0.1124443091
Citalopram	Desvenlafaxine	NA	0.0622012663	NA
Citalopram	Duloxetine	NA	-0.1494843066	NA
Citalopram	Escitalopram	-0.283730192	0.0664509015	0.0023852407
Citalopram	Fluoxetine	-0.034011740	0.0453081012	0.6494119038
Citalopram	Fluvoxamine	0.101741070	-0.0836300282	0.5516355984
Citalopram	Levomilnacipran	NA	-0.0329627670	NA NA
Citalopram	Milnacipran	NA	-0.0623492593	NA
Citalopram	Mirtazapine	0.280517459	-0.1571382927	0.2297273178
Citalopram	Nefazodone	NA	0.0258335149	NA NA
Citalopram	Paroxetine	0.304156910	-0.0924611601	0.1121322543
Citalopram	Placebo	0.436441606	0.4473552890	0.9090816409
Citalopram	Reboxetine	0.422925722	0.1437125089	0.1752146756
Citalopram	Sertraline	-0.007698175	-0.0292852927	0.9005076142
Citalopram	Trazodone	NA	0.0372908807	NA
Citalopram	Venlafaxine	0.484268986	-0.1071005535	0.0567075668
Citalopram	Vilazodone	-0.065358962	0.0844028137	0.3330953339

Citalopram	Vortioxetine	NA	-0.0473056332	NA NA
Clomipramine	Agomelatine	NA	-0.0390349419	NA NA
Clomipramine	Desvenlafaxine	NA	0.0456431008	NA NA
Clomipramine	Duloxetine	NA	-0.1660424722	NA NA
Clomipramine	Escitalopram	NA	-0.0829167444	NA NA
Clomipramine	Fluoxetine	-0.497957162	0.1054376234	0.0127489998
Clomipramine	Fluvoxamine	0.617475812	-0.1168157473	0.1651646212
Clomipramine	Levomilnacipran	NA	-0.0495209326	NA NA
Clomipramine	Milnacipran	-0.139761942	-0.0731081082	0.8718885420
Clomipramine	Mirtazapine	NA	-0.1555881578	NA NA
Clomipramine	Nefazodone	NA	0.0092753493	NA NA
Clomipramine	Paroxetine	-0.072886810	-0.1096793809	0.8206326227
Clomipramine	Placebo	NA	0.4255615996	NA NA
Clomipramine	Reboxetine	NA	0.1712275696	NA
Clomipramine	Sertraline	-0.044766923	-0.0425473428	0.9933621158
Clomipramine	Trazodone	0.480053965	-0.0193096301	0.2200867537
Clomipramine	Venlafaxine	-0.097574136	-0.1032336858	0.9818064963
Clomipramine	Vilazodone	NA	0.0105445716	NA NA
Clomipramine	Vortioxetine	NA	-0.0638637987	NA
Desvenlafaxine	Agomelatine	NA	-0.0846780427	NA NA
Desvenlafaxine	Duloxetine	-0.188098067	-0.2155903493	0.8964955808
Desvenlafaxine	Escitalopram	NA	-0.1285598451	NA NA
Desvenlafaxine	Fluoxetine	NA	-0.0254245515	NA NA
Desvenlafaxine	Fluvoxamine	NA	-0.1300667276	NA NA
Desvenlafaxine	Levomilnacipran	NA	-0.0951640333	NA NA
Desvenlafaxine	Milnacipran	NA	-0.1245505256	NA NA
Desvenlafaxine	Mirtazapine	NA	-0.2012312586	NA NA
Desvenlafaxine	Nefazodone	NA	-0.0363677514	NA NA
Desvenlafaxine	Paroxetine	NA	-0.1350876670	NA NA
Desvenlafaxine	Placebo	0.373085926	0.5136446059	0.6292754589

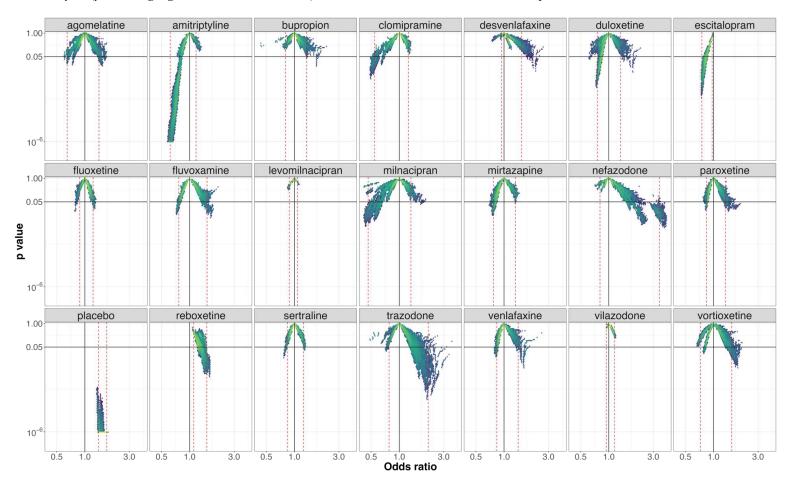
Desvenlafaxine	Reboxetine	NA	0.1255844689	NA
Desvenlafaxine	Sertraline	NA	-0.0884706003	NA
Desvenlafaxine	Trazodone	NA	-0.0249103856	NA
Desvenlafaxine	Venlafaxine	NA	-0.1480757064	NA
Desvenlafaxine	Vilazodone	NA	-0.0350985291	NA
Desvenlafaxine	Vortioxetine	NA	-0.1095068995	NA
Duloxetine	Agomelatine	0.274785749	0.1129526460	0.4616186963
Duloxetine	Escitalopram	-0.129777944	0.1387688629	0.0485693271
Duloxetine	Fluoxetine	0.208338577	0.1855624134	0.9386435946
Duloxetine	Fluvoxamine	NA	0.0816188454	NA
Duloxetine	Levomilnacipran	NA	0.1165215396	NA
Duloxetine	Milnacipran	NA	0.0871350473	NA
Duloxetine	Mirtazapine	NA	0.0104543144	NA
Duloxetine	Nefazodone	NA	0.1753178215	NA
Duloxetine	Paroxetine	-0.028170294	0.1165746749	0.1804849096
Duloxetine	Placebo	0.643071126	0.5086145539	0.1232169794
Duloxetine	Reboxetine	NA	0.3372700418	NA
Duloxetine	Sertraline	NA	0.1232149726	NA
Duloxetine	Trazodone	NA	0.1867751874	NA
Duloxetine	Venlafaxine	-0.103979394	0.0894187835	0.2109556777
Duloxetine	Vilazodone	NA	0.1765870438	NA
Duloxetine	Vortioxetine	0.310049659	-0.0759190529	0.0010440706
Escitalopram	Agomelatine	-0.201731585	0.0648594854	0.2424154728
Escitalopram	Fluoxetine	0.136576294	0.0991991480	0.8158829310
Escitalopram	Fluvoxamine	NA	-0.0015068825	NA
Escitalopram	Levomilnacipran	NA	0.0333958118	NA
Escitalopram	Milnacipran	NA	0.0040093195	NA
Escitalopram	Mirtazapine	NA	-0.0726714135	NA
Escitalopram	Nefazodone	NA	0.0921920937	NA
Escitalopram	Paroxetine	0.009352299	-0.0093588379	0.8893715245

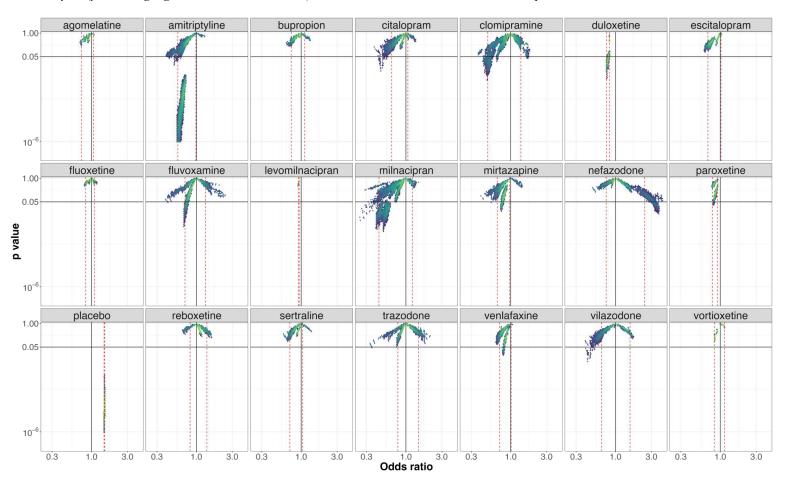

Escitalopram	Placebo	0.376739990	0.6851078767	0.0002348213
Escitalopram	Reboxetine	NA	0.2541443140	NA
Escitalopram	Sertraline	-0.121781020	0.0570556983	0.3514520002
Escitalopram	Trazodone	NA	0.1036494595	NA
Escitalopram	Venlafaxine	0.189093418	-0.0351699432	0.2764885341
Escitalopram	Vilazodone	NA	0.0934613160	NA
Escitalopram	Vortioxetine	NA	0.0190529456	NA
Fluoxetine	Agomelatine	-0.025549948	-0.0734299595	0.6815810074
Fluoxetine	Fluvoxamine	-0.033251115	-0.1133320731	0.7536403485
Fluoxetine	Levomilnacipran	NA	-0.0697394819	NA
Fluoxetine	Milnacipran	0.139546188	-0.1736714199	0.1498414441
Fluoxetine	Mirtazapine	-0.216699622	-0.1643462082	0.7237283678
Fluoxetine	Nefazodone	-0.032716229	-0.0086591028	0.9424264971
Fluoxetine	Paroxetine	0.019915211	-0.1495191200	0.0616613275
Fluoxetine	Placebo	0.320753668	0.4799532988	0.0139482475
Fluoxetine	Reboxetine	0.215661515	0.1332498799	0.6154363424
Fluoxetine	Sertraline	-0.304034795	-0.0062838999	0.0149414680
Fluoxetine	Trazodone	-0.183371544	0.0197036916	0.4714020806
Fluoxetine	Venlafaxine	-0.183043491	-0.0893346037	0.2827871304
Fluoxetine	Vilazodone	0.380205441	-0.0355025014	0.1665457088
Fluoxetine	Vortioxetine	NA	-0.0840823481	NA NA
Fluvoxamine	Agomelatine	NA	0.0453886849	NA NA
Fluvoxamine	Levomilnacipran	NA	0.0349026942	NA NA
Fluvoxamine	Milnacipran	-0.539137174	0.1116615076	0.0316414371
Fluvoxamine	Mirtazapine	-0.127460840	-0.0581967510	0.7616675626
Fluvoxamine	Nefazodone	NA	0.0936989761	NA
Fluvoxamine	Paroxetine	-0.138010659	0.0046648401	0.6499928574
Fluvoxamine	Placebo	0.712354291	0.3881368907	0.0390258955
Fluvoxamine	Reboxetine	NA	0.2556511965	NA
Fluvoxamine	Sertraline	0.439918610	0.0089980221	0.1741009886

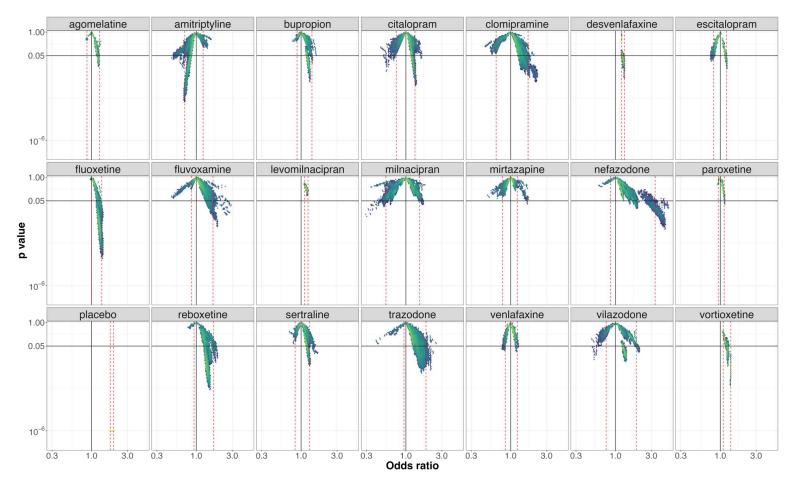

Fluvoxamine	Trazodone	NA	0.1051563420	NA
Fluvoxamine	Venlafaxine	-0.860580125	0.0154566365	0.0409952157
Fluvoxamine	Vilazodone	NA	0.0949681984	NA
Fluvoxamine	Vortioxetine	NA	0.0205598281	NA
Levomilnacipran	Agomelatine	NA	0.0104859906	NA
Levomilnacipran	Milnacipran	NA	-0.0293864923	NA
Levomilnacipran	Mirtazapine	NA	-0.1060672252	NA
Levomilnacipran	Nefazodone	NA	0.0587962819	NA
Levomilnacipran	Paroxetine	NA	-0.0399236337	NA
Levomilnacipran	Placebo	0.475082532	NA	NA
Levomilnacipran	Reboxetine	NA	0.2207485022	NA
Levomilnacipran	Sertraline	NA	0.0066934330	NA
Levomilnacipran	Trazodone	NA	0.0702536478	NA
Levomilnacipran	Venlafaxine	NA	-0.0529116731	NA
Levomilnacipran	Vilazodone	NA	0.0600655042	NA
Levomilnacipran	Vortioxetine	NA	-0.0143428662	NA
Milnacipran	Agomelatine	NA	0.0398724829	NA
Milnacipran	Mirtazapine	NA	-0.0766807330	NA
Milnacipran	Nefazodone	NA	0.0881827742	NA
Milnacipran	Paroxetine	-0.044842408	0.0306830225	0.6754168807
Milnacipran	Placebo	NA	0.5044690245	NA
Milnacipran	Reboxetine	NA	0.2501349945	NA
Milnacipran	Sertraline	0.735706795	0.0278703296	0.4412703838
Milnacipran	Trazodone	NA	0.0996401400	NA
Milnacipran	Venlafaxine	NA	-0.0235251808	NA
Milnacipran	Vilazodone	NA	0.0894519965	NA
Milnacipran	Vortioxetine	NA	0.0150436261	NA
Mirtazapine	Agomelatine	NA	0.1165532159	NA
Mirtazapine	Nefazodone	NA	0.1648635072	NA
Mirtazapine	Paroxetine	0.005673482	0.0817807684	0.6140300627

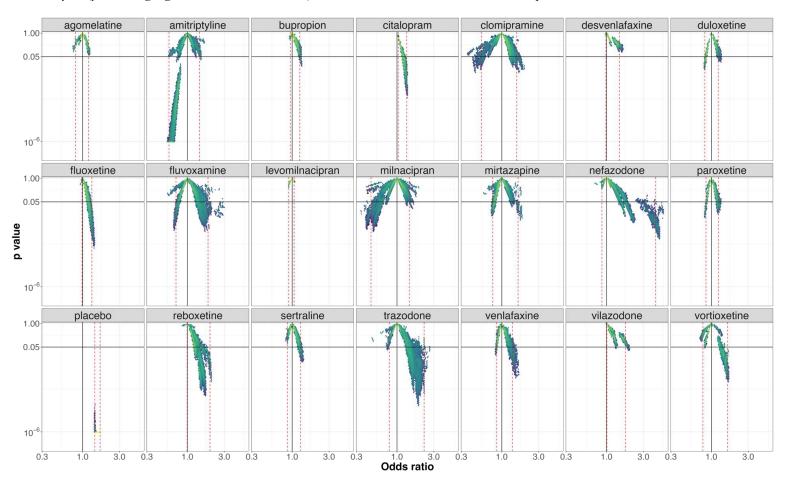
Mirtazapine	Placebo	0.549923659	0.5933184584	0.7380324256
Mirtazapine	Reboxetine	NA	0.326815727	NA
Mirtazapine	Sertraline	-0.026210267	0.126153937	0.5238955038
Mirtazapine	Trazodone	0.406691038	0.133301754	0.2828841214
Mirtazapine	Venlafaxine	0.312313796	0.012104556	0.1093671834
Mirtazapine	Vilazodone	NA	0.166132729	NA
Mirtazapine	Vortioxetine	NA	0.091724359	NA
Nefazodone	Agomelatine	NA	-0.048310291	NA
Nefazodone	Paroxetine	-0.234943929	-0.076996433	0.5751609309
Nefazodone	Placebo	0.483312015	0.291726936	0.3304415983
Nefazodone	Reboxetine	NA	0.161952220	NA NA
Nefazodone	Sertraline	0.154150680	-0.075321510	0.4922703055
Nefazodone	Trazodone	NA	0.011457366	NA
Nefazodone	Venlafaxine	NA	-0.111707955	NA
Nefazodone	Vilazodone	NA	0.001269222	NA
Nefazodone	Vortioxetine	NA	-0.073139148	NA NA
Paroxetine	Agomelatine	0.158188236	0.008740364	0.2082025448
Paroxetine	Placebo	0.484462603	0.547342312	0.3127804656
Paroxetine	Reboxetine	0.201096477	0.295690853	0.4894783605
Paroxetine	Sertraline	-0.091584848	0.057403216	0.4275653777
Paroxetine	Trazodone	0.553643797	0.055562943	0.0575412015
Paroxetine	Venlafaxine	-0.370431258	0.026910313	0.0063955643
Paroxetine	Vilazodone	NA	0.099989138	NA NA
Paroxetine	Vortioxetine	NA	0.025580768	NA NA
Placebo	Agomelatine	-0.425199608	-0.513388158	0.3699878290
Placebo	Reboxetine	-0.256528933	-0.250794581	0.9648415664
Placebo	Sertraline	-0.440341666	-0.491850753	0.5440726807
Placebo	Trazodone	-0.619144485	-0.222019213	0.0121407292
Placebo	Venlafaxine	-0.533356677	-0.524008095	0.9001170031
Placebo	Vilazodone	-0.390079935	-0.569582507	0.3478702822

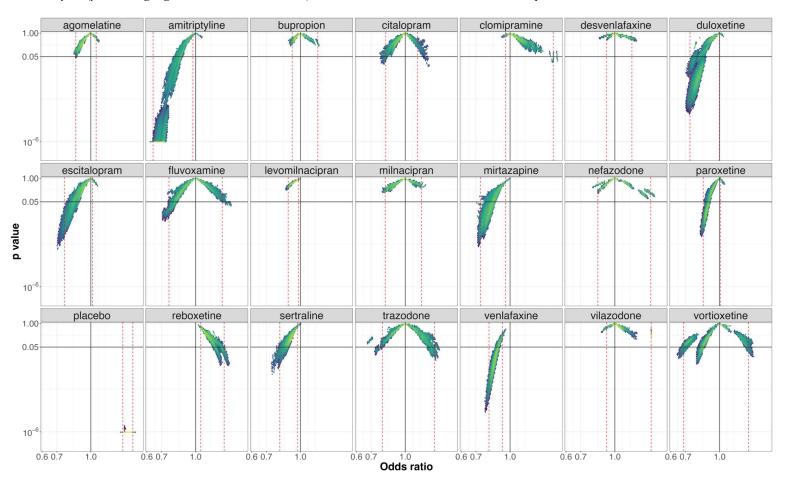
Placebo	Vortioxetine	-0.532569068	-0.297080011	0.0695474114
Reboxetine	Agomelatine	NA	-0.210262512	NA
Reboxetine	Sertraline	NA	-0.214055069	NA
Reboxetine	Trazodone	NA	-0.150494854	NA
Reboxetine	Venlafaxine	0.043675064	-0.290941338	0.2960991956
Reboxetine	Vilazodone	NA	-0.160682998	NA
Reboxetine	Vortioxetine	NA	-0.235091368	NA
Sertraline	Agomelatine	NA	0.003792558	NA
Sertraline	Trazodone	-0.580628978	0.096585865	0.0931431844
Sertraline	Venlafaxine	-0.118393339	-0.048047770	0.6104403654
Sertraline	Vilazodone	NA	0.053372071	NA
Sertraline	Vortioxetine	NA	-0.021036299	NA NA
Trazodone	Agomelatine	NA	-0.059767657	NA NA
Trazodone	Venlafaxine	-0.447444098	-0.083679895	0.1808086564
Trazodone	Vilazodone	NA	-0.010188144	NA NA
Trazodone	Vortioxetine	NA	-0.084596514	NA NA
Venlafaxine	Agomelatine	-0.311033780	0.100343523	0.0418085120
Venlafaxine	Vilazodone	NA	0.112977177	NA NA
Venlafaxine	Vortioxetine	-0.190498925	0.077825383	0.1111422601
Vilazodone	Agomelatine	NA	-0.049579514	NA
Vilazodone	Vortioxetine	NA	-0.074408370	NA
Vortioxetine	Agomelatine	NA	0.024828857	NA

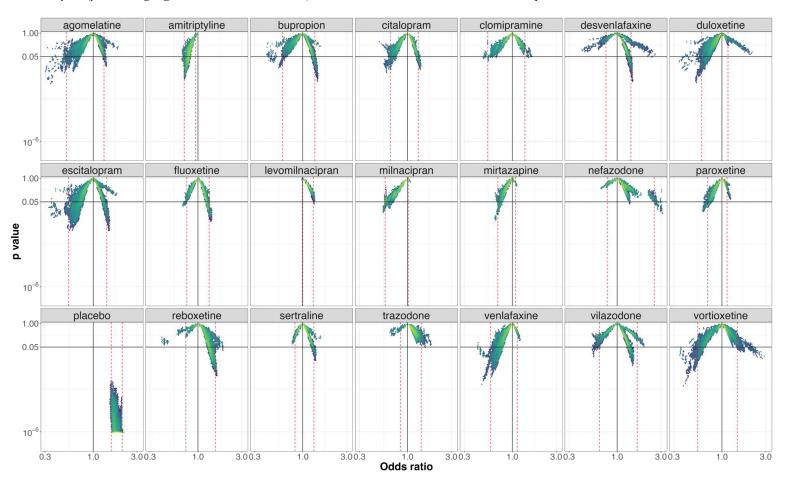

eTable-3: Results of the inconsistency test from the most complete NMA, the p-value come from the z test use in the netsplit function, with a threshold < 0.10..

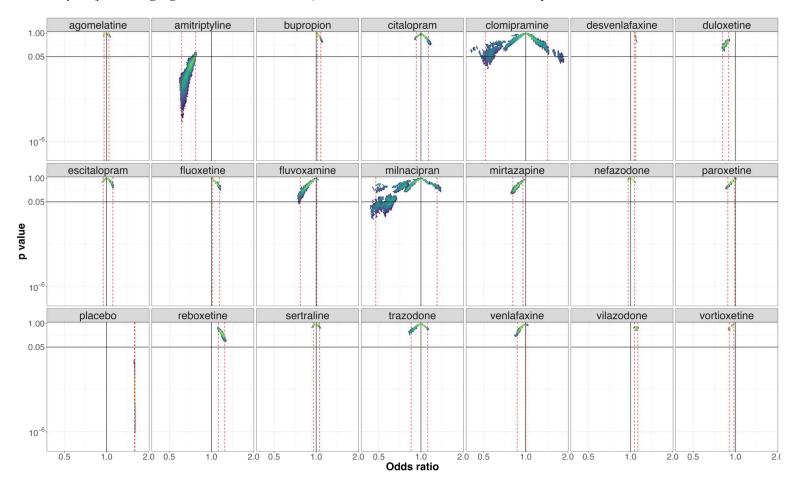


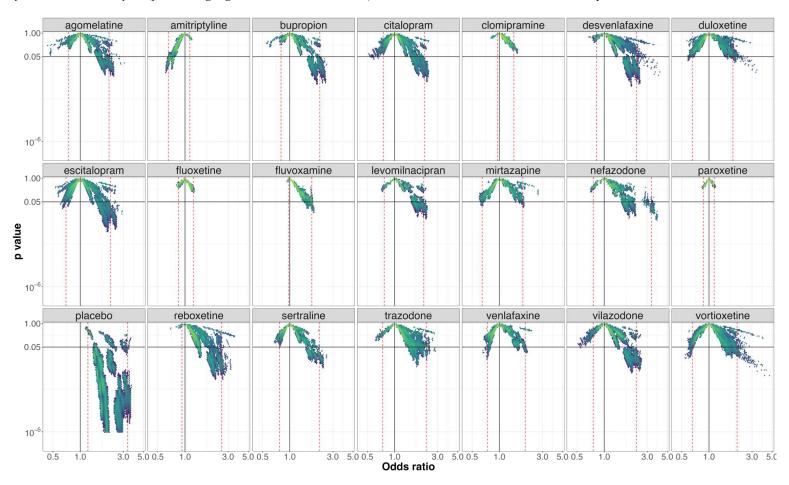

e-figure 2: Vibration of effects for treatment response for the comparisons of amitriptyline with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors amitriptyline. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

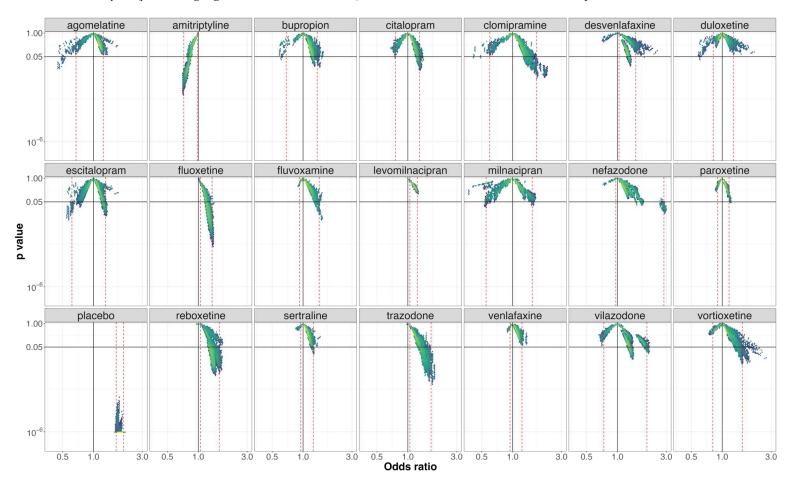




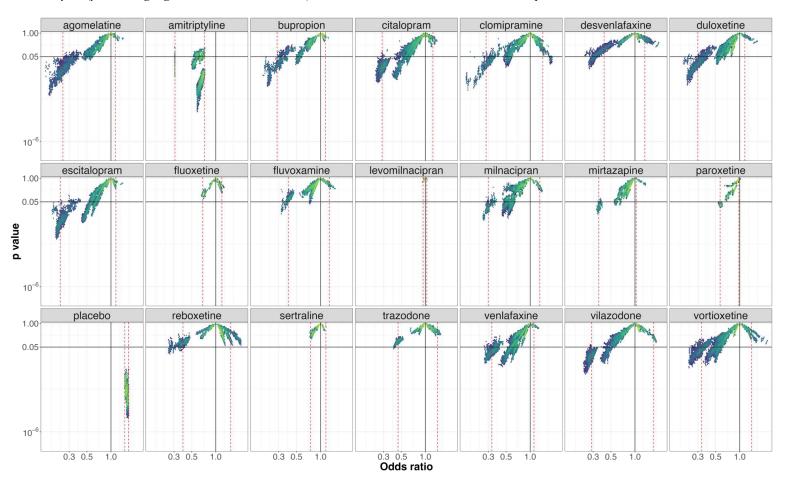

e-figure 5: Vibration of effects for treatment response for the comparisons of desvenlafaxine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors desvenlafaxine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

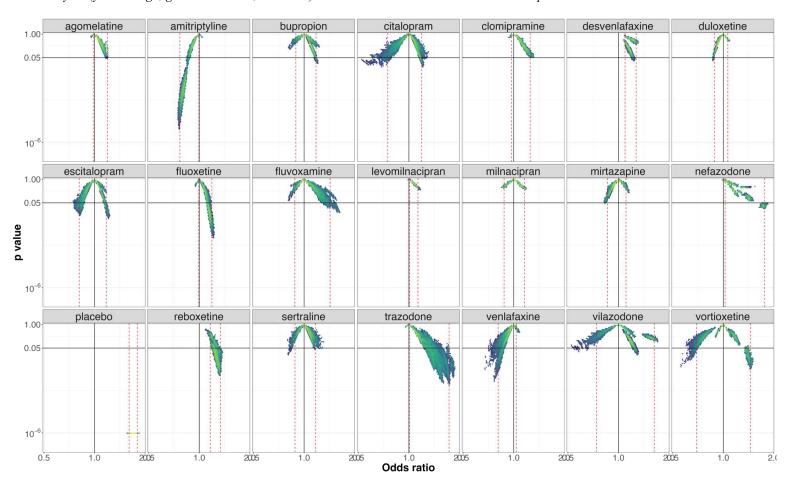


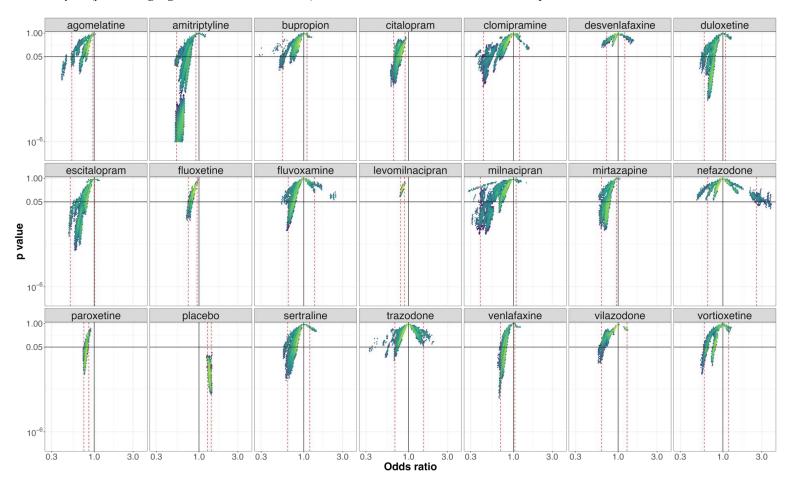

e-figure 7: Vibration of effects for treatment response for the comparisons of escitalopram with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors escitalopram. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

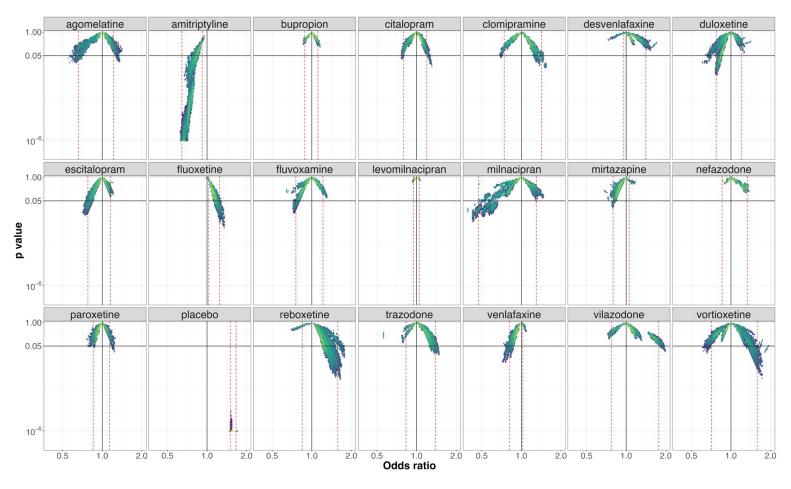


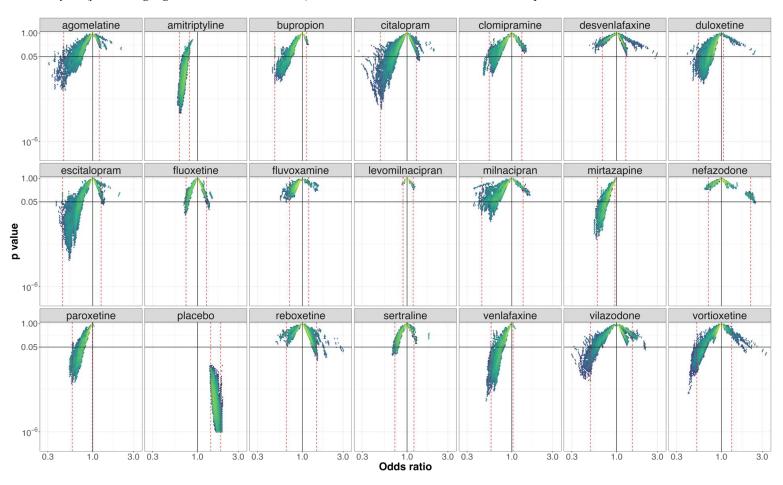
e-figure 9: Vibration of effects for treatment response for the comparisons of fluvoxamine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors fluvoxamine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

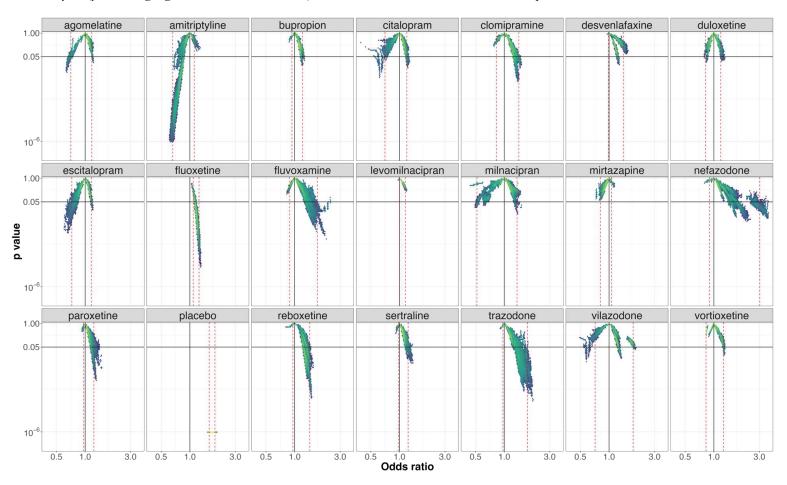


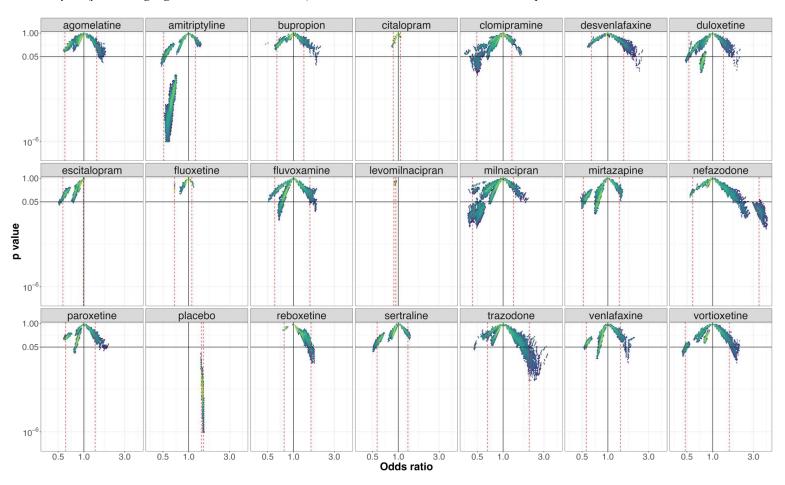


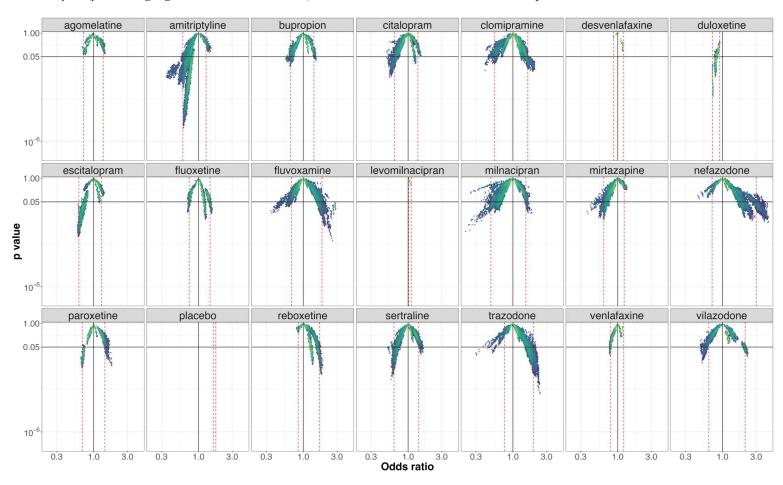

e-figure 11: Vibration of effects for treatment response for the comparisons of milnacipran with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors milnacipran. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

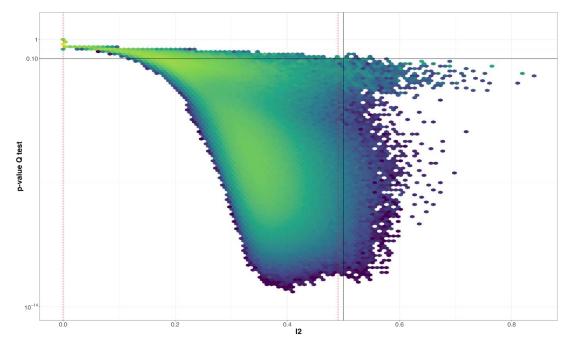

e-figure 12: Vibration of effects for treatment response for the comparisons of mirtazapine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors mirtazapine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

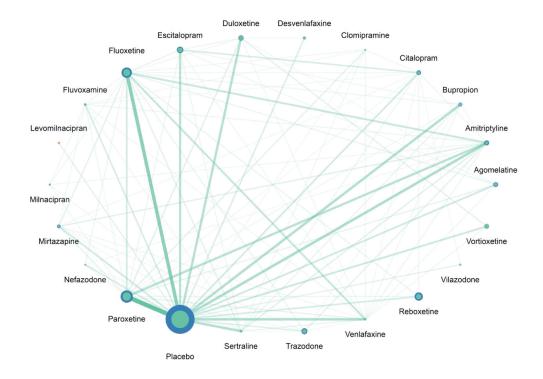


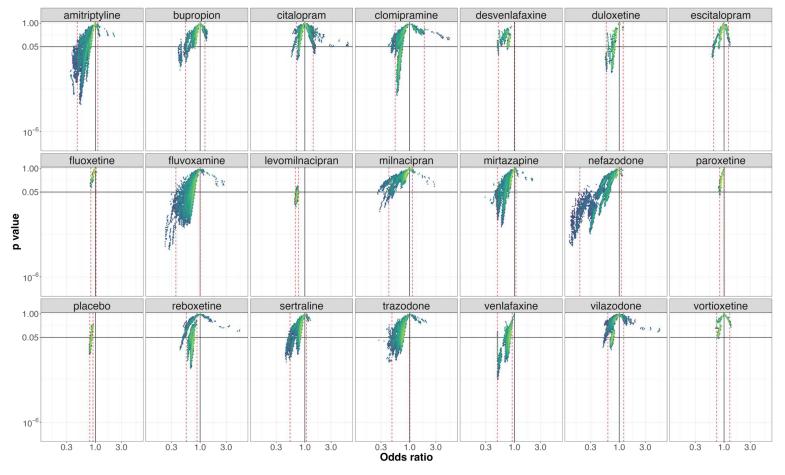

e-figure 15: Vibration of effects for treatment response for the comparisons of reboxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors reboxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

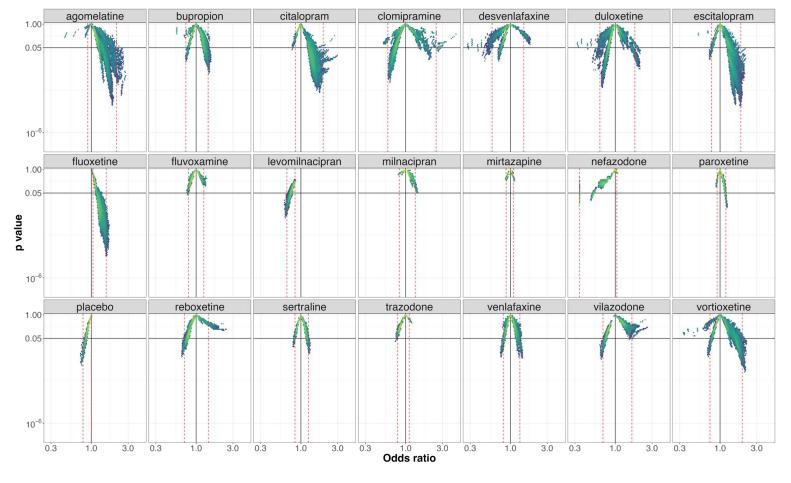

e-figure 16: Vibration of effects for treatment response for the comparisons of sertraline with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors clomipramine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

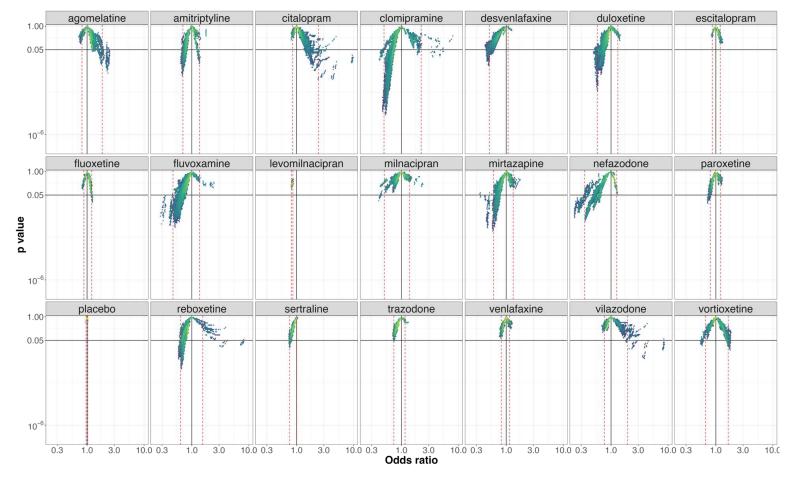

e-figure 17: Vibration of effects for treatment response for the comparisons of trazodone with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors trazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

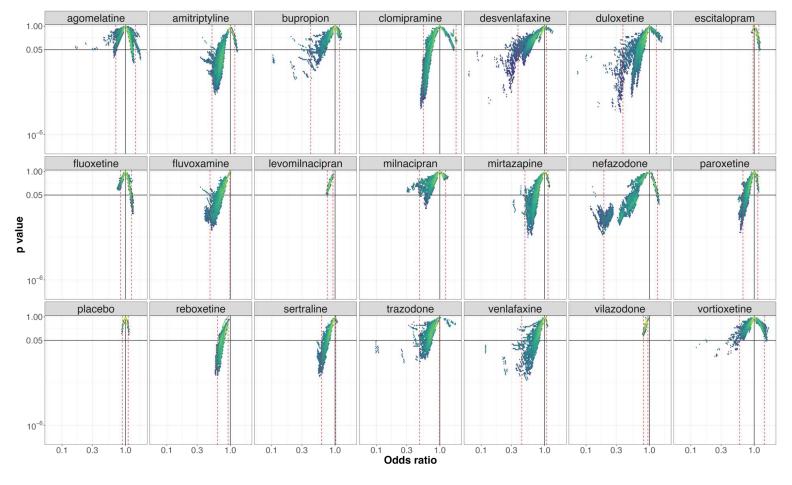

e-figure 18: Vibration of effects for treatment response for the comparisons of venlafaxine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors venlafaxine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

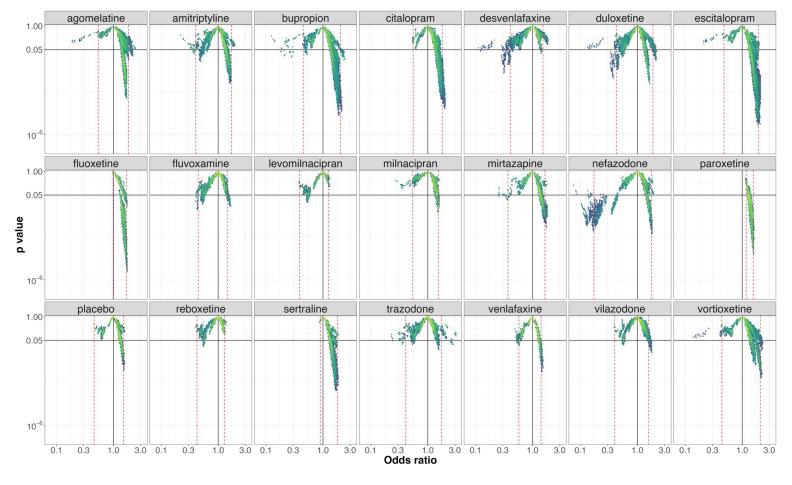

e-figure 19: Vibration of effects for treatment response for the comparisons of vilazodone with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors vilazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

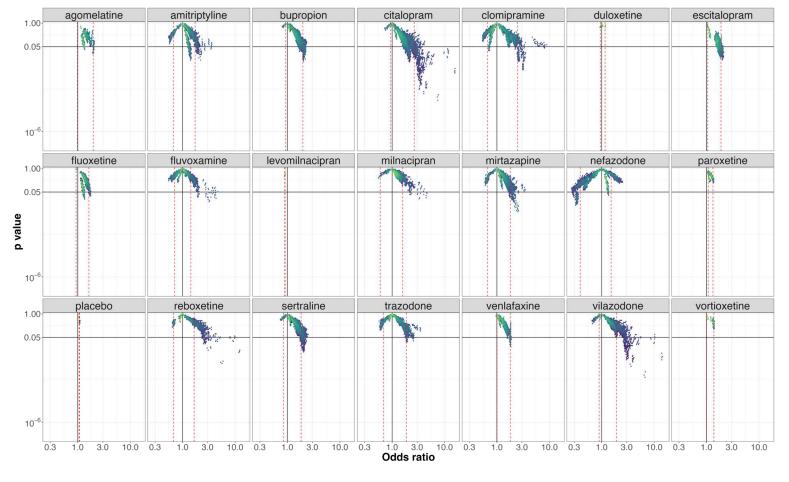

e-figure 20: Vibration of effects for treatment response for the comparisons of vortioxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors vortioxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

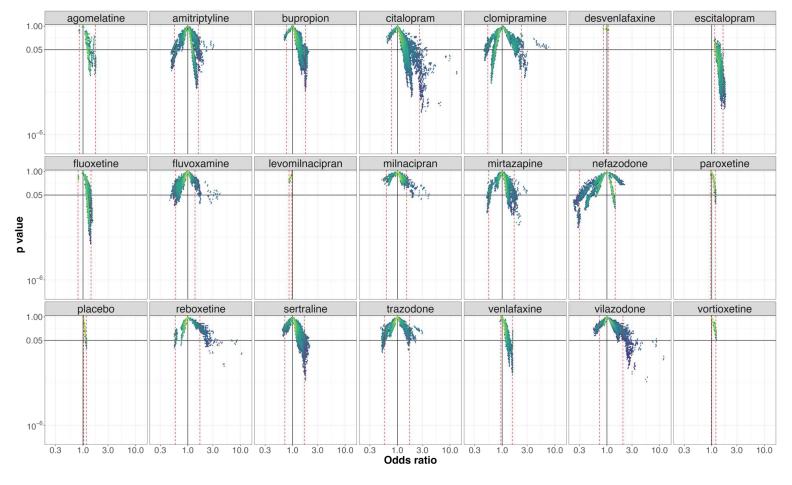

e-figure 21: Vibration of effects for heterogeneity for NMAs. $I^2 > 0.5$ indicates a high level of heterogeneity. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) for the outcome treatment response.

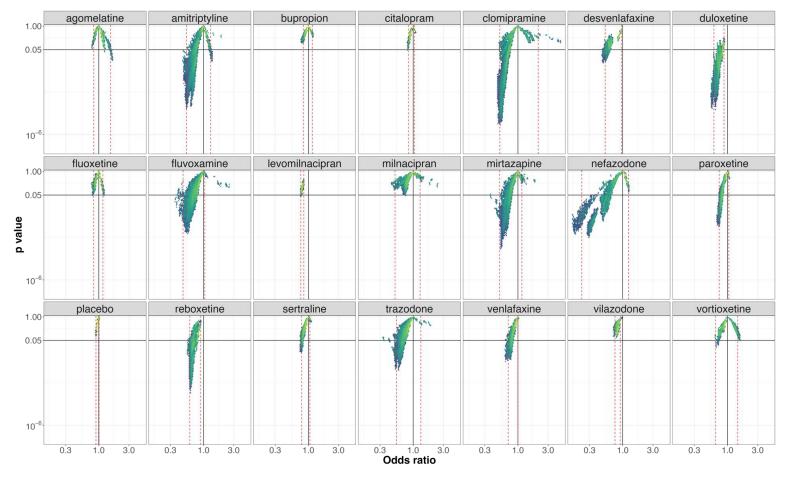

e-figure 22: Distribution of network geometries in the 4 121 590 NMAs on treatment discontinuation. The size of each dot indicates the number of patients allocated to the respective treatments. For each treatment, blue circles indicate the NMAs with the largest numbers of patients included, the green circles indicate the NMAs with the median number of patients included s, and the orange circles show the NMAs with the smallest number of patients included. The width of the lines is proportional to the number of trials comparing pairs of treatments in the complete NMA.

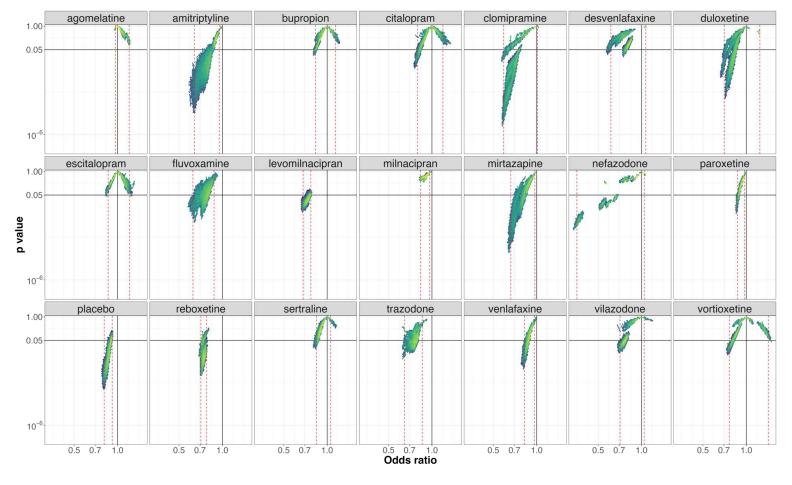

e-figure 23: Vibration of effects for treatment discontinuation for the comparisons of agomelatine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors agomelatine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

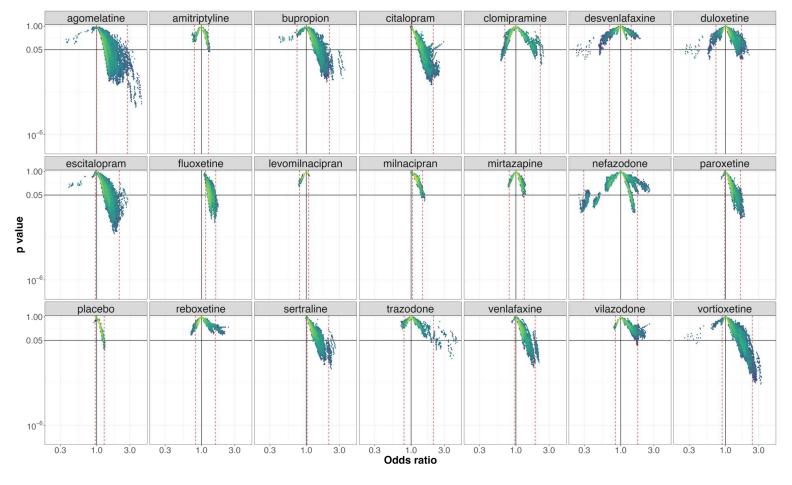

e-figure 24: Vibration of effects for treatment discontinuation for the comparisons of amitriptyline with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors amitriptyline. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

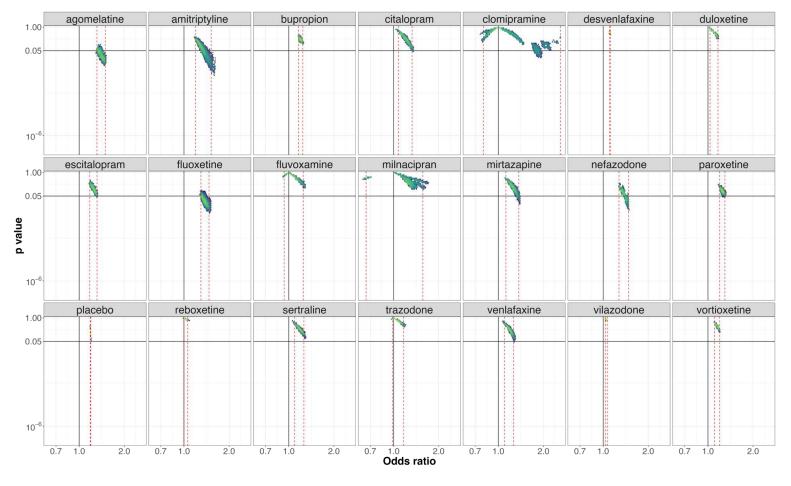

e-figure 25: Vibration of effects for treatment discontinuation for the comparisons of bupropion with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors bupropion. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentile.

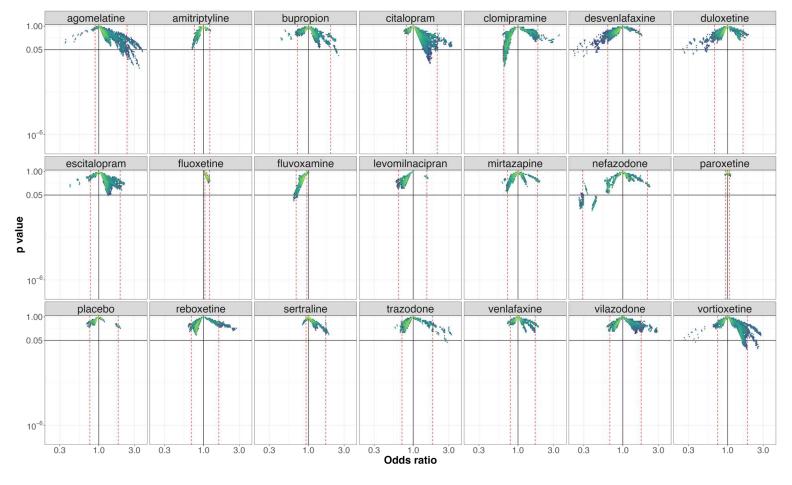

e-figure 26: Vibration of effects for treatment discontinuation for the comparisons of citalopram with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors citalopram. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

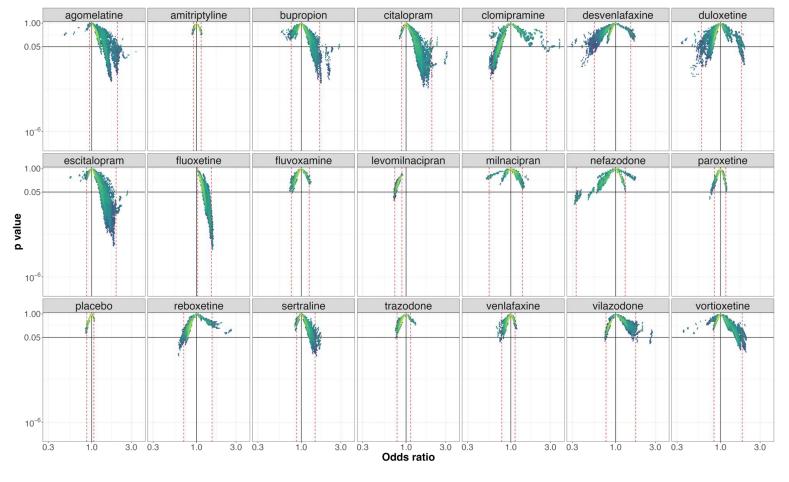

e-figure 27: Vibration of effects for treatment discontinuation for the comparisons of clomipramine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors clomipramine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

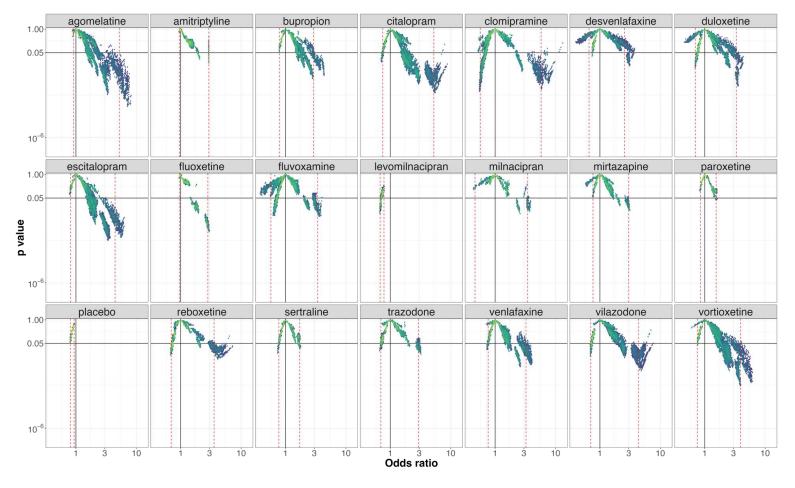

e-figure 28: Vibration of effects for treatment discontinuation for the comparisons of desvenlafaxine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors desvenlafaxine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

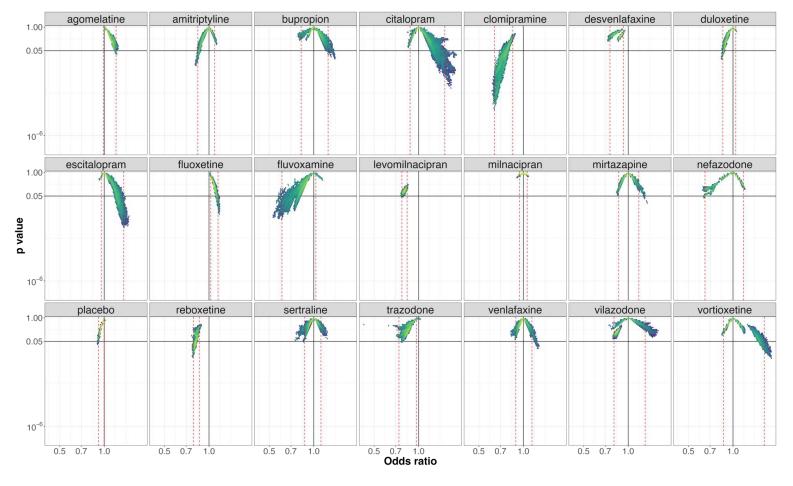

e-figure 29: Vibration of effects for treatment discontinuation for the comparisons of duloxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors duloxetine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentile.

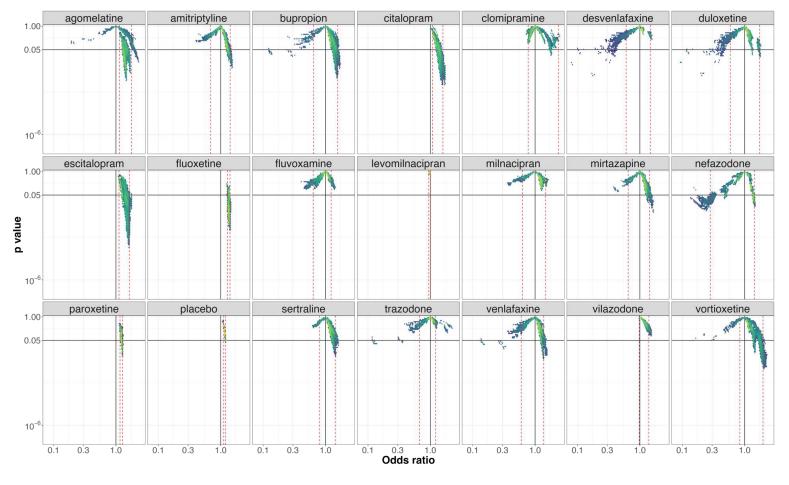

e-figure 30: Vibration of effects for treatment discontinuation for the comparisons of escitalopram with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors escitalopram. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

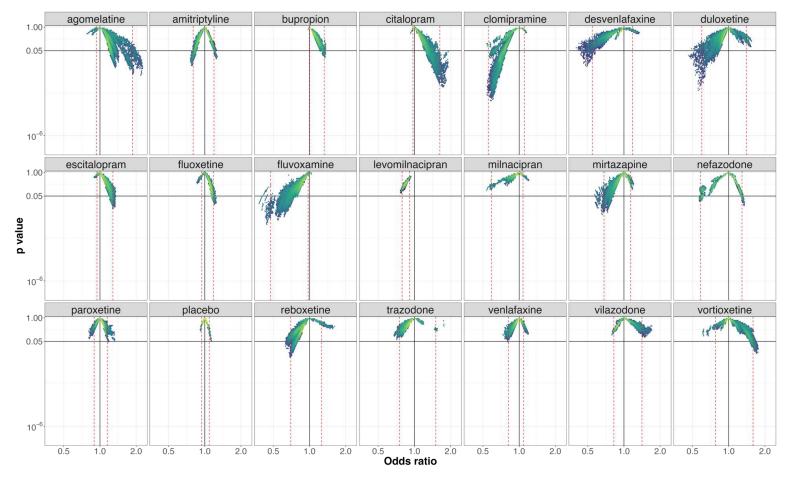

e-figure 31: Vibration of effects for treatment discontinuation for the comparisons of fluoxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors fluoxetine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

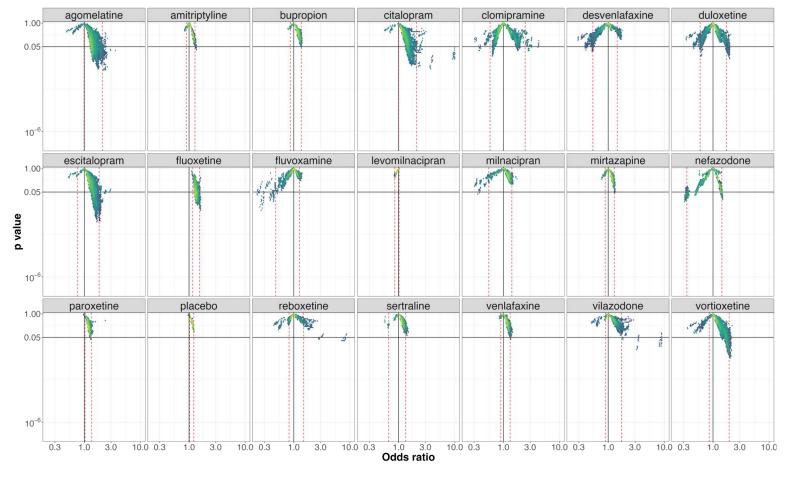

e-figure 32: Vibration of effects for treatment discontinuation for the comparisons of fluvoxamine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors fluvoxamine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

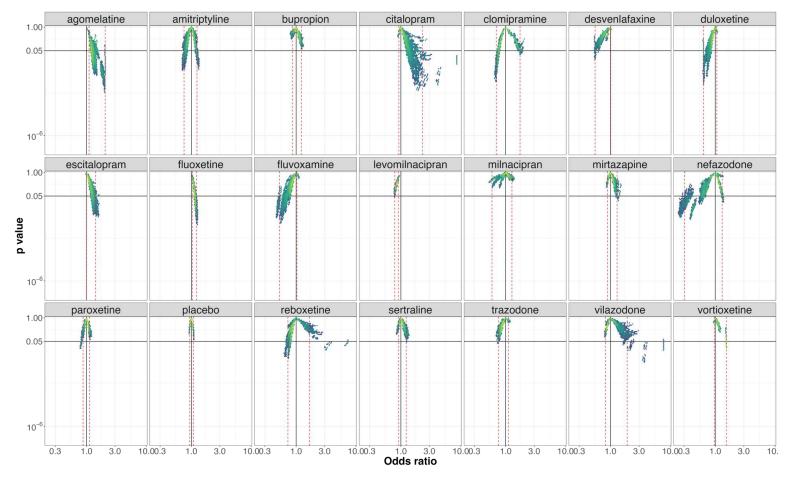

e-figure 33: Vibration of effects for treatment discontinuation for the comparisons of levomilnacipran with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors levomilnacipran. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

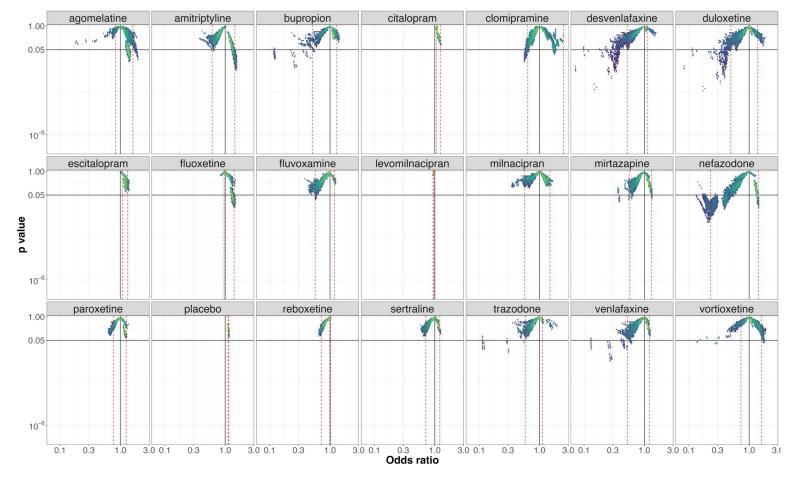

e-figure 34: Vibration of effects for treatment discontinuation for the comparisons of milnacipran with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors milnacipran. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

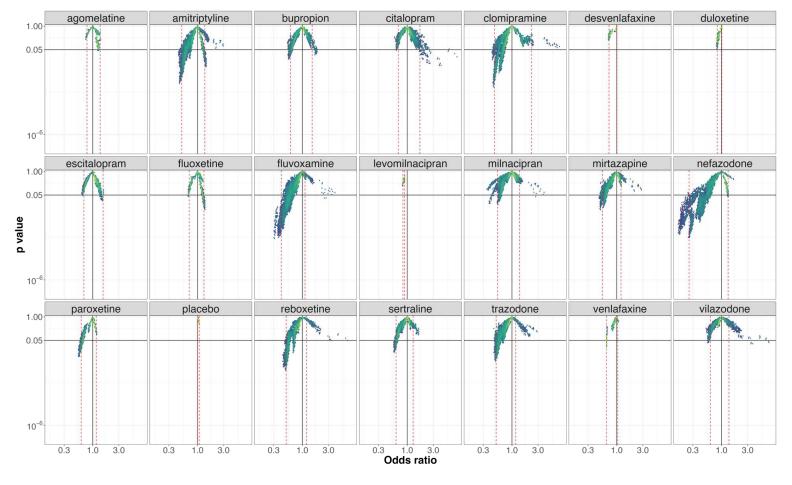

e-figure 35: Vibration of effects for treatment discontinuation for the comparisons of mirtazapine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors mirtazapine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

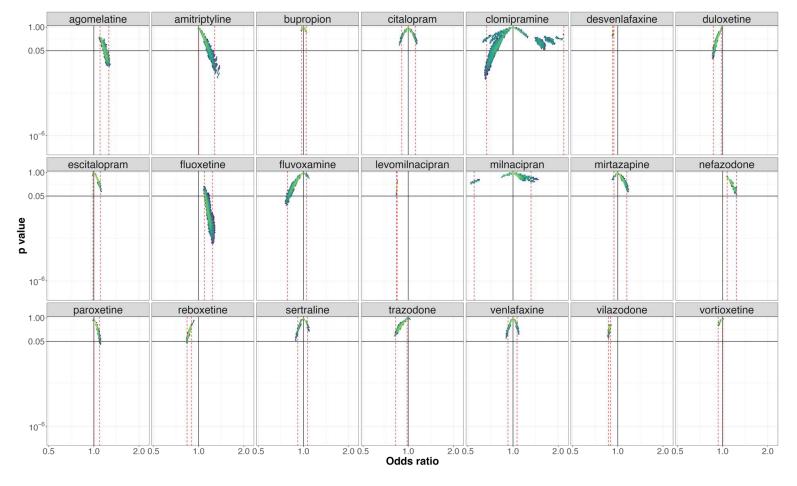

e-figure 36: Vibration of effects for treatment discontinuation for the comparisons of nefazodone with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors nefazodone. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

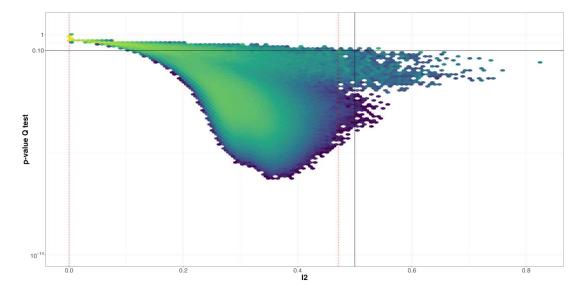

e-figure 37: Vibration of effects for treatment discontinuation for the comparisons of paroxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors paroxetine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

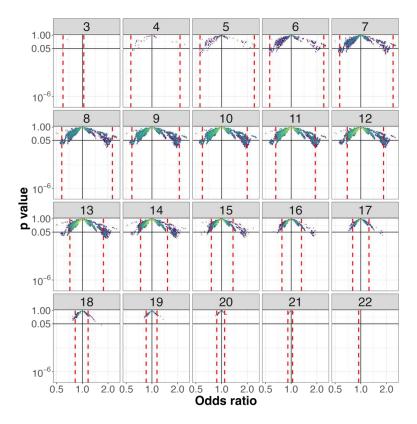

e-figure 38: Vibration of effects for treatment discontinuation for the comparisons of reboxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors reboxetine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

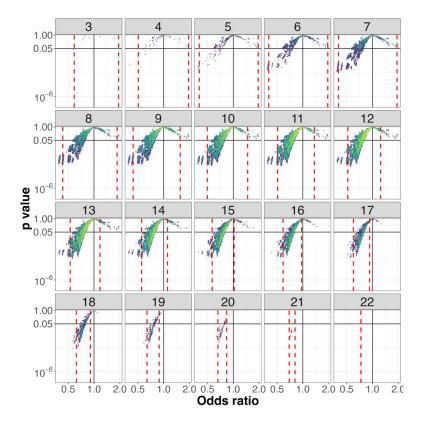

e-figure 39: Vibration of effects for treatment discontinuation for the comparisons of sertraline with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors sertraline. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

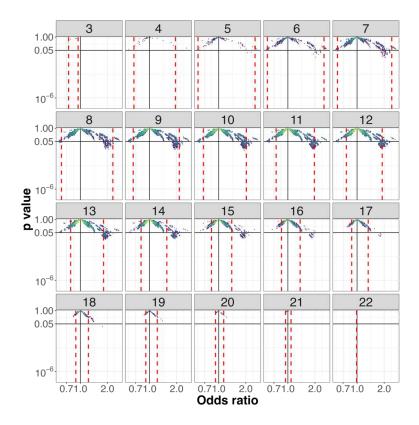

e-figure 40: Vibration of effects for treatment discontinuation for the comparisons of trazodone with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors trazodone. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

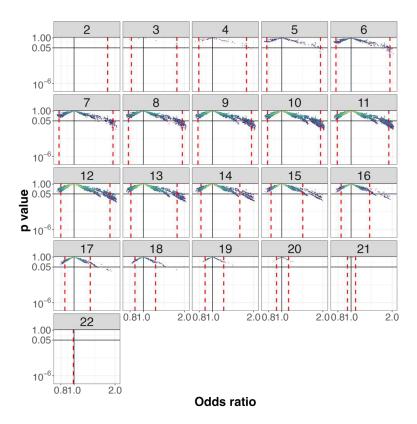

e-figure 41: Vibration of effects for treatment discontinuation for the comparisons of venlafaxine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors venlafaxine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 42: Vibration of effects for treatment discontinuation for the comparisons of vilazodone with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors vilazodone. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

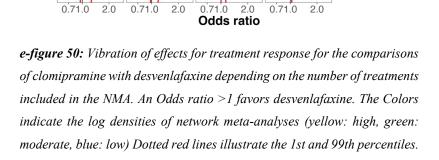

e-figure 43: Vibration of effects for treatment discontinuation for the comparisons of vortioxetine with the 20 remaining antidepressants and placebo (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors vortioxetine. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.

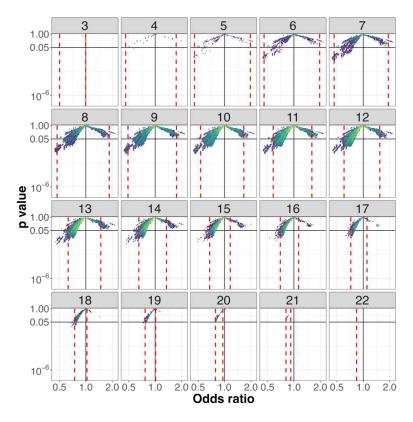

e-figure 44: Vibration of effects for treatment discontinuation for the comparisons of placebo with the 21 antidepressants (with the number of patients included in the most complete network for this comparison). An Odds ratio >1 favors placebo. The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low). Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 45: Vibration of effects for heterogeneity for NMAs. $I^2 > 0.5$ indicates a high level of heterogeneity The colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) for the outcome treatment discontinuation.

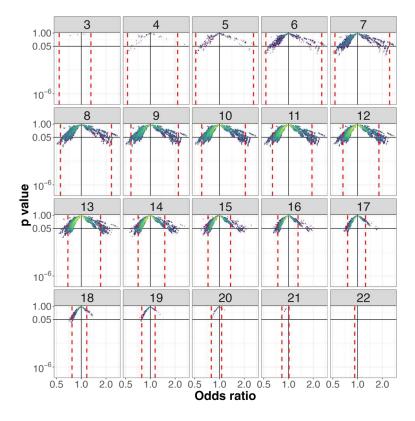

e-figure 46: Vibration of effects for treatment response for the comparisons of clomipramine with agomelatine depending on the number of treatments included in the NMA. An Odds ratio >1 favors agomelatine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

e-figure 47: Vibration of effects for treatment response for the comparisons of clomipramine with amitriptyline depending on the number of treatments included in the NMA. An Odds ratio >1 favors amitriptyline. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

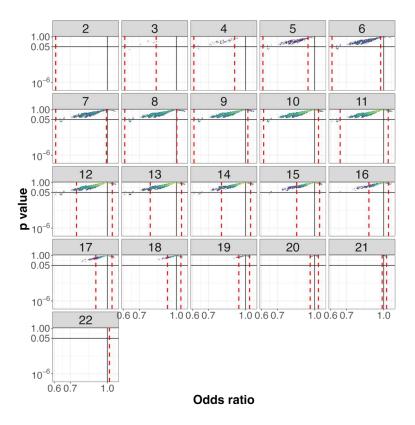

e-figure 48: Vibration of effects for treatment response for the comparisons of clomipramine with bupropion depending on the number of treatments included in the NMA. An Odds ratio >1 favors bupropion. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

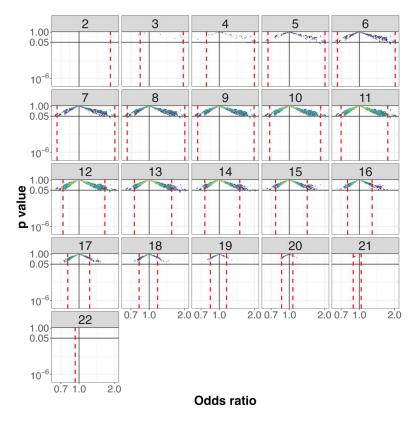


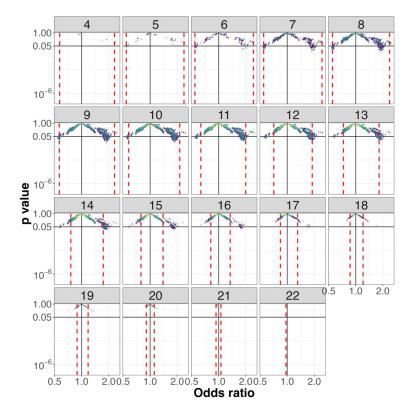
e-figure 49: Vibration of effects for treatment response for the comparisons of clomipramine with citalopram depending on the number of treatments included in the NMA. An Odds ratio >1 favors citalopram. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

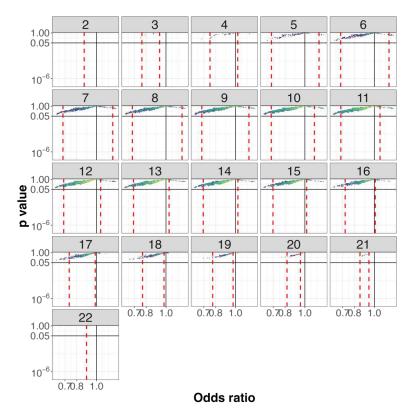

0.05

 10^{-6}

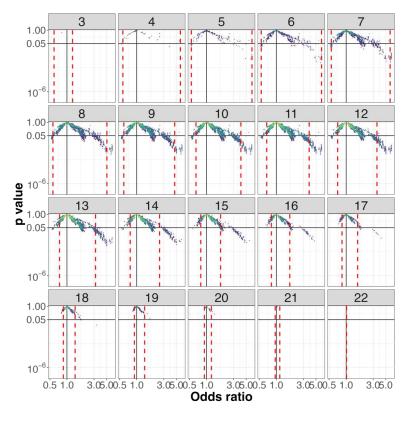


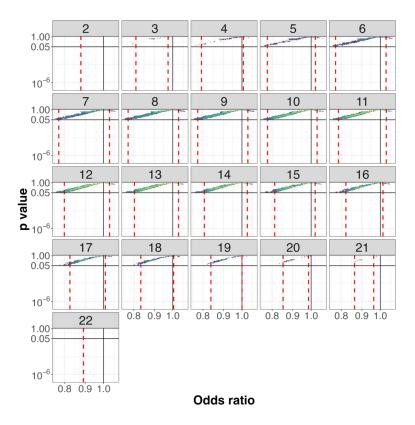

e-figure 51: Vibration of effects for treatment response for the comparisons of clomipramine with duloxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors duloxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

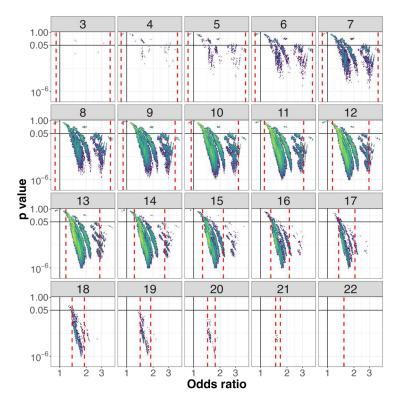

e-figure 52: Vibration of effects for treatment response for the comparisons of clomipramine with escitalopram depending on the number of treatments included in the NMA. An Odds ratio >1 favors escitalopram. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

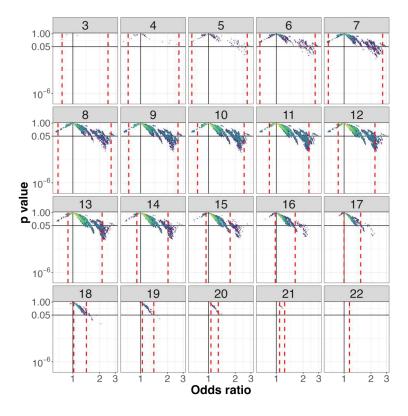

e-figure 53: Vibration of effects for treatment response for the comparisons of clomipramine with fluoxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors fluoxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

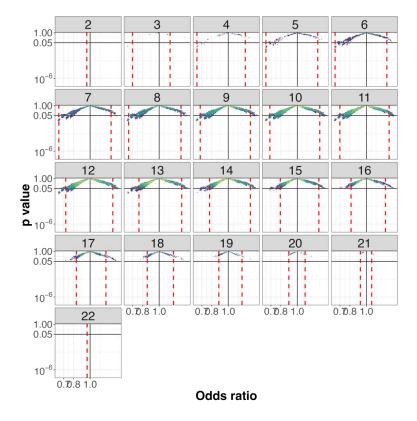
e-figure 54: Vibration of effects for treatment response for the comparisons of clomipramine with fluvoxamine depending on the number of treatments included in the NMA. An Odds ratio >1 favors fluvoxamine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

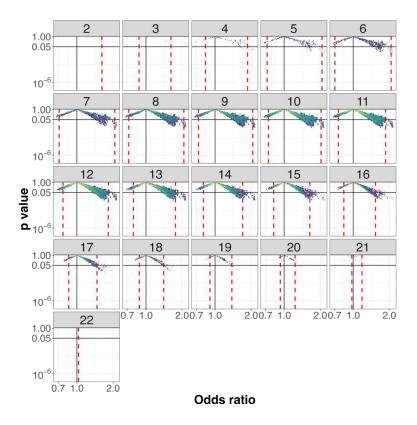

e-figure 55: Vibration of effects for treatment response for the comparisons of clomipramine with levomilnacipran depending on the number of treatments included in the NMA. An Odds ratio >1 favors levomilnacipran. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

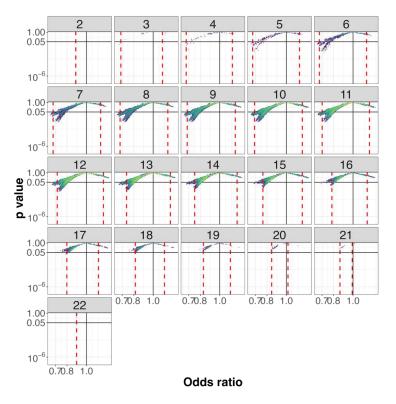

e-figure 56: Vibration of effects for treatment response for the comparisons of clomipramine with milnacipran depending on the number of treatments included in the NMA. An Odds ratio >1 favors milnacipran. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

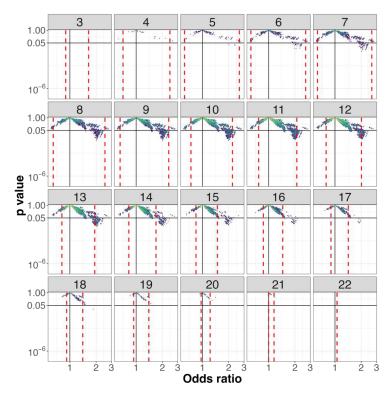

e-figure 57: Vibration of effects for treatment response for the comparisons of clomipramine with mirtazapine depending on the number of treatments included in the NMA. An Odds ratio >1 favors mirtazapine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

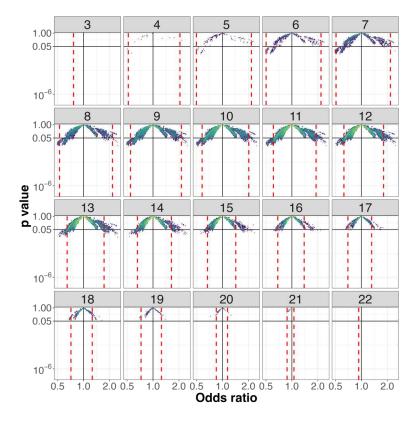

e-figure 58: Vibration of effects for treatment response for the comparisons of clomipramine with nefazodone depending on the number of treatments included in the NMA. An Odds ratio >1 favors nefazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

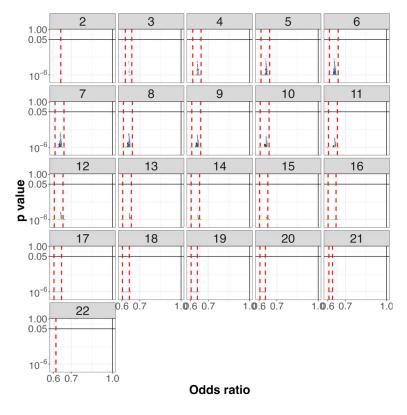

e-figure 59: Vibration of effects for treatment response for the comparisons of clomipramine with paroxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors paroxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

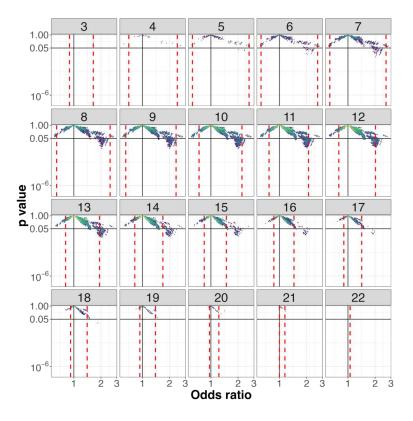

e-figure 60: Vibration of effects for treatment response for the comparisons of clomipramine with placebo depending on the number of treatments included in the NMA. An Odds ratio >1 favors placebo. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

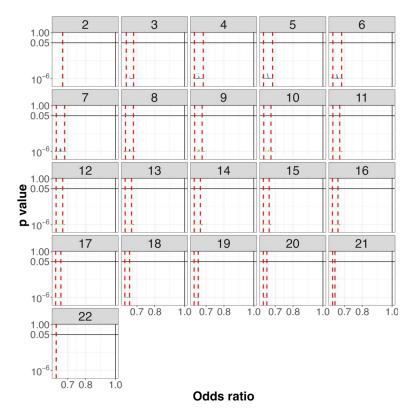

e-figure 61: Vibration of effects for treatment response for the comparisons of clomipramine with reboxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors reboxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

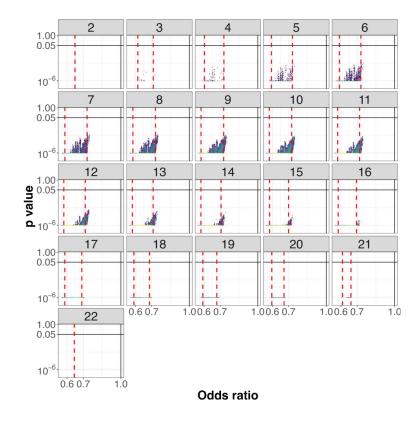

e-figure 62: Vibration of effects for treatment response for the comparisons of clomipramine with sertraline depending on the number of treatments included in the NMA. An Odds ratio >1 favors sertraline. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

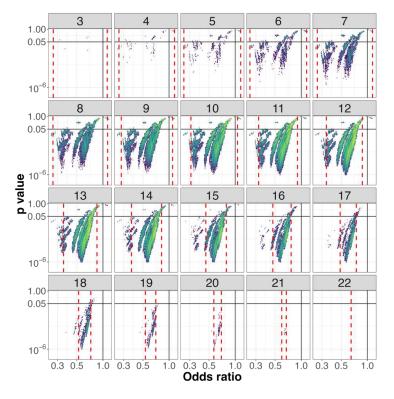

e-figure 63: Vibration of effects for treatment response for the comparisons of clomipramine with trazodone depending on the number of treatments included in the NMA. An Odds ratio >1 favors trazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

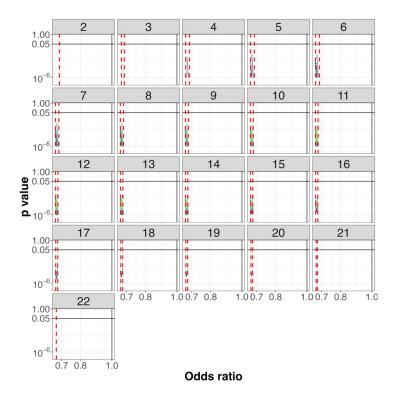

e-figure 64: Vibration of effects for treatment response for the comparisons of clomipramine with venlafaxine depending on the number of treatments included in the NMA. An Odds ratio >1 favors venlafaxine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

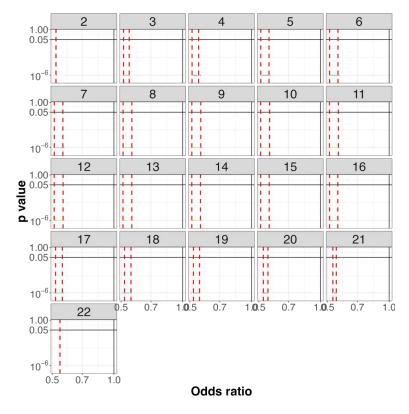

e-figure 65: Vibration of effects for treatment response for the comparisons of clomipramine with vilazodone depending on the number of treatments included in the NMA. An Odds ratio >1 favors vilazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

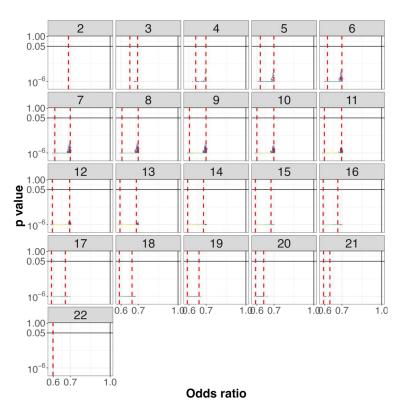

e-figure 66: Vibration of effects for treatment response for the comparisons of clomipramine with vortioxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors vortioxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

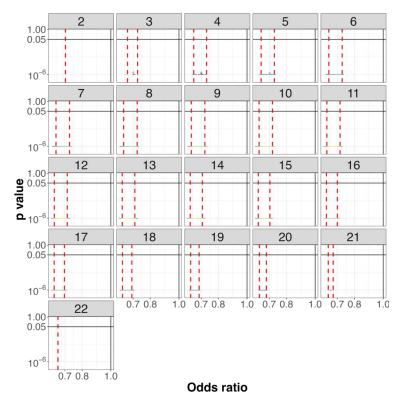

e-figure 67: Vibration of effects for treatment response for the comparisons of placebo with agomelatine depending on the number of treatments included in the NMA. An Odds ratio >1 favors agomelatine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

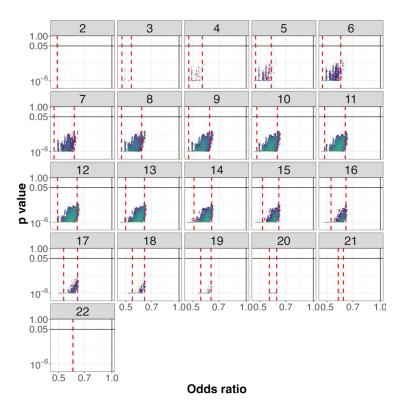

e-figure 68: Vibration of effects for treatment response for the comparisons of placebo with amitryptiline depending on the number of treatments included in the NMA. An Odds ratio >1 favors amitryptiline. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

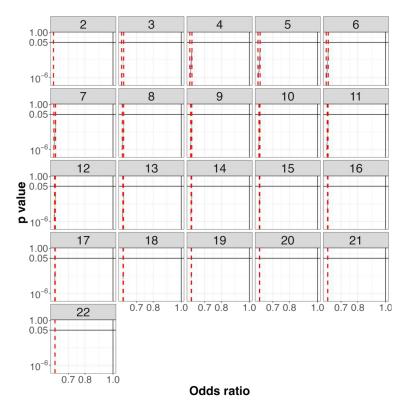

e-figure 69: Vibration of effects for treatment response for the comparisons of placebo with bupropion depending on the number of treatments included in the NMA. An Odds ratio >1 favors bupropion. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

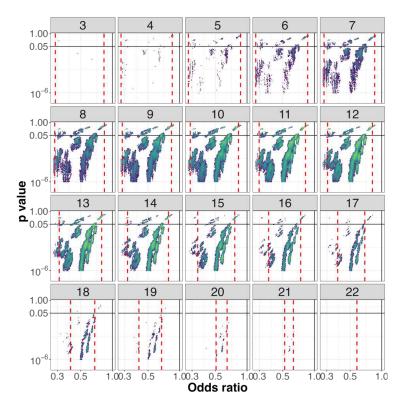

e-figure 70: Vibration of effects for treatment response for the comparisons of placebo with citalopram depending on the number of treatments included in the NMA. An Odds ratio >1 favors citalopram. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

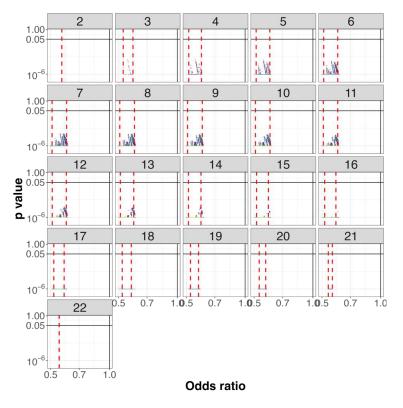

e-figure 71: Vibration of effects for treatment response for the comparisons of placebo with clomipramine depending on the number of treatments included in the NMA. An Odds ratio >1 favors clomipramine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

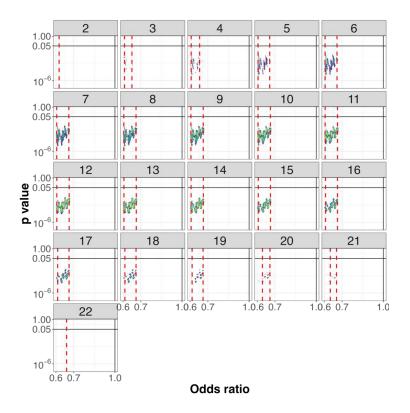

e-figure 72: Vibration of effects for treatment response for the comparisons of placebo with desvenlafaxine depending on the number of treatments included in the NMA. An Odds ratio >1 favors desvenlafaxine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 73: Vibration of effects for treatment response for the comparisons of placebo with duloxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors duloxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

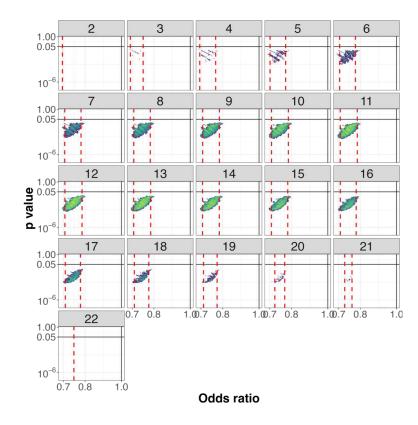

e-figure 74: Vibration of effects for treatment response for the comparisons of placebo with escitalopram depending on the number of treatments included in the NMA. An Odds ratio >1 favors escitalopram. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 75: Vibration of effects for treatment response for the comparisons of placebo with fluoxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors fluoxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

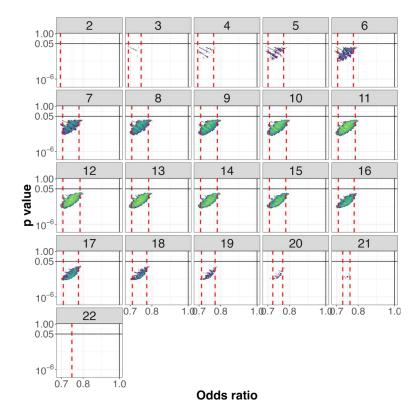

e-figure 76: Vibration of effects for treatment response for the comparisons of placebo with fluvoxamine depending on the number of treatments included in the NMA. An Odds ratio >1 favors fluvoxamine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 77: Vibration of effects for treatment response for the comparisons of placebo with levomilnacipran depending on the number of treatments included in the NMA. An Odds ratio >1 favors levomilnacipran. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

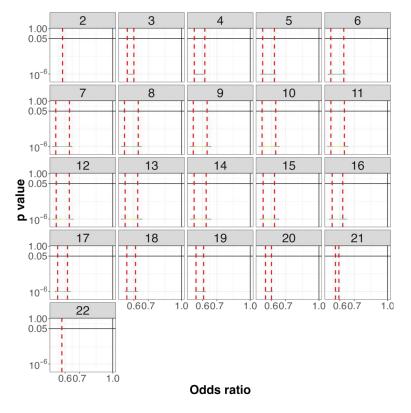
e-figure 78: Vibration of effects for treatment response for the comparisons of placebo with milnacipran depending on the number of treatments included in the NMA. An Odds ratio >1 favors milnacipran. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.



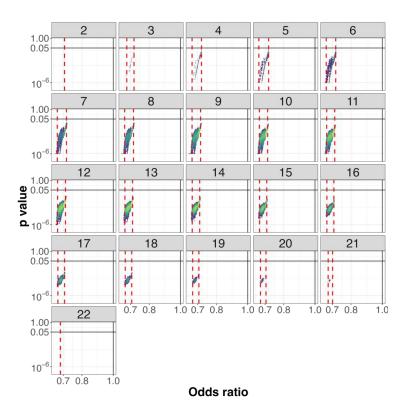
e-figure 79: Vibration of effects for treatment response for the comparisons of placebo with mirtazapine depending on the number of treatments included in the NMA. An Odds ratio >1 favors mirtazapine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

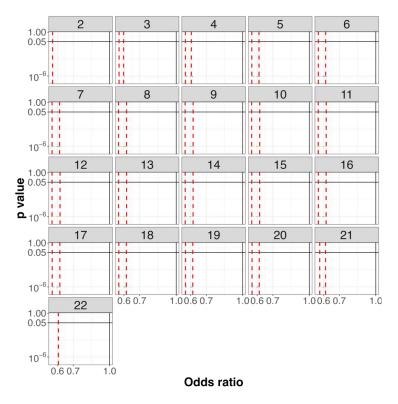

e-figure 80: Vibration of effects for treatment response for the comparisons of placebo with nefazodone depending on the number of treatments included in the NMA. An Odds ratio >1 favors nefazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

e-figure 81: Vibration of effects for treatment response for the comparisons of placebo with paroxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors paroxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.



e-figure 82: Vibration of effects for treatment response for the comparisons of placebo with reboxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors reboxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 83: Vibration of effects for treatment response for the comparisons of placebo with sertraline depending on the number of treatments included in the NMA. An Odds ratio >1 favors sertraline. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.


e-figure 84: Vibration of effects for treatment response for the comparisons of placebo with trazodone depending on the number of treatments included in the NMA. An Odds ratio >1 favors trazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

e-figure 85: Vibration of effects for treatment response for the comparisons of placebo with venlafaxine depending on the number of treatments included in the NMA. An Odds ratio >1 favors venlafaxine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

e-figure 86: Vibration of effects for treatment response for the comparisons of placebo with vilazodone depending on the number of treatments included in the NMA. An Odds ratio >1 favors vilazodone. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.

e-figure 87: Vibration of effects for treatment response for the comparisons of placebo with vortioxetine depending on the number of treatments included in the NMA. An Odds ratio >1 favors vortioxetine. The Colors indicate the log densities of network meta-analyses (yellow: high, green: moderate, blue: low) Dotted red lines illustrate the 1st and 99th percentiles.