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MEssagE
Conventional white- light endoscopy has high 
interobserver variability for the diagnosis of gastric 
precancerous conditions. Here we present a deep- 
learning (DL) approach for the diagnosis of atrophic 
gastritis developed and trained using real- world 
endoscopic images from the proximal stomach. The 
model achieved an accuracy of 93% (area under 
the curve (AUC): 0.98; F- score 0.93) in an inde-
pendent data set, outperforming expert endosco-
pists. DL may overcome conventional appraisal of 
white- light endoscopy and support human decision 
making. The algorithm is available free of charge 
via a web- based interface (https://www. ccb. uni- 
saarland. de/ atrophy).

In MorE dETaIl
Introduction
Chronic inflammation of the gastric mucosa induces a 
cascade of precancerous conditions (chronic atrophic 
gastritis, intestinal metaplasia) and lesions (dysplasia) 
that may result in the development of intestinal- type 
gastric cancer.1 Infection with Helicobacter pylori and 
autoimmune gastritis are the most relevant factors 
initiating these mechanisms. Conventional white- light 
endoscopy has moderate sensitivity and specificity, as 
well as a high interobserver variability, and is there-
fore not sufficient to reliably diagnose gastric atrophy 
or intestinal metaplasia.2 3 Thus, especially in Western 
countries, histology- based diagnosis of precancerous 
conditions using standardised biopsy protocols is 
favoured. Advanced endoscopic techniques (eg, 
virtual or conventional chromoendoscopy, magnifi-
cation endoscopy, confocal laser endomicroscopy) 
are often hindered by technical availability and costs.

DL has demonstrated potential in medical 
imaging, including GI endoscopy.4 In this field, 
DL has been used to diagnose focal pathologies 
(in particular colorectal polyps and oesopha-
geal adenocarcinoma), and only occasionally for 
diseases diffusely affecting the GI mucosa (eg, H. 
pylori- associated gastritis).4–7 Here, for the first 
time, we present a DL approach that overcomes the 
limitations of white- light endoscopy in diagnosing 
atrophic gastritis.

Patients and methods
For a first data set, we identified 200 real- world 
images from patients with and without histology- 
proven atrophic gastritis (100 each) from subjects 
undergoing routine oesophagogastroduodenoscopy 
between 2008 and 2018 (data set DS1). Endosco-
pies were performed with various generations of 

Olympus scopes (GIF- Q160, GIF- Q160Z, GIF- 
1TQ160, GIF- Q165, GIF- H180, GIF- H190; 
Olympus Europe, Hamburg, Germany). Images 
were unaltered white- light images anonymised and 
exported as Digital Imaging and Communications 
in Medicine (DICOMs). Non- standardised images 
(eg, various scope positions, distances, angles and 
illumination; bile, food and mucus contaminations) 
were taken from the non- overinflated proximal 
stomach (gastric corpus and fundus). All images 
were cropped, resized and normalised to have a set 
average and SD.

An independent second data set (data set DS2) 
of 70 images (30 with atrophy; 40 without) was 
used for independent testing and evaluation by six 
endoscopists with less than 1500 and more than 
1500 esophagogastroduodenoscopy (EGDs). Since 
the two groups (three each) did not differ (p>0.05), 
their ratings were combined. Table 1 summarises 
the patient characteristics. Patients included in the 
study had no evidence of persisting H. pylori infec-
tion. Histopathological assessment of H&E- stained 
slices was carried out by seven board- certified 
academic pathologists, with at least two patholo-
gists evaluating each specimen (non- blinded) using 
the updated Sydney system.8

With traditional machine learning, handcrafted 
features are fed to a model for classification. 
With DL these are computed incrementally by the 
model without expert intervention. Thus, there is 
no theoretical limit that prevents it from learning 
any feature representation. Convolutional neural 
networks (CNNs) are the gold standard for image 
analysis. CNNs take advantage of the local struc-
tural relationships in the image and create progres-
sively more complex abstract representations from 
layer to layer. However, this requires a large amount 
of training data.

To overcome this limitation, we used a fine- 
tuned, pretrained CNN; that is, we used pretrained 
weights to initialise the network, thus improving the 
stability and performance of our model (figure 1). 
The training data were artificially augmented by 
image rotation, mirroring and scaling. First, we 
assessed the best architecture (pretrained models 
on ImageNet).9 We performed 10- fold stratified 
cross- validation on DS1. For each round, data 
were split into training, tuning and testing sets 
(80%/10%/10%). The test set was classified using 
the best performing hyperparameter combination, 
as assessed in the tuning set (early stop grid search 
to select dropout, learning rate, momentum). 
All images were used for testing once only. In a 
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Table 1 Data set characteristics

data set 1 data set 2

Patients with atrophy n=37 n=13

  Age (range) 69±13 (39–91) 70±13 (47–83)

  Gender (female/male) 22/15 (59%/41%) 7/6 (54/46%)

  Autoimmune gastritis 28 (76%) 8 (62%)

  Severe atrophy 11 (30%) 4 (31%)

  Intestinal metaplasia 27 (73%) 9 (70%)

  Images/patient (range) 2.7 (1–15) 2.3 (1–5)

  Images fundus 48 (48%) 19 (63%)

  Images corpus 52 (52%) 11 (37%)

Patients without atrophy n=64 n=22

  Age (years) 64±15 (18–86) 66±17 (26–83)

  Gender (female/male) 29/35 (45%/55%) 11/11 (50%/50%)

  Normal mucosa 32 (50%) 11 (50%)

  Chronic gastritis 32 (50%) 11 (50%)

  Images/patient, median (range) 1.5 (1–4) 1.8 (1–5)

  Images fundus 62 (62%) 20 (50%)

  Images corpus 38 (38%) 20 (50%)

For data sets 1 and 2, baseline characteristics are given. For patient age, mean and 
SD as well as range (in parentheses) are presented. Medians and ranges of the 
numbers of images used per patient are shown.

Figure 1 Study workflow. DS1 was used to perform 10- fold stratified cross- validation (A). At each iteration, one fold was used for testing, one was 
used for tuning, and the remainder were used for training. In a second step, DS1 was used for tuning and training (10/90% split), whereas DS2 was 
used for hold- out testing (B). The workflow for each training, tuning and testing cycle was performed as presented in C. The testing set (DS2) was 
only used to derive results and never to train the model or to tune hyperparameters, remaining completely independent. CNN, convolutional neural 
network; DS1, data set 1; DS2, data set 2.

second stage, DS1 was used for training and tuning (90%/10% 
split), whereas DS2 was used for testing. Model architecture 
was chosen from the first- stage results. Hyperparameters were 

assessed in the tuning set. Online supplementary file 1 provides 
an indepth description of the methods.

For all models and expert evaluations, accuracy, balanced 
accuracy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV) and F- score were computed. In 
addition, NPV, PPV and accuracy were computed for prevalence 
rates between 20% and 50% in steps of 1%. Statistical differ-
ences between the expert evaluations and DL were assessed with 
Wilcoxon signed- rank test. Further, we computed the receiver 
operating characteristic (ROC) curves and the AUC.

results
The best performing pretrained DL model for diagnosis of atro-
phic gastritis, as assessed by cross- validation, was VGG16.10 The 
algorithm yielded results for all images. Table 2 summarises the 
results.

Accuracy, balanced accuracy and F- score were significantly 
lower for the endoscopists when compared with the DL- based 
approach (p=0.03). There was no significant difference between 
the endoscopy experts and the model for the remaining perfor-
mance metrics. Online supplementary figure 1A,B shows the ROC 
curves.

dIsCussIon
We present a DL approach capable of surpassing expert assess-
ment for endoscopic diagnosis of atrophic gastritis. Despite the 
low number of images available, our model achieved a diagnostic 
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Table 2 Results of the DL- based algorithm in comparison with evaluation by endoscopists
data set 1 data set 2

dl- based algorithm Endoscopists

Cross- validation Independent validation
Combined
(n=6)

less experienced
(n=3)

More experienced
(n=3)

accuracy 0.935 0.929 0.800
(0.07)

0.814
(0.11)

0.786
(0.05)

Balanced accuracy 0.935 0.938 0.800
(0.09)

0.832
(0.10)

0.768
(0.08)

sensitivity 0.930 1.000 0.800
(0.26)

0.956
(0.08)

0.644
(0.30)

specificity 0.940 0.875 0.800
(0.17)

0.708
(0.17)

0.892
(0.15)

PPV 0.939 0.857 0.799
(0.15)

0.724
(0.14)

0.875
(0.14)

nPV 0.931 1.000 0.879
(0.14)

0.956
(0.08)

0.802
(0.15)

F- score 0.935 0.933 0.758
(0.13)

0.820
(0.10)

0.695
(0.15)

auC 0.984 0.981 – – –

For the evaluation by groups of endoscopists, SD is given in parentheses.
AUC, area under the curve; DL, deep learning; NPV, negative predictive value; PPV, positive predictive value.

accuracy of 93%, which was significantly better than the combined 
results of endoscopists working at a tertiary referral centre.

Endoscopic surveillance is generally advised for patients with 
extensive atrophy or intestinal metaplasia, but not in case of 
precancerous conditions restricted to the antrum.2 Thus, we 
decided to focus on the proximal stomach (gastric corpus and 
fundus). Histopathology was used as gold standard. This method 
is, especially in initial or patchy disease, prone to sampling error. 
Thus, a false- positive rate of 12.5% is acceptable, because false- 
negative results of histopathology (at least two biopsies in the 
proximal stomach) cannot be ruled out. Our algorithm cannot 
sharply discriminate simple atrophy from metaplastic atrophic 
gastritis, since most patients in both cohorts suffered from atro-
phic gastritis with intestinal metaplasia, which is the most reli-
able histological marker of atrophy.2

The strength of our approach is that we used real- world 
images for training, tuning and evaluation. Thus, our algorithm 
has the capability to work reliably under these conditions and is 
not dependent on high- quality, ideal images. Nevertheless, the 
generalisation of these results needs to be taken cautiously since 
the size of the training data set was limited. The prevalence of 
atrophic gastritis varies in different parts of the world,11 and 
affected patients are more likely to be present in endoscopy- 
based cohorts. Therefore, we extrapolated the performance 
metrics for the reported prevalence range from 20% to 50%.11 
Notwithstanding that the algorithm performs adequately across 
these real- world prevalence rates, as shown in online supple-
mentary figure 1C, further prospective evaluation in additional 
cohorts is inevitable before standard implementation.

To provide worldwide direct access for a broad group of users, 
we developed a web- based software tool where image files can 
be uploaded for analysis by the DL- based algorithm (available 
free of charge at https://www. ccb. uni- saarland. de/ atrophy). 
Moreover, uploaded images from different settings may lead to 
more robust algorithms in the future, overcoming the limitations 
associated with one training data set.

In conclusion, DL can support human decision making in 
complex settings of GI endoscopy and is a promising tool for 
clinically relevant endoscopy applications.
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