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ABSTRACT
Objective  Polygenic risk scores (PRS) for diverticular 
disease must be evaluated in diverse cohorts. We sought 
to explore shared genetic predisposition across the 
phenome and to assess risk stratification in individuals 
genetically similar to European, African and Admixed-
American reference samples.
Methods  A 44-variant PRS was applied to the All of Us 
Research Program. Phenome-wide association studies 
(PheWAS) identified conditions linked with heightened 
genetic susceptibility to diverticular disease. To evaluate 
the PRS in risk stratification, logistic regression models for 
symptomatic and for severe diverticulitis were compared 
with base models with covariates of age, sex, body mass 
index, smoking and principal components. Performance 
was assessed using area under the receiver operating 
characteristic curves (AUROC) and Nagelkerke’s R2.
Results  The cohort comprised 181 719 individuals for 
PheWAS and 50 037 for risk modelling. PheWAS identified 
associations with diverticular disease, connective tissue 
disease and hernias. Across ancestry groups, one SD PRS 
increase was consistently associated with greater odds of 
severe (range of ORs (95% CI) 1.60 (1.27 to 2.02) to 1.86 
(1.42 to 2.42)) and of symptomatic diverticulitis ((95% CI) 
1.27 (1.10 to 1.46) to 1.66 (1.55 to 1.79)) relative to 
controls. European models achieved the highest AUROC 
and Nagelkerke’s R2 (AUROC (95% CI) 0.78 (0.75 to 0.81); 
R2 0.25). The PRS provided a maximum R2 increase of 
0.034 and modest AUROC improvement.
Conclusion  Associations between a diverticular disease 
PRS and severe presentations persisted in diverse 
cohorts when controlling for known risk factors. Relative 
improvements in model performance were observed, but 
absolute change magnitudes were modest.

INTRODUCTION
The diverticular disease spectrum spans 
from asymptomatic diverticulosis to compli-
cated diverticulitis, with more severe disease 
conferring a substantial burden on quality 
of life. While previously thought that the 
chances of experiencing a severe episode 
were related to episode frequency, the 
first diverticulitis episode likely poses the 
greatest risk of complications.1 The lack of 
tools for personalised stratification is espe-
cially important in light of recent guide-
line changes emphasising case-by-case 

circumstances when considering colec-
tomy.2 Lifestyle factors are important modi-
fiers,3 but genetic variation has been shown 
to be a risk factor for severe presentations.4

Genome-wide association studies (GWAS) 
have identified loci linked with divertic-
ular disease.5–9 One promising approach to 
translate these findings into a clinical tool 
is through a polygenic risk score (PRS), 
which combines effects of genetic variants 
across the genome into a single score for 
an individual. PRSs have been explored 
as an adjunct for personalised screening 
recommendations10–12 and to inform 
discussions about risk of disease complica-
tions.4 While conclusions regarding clinical 
utility have been mixed,13 PRSs may bring 
value for diseases where existing stratifi-
cation approaches are limited. Towards 
this end, PRSs have been developed for 
diverticular disease using participants 
genetically similar to European reference 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Polygenic risk scores may assist in individualizing 
approaches to risk stratification for heritable diseas-
es. Loci associated with diverticular disease have 
been established, while investigations of diverticu-
litis polygenic risk scores have been performed in 
participants genetically similar to European refer-
ence samples.

WHAT THIS STUDY ADDS
	⇒ This multibiobank study found that a polygenic risk 
score for diverticulitis was associated with up to 
86% greater odds of severe disease, with evidence 
of transferability to a diverse cohort.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ The use of polygenic risk scores in counselling may 
inform decisions about escalation of care, dietary 
counselling or selection for endoscopic evaluation. 
This work provides direction for future functional 
investigations with a recommendation to focus on 
connective tissue biology.
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samples.4 6 14 However, European-derived PRSs perform 
variably when applied to other populations due to differ-
ences in linkage disequilibrium patterns, distinct risk 
loci resulting from varying selection pressures in inde-
pendent populations and sparse availability of genetic 
data in non-European populations.15–17 Evidence of 
transferability across populations must be established 
prior to considering clinical implementation.

This study aimed to evaluate a diverticular disease PRS 
in a diverse cohort. Using phenome-wide association 
studies (PheWAS) of the PRS, we identified conditions 
associated with heightened genetic risk for diverticular 
disease. To assess performance in risk stratification, the 
PRS was included as a covariate alongside demographic 
and clinical risk factors in models predicting diverticu-
litis outcomes.

METHODS
Study population and phenotyping
Our primary analysis used the All of Us Research 
Program while a secondary analysis used Vanderbilt 
University Medical Center’s biobank (BioVU). The All 
of Us Research Program is a longitudinal prospective 
cohort study combining electronic medical records with 
genetic information for 413 000 participants.18 BioVU 
is a genomic repository associated with a deidentified 
database of clinical records from a tertiary care centre.19 
Adult participants age 18–90 years with available short 
read whole-genome sequencing data and electronic 
medical records were eligible for inclusion.

Phenotyping for the PheWAS analysis used phecodes 
for diverticular disease, which were mapped from Inter-
national Classification of Disease, 10th revision (ICD-10) 
codes. Since positive predictive values range from 0.67 
to 0.92 when identifying complications via ICD-10 codes 
alone,20 21 we adopted a validated rule-based pheno-
typing algorithm for diverticulitis complications in the 
risk stratification portion of the analysis. This algorithm 
combined diagnostic codes, procedural codes, settings of 
care and temporal relationships between codes (online 
supplemental material).21 A person was defined as having 
severe diverticulitis when they had either two inpatient 
admissions for diverticulitis or a procedure performed 
for diverticulitis (colectomy or percutaneous drain). Mild 
diverticulitis was defined as receiving a diagnostic code 
for diverticulitis in the outpatient setting or with no more 
than one inpatient admission, while cases of asymptomatic 
diverticulosis were exclusively assigned diagnostic codes 
for diverticulosis. Participants with second-degree related-
ness or greater were excluded via the auxiliary relatedness 
files from the All of Us Research Program and via PLINK2’s 
implementation of KING’s robust estimator for BioVU.22 
Participants with a diagnostic code for colorectal cancer 
or an inflammatory bowel disease were also excluded. 
Covariates were extracted from structured clinical data 
elements including age, sex, body mass index (BMI) and 
ever smoking status.

Genotyping, imputation and quality control
The All of Us Research Program Controlled Tier V7 short 
read whole-genome samples were sequenced on the Illu-
mina NovaSeq 6000 system with a standardised variant 
and sample quality control pipeline.23 24 In BioVU, 91 449 
individuals were directly genotyped with the Illumina 
Expanded Multi-Ethnic Genotyping Array followed by 
imputation of autosomal small nucleotide polymor-
phisms (SNPs) to the TOPMed version R2 reference 
panel using the TOPMed imputation server.25 Preimpu-
tation and postimputation quality control was performed 
to limit analyses to high-quality SNPs and samples (online 
supplemental material).26 27 We identified samples genet-
ically similar to gnomAD descriptors of 1000Genomes 
reference samples (1 KG) using precomputed data in 
the All of Us Research Program and principal component 
analysis in BioVU.28 These do not reflect distinct biologic 
groups but represent artificial thresholds when consid-
ering genetic similarity to reference panels.29 Throughout 
the manuscript, we adopt EUR, AFR, and AMR abbrevia-
tions to refer to individuals with genetic similarity to the 
reference European (EUR), African (AFR) and Admixed 
American (AMR) 1 KG samples, respectively. Alterna-
tive methodologies for assigning genetic similarity were 
explored with minimal differences in the distribution of 
groups (online supplemental material).

Polygenic risk score
The 44-SNP PRS used in this study was previously 
derived from a UK Biobank GWAS of European partic-
ipants through conditional and joint analysis with vali-
dation in the Michigan Genomics Initiative.4 9 In this 
GWAS, pathway enrichment analysis suggested immu-
nity, cell adhesion, membrane transport/signalling and 
intestinal motility as biological processes important to 
the onset of diverticular disease. In the PRS, the five 
variants with the largest effect sizes (rs763969618, 
rs115490395, rs56044859, rs4333882 and rs1802575) 
were associated with genes implicated in membrane 
transport (SLC35F3, SLC6A17) and cell adhesion 
(ELN, EFEMP1, PCDH10).

For each individual in our cohort, a PRS was calcu-
lated with PLINK2 by multiplying the dosage of risk-
increasing alleles by their reported effect sizes, and 
summing across all PRS loci.4 Scores were standardised 
to a mean of zero and SD of one within each group.30 As 
a sensitivity analysis, we calculated a genome-wide PRS 
comprising 1 615 623 SNPs with the Bayesian PRS-CSx, 
which is optimised for incorporation of multiple ances-
tral backgrounds.31 For this, we used summary statistics 
from the largest available EUR GWAS for diverticular 
disease6 and the pan-UK Biobank AFR GWAS.32

Statistical analysis
PheWAS
To explore clinical diagnoses associated with genetic risk 
for diverticular disease, we performed PheWAS of the 
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PRS in the All of Us Research Program. We included AFR, 
AMR and EUR given that diverticular disease code counts 
were greater than 200,33 and case assignment required a 
minimum of two code instances on distinct days. Each 
ancestry group was analysed independently in addition to 
a combined group with all participants included. Logistic 
regression models were fit across the phenome, including 
the PRS as a covariate alongside the first 10 genetic prin-
cipal components, age and sex. In sensitivity analyses, 
we adjusted for BMI and excluded diverticular disease 
cases to evaluate whether associations were contingent 
on a simultaneous diverticular disease diagnosis. Anal-
ysis was performed using the PheWAS R package with a 
two-sided p value significance threshold after Bonferroni 
correction for multiple comparisons (EUR: p<2.83×10−5; 
AFR: p<3.23×10−5; AMR: p<3.33×10−5).34 Next, we eval-
uated whether phecodes found to have association 
with elevated genetic risk for diverticular disease were 
also associated with assignment of diverticular disease 
diagnoses in the medical record. For this, we included 
significant phecodes from PRS-PheWAS as covariates in 
a logistic regression model with an outcome of a diver-
ticular disease phecode when controlling for age and 
sex. The most conservative Bonferroni-adjusted signif-
icance threshold among ancestry groups was adopted 
(p<2.83×10–5).

Clinical modelling
The primary outcome was severe diverticulitis evaluated 
relative to a reference group of controls with no divertic-
ular disease. We also considered supplemental compar-
isons of symptomatic (mild or severe) diverticulitis as 
well as changing the reference group to asymptomatic 

diverticulosis. Model calibration was assessed through le 
Cessie-van Houwelingen-Copas-Hosmer (LVC) goodness-
of-fit tests and calibration plots.35 Logistic regression 
models were fit for outcome counts exceeding 100, a 
criterion met for BioVU (AFR, EUR) and the All of Us 
Research Program (AFR, AMR and EUR) individuals. 
Covariates included the PRS, age at inclusion date, sex, 
BMI and ever-smoking status. A base model excluding 
the PRS served as a comparison from which to assess 
the incremental value of the PRS. Metrics for full and 
base models included area under the receiver operating 
characteristics curve (AUROC) and Nagelkerke’s R2 
adjusted for the liability scale.30 36 All statistical analyses 
were performed using R V.4.3.2, and an overview of study 
design is shown in figure 1.

RESULTS
PheWAS
There were 181 719 individuals meeting inclusion criteria 
for PheWAS. For each group, the PRS was associated with 
phecodes for diverticular disease (EUR: p=1.22×10−78; 
AMR: p=6.56×10−14; AFR: p=1.55×10−8) with ORs (95% CI) 
ranging from 1.18 (1.12 to 1.25) to 1.28 (1.20 to 1.37) 
(figure  2). Other PRS-phecode associations included 
abdominal hernia (OR (95% CI) 1.06 (1.03 to 1.08); 
p=1.76×10−6) and diaphragmatic hernia (OR (95% CI) 
1.08 (1.05 to 1.12); p=2.51×10−6) for EUR models as well 
as diffuse diseases of connective tissue (OR (95% CI) 
0.78 (0.70 to 0.87) ; p=1.07×10−5) for the AMR models. 
When removing cases of diverticular disease, associations 
with connective tissue diseases but not hernias remained 
(online supplemental material). The inclusion of BMI as 

Figure 1  Overview of study design. AFR, EUR, AMR, individuals with genetic similarity to 1000Genomes African, European 
and Admixed American reference samples; PheWAS, phenome-wide association study; PRS, polygenic risk score.
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a covariate did not alter the significance of any findings. 
Among the phecodes associated with heightened genetic 
risk for diverticular disease, those also associated with 
assignment of diverticular disease codes in the medical 
record were inguinal hernia, diaphragmatic hernia, 
femoral hernia, sicca syndrome and other unspecified 
connective tissue disease (online supplemental material).

Clinical modelling
In the All of Us Research Program, the clinical model-
ling cohorts included EUR (n=23 127), AFR (n=6520) 
and AMR (n=3699) individuals. Corresponding BioVU 
cohorts included EUR (n=13 767) and AFR (n=1824) 
individuals. Median age was 57 (IQR 50–65) with 59% 
women in the All of Us Research Program, while median 
age was 56 (IQR 49–66) with 55% women in BioVU 
(table  1). In BioVU, severe diverticulitis comparisons 
were not considered for AFR due to insufficient sample 
size. Among all cases of diverticular disease in the All of 

Us Research Program, the prevalence of severe divertic-
ulitis was highest in the top quintile of polygenic risk, as 
compared with the lower quintiles (absolute prevalence 
difference, EUR: 1.3%; AMR: 2.5%; AFR: 1.6%) (online 
supplemental material). Models were adequately cali-
brated in the All of Us Research Program, but poorly cali-
brated models were found for BioVU symptomatic versus 
asymptomatic disease (LVC test p=0.02) and symptom-
atic disease versus control (LVC test p<0.01) comparisons 
(online supplemental material).

Covariate associations
The PRS was associated with greater odds of severe 
diverticulitis across groups (All of Us Research 
Program OR per SD increase (95% CI), EUR 1.65 
(1.45 to 1.88); AFR 1.6 (1.27 to 2.02); AMR 1.86 
(1.42 to 2.42)). This pattern persisted when broad-
ening inclusion to symptomatic diverticulitis (All of 
Us Research Program EUR (OR (95% CI) 1.66 (1.55 

Figure 2  Phenome-wide association studies of a diverticular disease polygenic risk score in the All of Us Research Program. 
Cohorts comprised of individuals with genetic similarity to 1000Genomes reference samples in the following groups: (A) 
European (EUR), (B) African (AFR), (C) Admixed-American (AMR) and (D) Combined (EUR+AFR + AMR).
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to 1.79)), AMR (OR (95% CI) 1.63 (1.39 to 1.9)) and 
AFR (OR (95% CI) 1.27 (1.1 to 1.46)) (table 2). When 
considering a reference group of asymptomatic diver-
ticulosis, the PRS persisted as a positive predictor in 
EUR and AMR but not AFR models (online supple-
mental material).

Performance metrics
In the All of Us Research Program, the AUROC 
(95% CI) in the EUR full model for severe diver-
ticulitis was 0.72 (0.70 to 0.75) (base 0.70 (0.68 to 
0.72), difference=0.02 (0.01 to 0.03)). The AUROC 
(95% CI) for models of severe diverticulitis were 
comparatively smaller in AFR (base 0.68 (0.63 to 
0.73); full 0.7 (0.66 to 0.74), difference=0.02 (0.00 to 
0.04)) but not AMR models (base 0.69 (0.65 to 0.74); 
full 0.73 (0.68 to 0.78), difference=0.03 (0.01 to 
0.06)). The trend of performance decline from EUR 
to AFR models was mirrored in the BioVU models 
for symptomatic diverticulitis (EUR base 0.75 (0.73 
to 0.76); full 0.77 (0.75 to 0.78), difference=0.02 
(0.01 to 0.03). AFR base 0.70 (0.65 to 0.75); full 0.72 
(0.67 to 0.77), difference=0.01 (0.00 to 0.03)). The 
largest AUROC was observed in the EUR full model 
for severe diverticulitis in BioVU (0.78 (0.75 to 0.81)) 
(online supplemental material).

In models for severe diverticulitis, the largest 
Nagelkerke’s pseudo-R2 was achieved in the EUR 
models (base 0.086; full 0.106) relative to corre-
sponding AMR (base 0.077; full 0.105) or AFR (base 
0.066; full 0.085) models (figure  3, online supple-
mental material). Similar trends were observed with 
the PRS-CSx score (online supplemental material).

DISCUSSION
This multibiobank study found that positive associations 
between a PRS and diverticulitis persisted in AMR and 
AFR models with both PheWAS and risk stratification for 
severe disease. There were relative increases in model 
performance attributable to the PRS, but the magni-
tude of absolute change in discrimination was modest. 
With an optimistic transferability, the findings of this 
study suggest that genomic associations with diverticu-
litis severity subtypes may bring value to diverse clinical 
cohorts.

Diverticular disease is an encouraging candidate for 
clinical applications of genomics given a paucity of strat-
ification approaches and estimates of heritability as high 
as 53%.37 Three PRSs have been systematically investi-
gated.4 6 14 De Roo et al4 derived a 44-SNP PRS from a 
European UK Biobank discovery population using condi-
tional and joint association analysis.4 Wu et al6 generated 
a PRS using SBayesR from their meta-analysis of 724 372 
European participants in the UK Biobank, FinnGen and 
BioVU with subsequent validation in CARTaGENE partic-
ipants.6 Schaeffer et al14’s 373-SNP and 851-SNP PRSs orig-
inated from application of PRSice-2 to summary statistics 
from UK Biobank European participants followed by 
validation in Geisinger MyCode participants.14 While 
methodologies and cohorts varied, all reported posi-
tive findings with respect to PRS validation in European 
individuals.

Our study’s PRS-PheWAS provided initial support 
for validity of a diverticular disease PRS across diverse 
ancestral backgrounds. Diverticular phecodes were 
consistently associated with the PRS, with the magni-
tude of association largest in AMR models. We identified 
conditions associated with heightened genetic risk for 
diverticular disease, including abdominal hernias and 
connective tissue diseases. The disappearance of hernia 
phecode significance when excluding diverticular cases 
suggests that this association was more likely driven by 
a concomitant diagnosis of diverticular disease rather 
than true pleiotropy. Plausible explanations include 
incidental diverticulosis identified after an abdominal 
imaging study obtained for hernias, or incisional hernias 
occurring after an abdominal operation for diverticulitis. 
Time-censored PheWAS would allow for further evalu-
ation of these hypotheses.12 We also found that genetic 
susceptibility to diverticular disease was associated with 
lower odds of the parent phecode for diffuse connective 
tissue diseases, an unexpected result given that func-
tional investigations implicate connective tissue biology 
in the onset of diverticular disease.5–7 9 It is also notable 
that this association was present in one subgroup (AMR) 
but not others (EUR, AFR). There may be differential 
contributions from the diagnosis codes encompassed by 
the parent phecode for diffuse diseases of connective 
tissue (709). Overall, our findings support continued 
focus on connective tissue biology for future investiga-
tions of pathogenesis.

Table 1  Cohort descriptions

Characteristic All of Us=34 446* BioVU=15 591*

Age, years 57.0 (50.0, 65.0) 56.0 (49.0, 66.0)

Female 20 240 (59%) 8561 (55%)

Ancestry group

 � AFR 6520 (19%) 1824 (12%)

 � AMR 4799 (14%)

 � EUR 23 127 (67%) 13 767 (88%)

BMI (kg/m2) 29.1 (25.3, 34.1) 27.8 (23.9, 32.6)

Ever smoker 16 246 (47%) 3926 (25%)

Diverticular phenotype

 � Control 21 817 (63%) 8554 (55%)

 � Asymptomatic 10 029 (29%) 5992 (38%)

 � Mild 1858 (5.4%) 792 (5.1%)

 � Severe 742 (2.2%) 253 (1.6%)

*Median (IQR); n (%).
AFR, African; AMR, Admixed-American; BMI, body mass index; 
EUR, European.
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Differential performance of PRSs across ancestral 
backgrounds is an important consideration given the 
diversity encountered in many clinical practices. In our 
study’s adjusted models, a positive association between 
the PRS and severe diverticulitis was found in EUR 
models, which persisted for AMR and AFR models. 
This trend of transferability suggests that diverticular 
disease loci from EUR discovery populations may 
retain predictive ability in other populations. However, 

absolute improvements in AUROC and Nagelkerke’s 
R2 were modest in all models. The performance of 
European PRSs often degrades when applied to other 
ancestries due to differences in allele frequencies, 
correlation patterns between SNPs or selection pres-
sures.38–40 On the contrary, some have reported similar 
levels of performance in other diseases,41 while a prior 
study of diverticular disease identified correlation 
between effect sizes of individual SNPs across ancestry 

Figure 3  Nagelkerke’s R2 in the All of Us Research Program. Covariates in the base model include age, sex, the first 10 
genetic principal components, body mass index and any smoking status. The full model additionally includes the polygenic risk 
score. The Nagelkerke’s R2 was converted to the liability scale as recommended by Lee et al.36 AFR, EUR, AMR: individuals 
with genetic similarity to 1000Genomes African, European and Admixed American reference samples. Combined group 
includes AFR + EUR + AMR participants.
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groups.6 Improving multiancestry applications of PRSs 
requires attention to practices of data collection, data 
analysis and return of information to participants. 
First, it is critical to improve the availability of genomic 
data in non-European populations, recently modelled 
through efforts from the All of Us Research Program 
and the Global Biobank Meta Analysis Initiative.18 42 For 
PRSs, the importance of adequately powered discovery 
GWASs in diverse populations is illustrated by our 
PRS-CSx sensitivity analysis. Even when adopting this 
PRS calculation method that is designed specifically 
for multiancestry cohorts, drastic differences between 
discovery GWAS sample sizes (EUR n=56 355 cases; AFR 
n=298 cases) likely contributed to the observed minimal 
improvement in performance. Second, continued work 
is needed in methods development specifically for 
cross-ancestry derivation and evaluation of PRSs.31 43 44 
Finally, collaboration between clinicians, patients and 
genomic researchers is required to optimise the ways 
in which genomic risk information should be returned 
to participants. Recent examples from the eMERGE 
Network provide practical guidance towards this 
end.45 46

While unlikely that a diverticular disease PRS would 
dramatically alter existing stratification approaches, 
the future potential for such a tool is promising. The 
degree of variance attributable to the PRS in our study 
did not approach existing estimates of SNP-based heri-
tability (11%), potentially due to methodology in SNP 
selection and effect size estimation for the PRS as well 
as phenotypic differences between discovery and vali-
dation populations.6 For example, existing GWASs have 
identified cohorts with any diverticular disease using 
diagnostic codes, but validation studies that evaluate 
clinical impact narrow the focus to symptomatic, severe 
or recurrent diverticulitis.4 14 Future GWAS of severe 
or recurrent diverticulitis might shed light on variants 
specifically linked with disease progression. Further-
more, estimates of broad-sense heritability (41%) 
suggest possible roles for rare variants or non-additive 
genetic effects in diverticular disease.6 Additional inves-
tigation is needed to uncover the underlying biolog-
ical mechanisms responsible for observed genetic 
associations.

A well-performing diverticular disease PRS would 
bring clinical value. For one, it may inform discussions 
about elective colectomy for patients with prior severe 
or recurrent diverticulitis. A discrete choice analysis of 
colorectal surgeons has already demonstrated substan-
tial receptivity to a genetic risk tool in this scenario.4 
In addition, with the onset of endoscopy-based predic-
tive models,47 48 a diverticulitis PRS may be considered 
during initial patient evaluation to assist with targeted 
selection for further workup. Finally, there is evidence 
that awareness from the return of personalised genomic 
profiles motivates positive behavioural change, which 
would be an important addition to diverticulitis care 
where lifestyle factors are strong risk modifiers.49 50

There are a number of limitations to this study. For 
both the All of Us Research Program and BioVU, we were 
unable to investigate participants similar to South Asian, 
East Asian or Middle Eastern reference samples due to 
sample size. The PRS used in this study originated from 
European discovery populations, and future matching 
of ancestry groups between discovery and validation 
populations may lead to different conclusions. We did 
not include diet and exercise in adjusted clinical models 
due to availability in the electronic medical records, and 
there are known limitations associated with using BMI 
as a proxy for central adiposity as well as ICD codes for 
smoking status. In addition, we did not include rare vari-
ants or gene by environment interactions though these 
are critical areas for future study.

CONCLUSIONS
Associations between a diverticular disease PRS and 
severe presentations persisted in diverse cohorts when 
controlling for known demographic and clinical risk 
factors. Relative improvements in model performance 
were observed, but magnitudes of absolute change were 
modest.
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