Introduction
Rheumatoid arthritis (RA) is an inflammatory disease characterised by chronic synovitis, joint destruction and disability. Current therapies and treat-to-target strategies make remission an achievable goal.1 2 Several definitions of clinical remission have been proposed, mainly using composite indices of disease activity, with the strictest being the American College of Rheumatology (ACR)/European Alliance of Associations for Rheumatology (EULAR) Boolean definition of remission.3–5 Many patients in clinical remission continue having subclinical synovitis irrespective of whether the 28-joint count Disease Activity Score (DAS28), Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI) or ACR/EULAR Boolean definition remission is used. Subclinical synovitis has been associated with a higher risk of flares, progression of structural damage and unsuccessful drug tapering, especially when Doppler activity is present.6–15 Imaging modalities such as MRI and ultrasound are more sensitive than clinical assessment for detecting inflammation.16–19 However, ultrasound and MRI have disadvantages such as operator dependency for interpretation of the images, limited availability for routine clinical use, a steep learning curve and scanning time.20 21 In this context, new techniques that enable detection of subclinical inflammation in a fast and automated way could improve assessment of inflammation in routine clinical practice.
Thermography is a fast, non-invasive imaging technique that works by capturing the intensity of long wave infrared radiation emitted by bodies that increases with temperature.22–24 Given that warmth is one of the cardinal signs of inflammation, thermography could be useful for detecting arthritis. Previous research (both preclinical and clinical) has demonstrated thermographically detectable changes in inflamed joints.25–30
The aim of this study was to validate a novel machine learning-based computational method to automatically assess joint inflammation in patients with RA using thermal images of the hands.