Leucocyte subset-specific IFN-1 gene modules
In total, 1065 gene expression arrays from 385 discrete patients across seven immune-mediated conditions and four leucocyte subsets were included in the analysis (see online supplementary tables S1 and S2). WGCNA was applied to this data set to identify gene modules of coexpressed genes within each leucocyte subset as described in the online supplementary information. In brief, genes were assigned to modules using hierarchical clustering applied to a distance metric based on weighted gene–gene correlations. A measure of the degree to which a given gene belongs to a given module (ie, module membership score) was obtained by considering the correlation of a gene's individual expression profile with that of the module overall. Even though genes are assigned to modules based on similarity of expression profile, within each module there is still usually a range of module membership scores.
Within each leucocyte subset, one module clearly represented IFN-1 gene expression (ie, IFN-1 module). This was identified by (1) the number of genes from a published 21-gene IFN-1 signature, chosen for its specificity, that were included in the module and (2) the association of increased module expression with a diagnosis of SLE (figure 1A, B). As an additional check, we confirmed that IFN-1 module expression correlated strongly with a curated IFN-1 score (ie, the mean expression of genes in the 21-gene IFN-1 signature, using data from the same leucocyte subset, figure 1C). Although a second module of 26 genes in neutrophils also correlated well with a diagnosis of SLE (figure 1B), it did not correlate well with the curated IFN-1 score (Spearman r=0.23) and only contained genes suggestive of broader cellular activation (ie, FOS, JUN, CCL3, CCL4, CXCL1, CXCL8, PTGS2).
The identification of leucocyte subset-specific type 1 interferon (IFN-1) modules. (A) A bar chart showing the number of genes belonging to a published 21-gene IFN-1 signature14 contained in each of the gene modules identified by the weighted gene coexpression network analysis (WGCNA) algorithm in each leucocyte subset. (B) Spearman correlation coefficient for the correlation of gene modules in each leucocyte subset with a diagnosis of systemic lupus erythematosus (SLE) (coded 0,1). The IFN-1-associated gene module is highlighted in red. (C) For all samples in the analysis, regardless of diagnosis, the correlation of IFN-1-associated module expression with a curated interferon score based on the mean expression of genes in the published 21-gene IFN-1 signature.
Overall, 1288 genes belonged to an IFN-1 module in at least one leucocyte subset, with module assignments and module membership scores listed in online supplementary table S3. Sixty-seven of these 1288 genes were IFN-1-associated in all (‘core IFN-1 genes’), whereas the majority of IFN-1-associated genes were unique to myeloid subsets (1150 genes), compared with only 11 genes unique to T cells (ABCG2, CYP2J2, FCRL3, IKBKE, IRS1, LINC01260, PSD3, RBMS3, TRAK2, YEATS2, NKAIN1; figure 2A). Although this difference was partly driven by substantially more genes with lower module membership scores in the myeloid IFN-1 modules (ie, lower correlation with IFN-1 expression), for any given level of module membership score there were more genes in the myeloid IFN-1 modules than in the T cell IFN-1 modules (figure 2B). In other words, a broader range of genes were upregulated in vivo by chronic IFN-1 exposure in myeloid leucocyte subsets than in T cells.
Properties of leucocyte subset-specific type 1 interferon (IFN-1) modules. (A) A Venn diagram showing overlap in membership of each of the four leucocyte subset-specific IFN-1 gene modules. (B) Distribution of module membership scores for genes in each of the leucocyte subset-specific IFN-1 modules. (C) MA plots depicting median absolute deviation (MAD) against median gene expression for genes in each of the subset-specific IFN-1 modules (red points). The distribution of MAD against median gene expression for all genes in the analysis is shown in blue. (D) MA plots as in (C), except that they depict the MAD versus median expression for genes belonging to at least one IFN-1 module, but not in the leucocyte subset shown (yellow points). Expression values are expressed in arbitrary units.
We considered the possibility that the substantially smaller T cell IFN-1 modules reflected a lack of expression of IFN-1 genes in this cell subset. Although gene microarrays return a relative, not absolute, measure of expression, non-expressed genes tend to have low variance across samples and lower expression levels. Variance (as a mean absolute deviation) and median expression are plotted in figure 2C for genes belonging to the IFN-1 module in each leucocyte subset (red) against a background of all genes (blue). Figure 2D shows the same for genes belonging to an IFN-1 module in at least one leucocyte subset but not the leucocyte subset depicted. As can be seen, many IFN-1 genes that are not IFN-1 associated in CD4+ and CD8+ T cells (ie, figure 2D, first 2 panels) would still appear to have T cell expression.
Subset-specific IFN-1 gene modules were also compared with published whole blood IFN-1 gene modules, particularly those of Chiche et al.15 We found that the differing thresholds for expression of the whole blood modules described in that study might also relate to differences in the leucocyte subset-specific transcriptional response to IFN-1 as well as differences in response to IFN-1 and IFN-2, as hypothesised (see online supplementary figure S1).
Core IFN-1 genes are more highly expressed in myeloid subsets
We sought to identify patterns in the expression of the 67 core genes belonging to IFN-1 modules in each leucocyte subset. First, we examined their basal expression in healthy volunteers. Using only the scaled expression of these 67 genes, we found that lymphocyte, monocyte and neutrophil samples clustered separately, reflecting the higher expression of many core IFN-1 genes in myeloid, and particularly neutrophil, subsets (figure 3A). We confirmed this by examining the median expression of these genes by leucocyte subset and diagnosis (figure 3B). Median expression of core IFN-1 genes was increased in myeloid subsets compared with lymphoid subsets in healthy volunteers (HV) and SLE, with median expression in SLE being greater than that in HV for each leucocyte subset. We also examined the range of expression of these core IFN-1 genes, finding that CD4+ and CD8+ T cells from SLE samples had a much greater range of expression than when compared with HV and with SLE myeloid cells (figure 3C). These differences remained when stratified by centre (see online supplementary figure S2). In a subanalysis, we found that the median core IFN-1 gene expression was greater in neutrophils from healthy volunteers in Singapore than in Cambridge (figure 3D, see online supplementary figure S3), but as samples were not prospectively matched by centre, this observation requires validation (see online supplementary table S4).
Core type 1 interferon (IFN-1)-associated genes are more highly expressed in myeloid subsets. (A) A heat map showing the scaled (by gene) expression in healthy volunteers of 67 core IFN-1 genes (ie, genes belonging to IFN-1 modules in all leucocyte subsets). Samples are in columns and genes in rows. Order in each is determined by hierarchical clustering (Ward's method) using a Euclidean distance metric. Leucocyte subset, cohort and array batch are shown as coloured bands above the main heat map. Box plots showing the distribution of median gene expression values (B) and median absolute deviation (C) for each of 67 core IFN-1 genes in healthy volunteers and patients with systemic lupus erythematosus (SLE), stratified by leucocyte subset. (D) Median core IFN-1 gene expression in neutrophil samples, stratified by centre. Wilcoxon p value is shown.
Specificity of the IFN-1 signature varies by leucocyte subset
The IFN-1 module expression in each leucocyte subset was compared between immune-mediated conditions. Increased module expression was observed in most, but not all, of the SLE samples regardless of leucocyte subset. However, the upregulation of IFN-1 module expression in CD4+ and CD8+ T cell samples from patients with SLE compared with other samples was proportionally greater than that observed in myeloid subsets, resulting in a cleaner separation of these SLE samples from other diagnoses (figure 4A, B). This partly reflects a greater spread of IFN-1 module expression in monocyte and neutrophil samples across all diagnostic categories, to the extent that a subset of neutrophil and monocyte samples from healthy volunteers and patients with IBD, AAV and Behçet's syndrome displayed IFN-1 module expression levels comparable to that of SLE samples (figure 4A, B). We explored whether this was confounded by differing IFN-1 inducible genes in each subset, or by differing samples used in each cell subset, and found neither of these factors to be important (see online supplementary figure S4A, B).
The specificity of an IFN-1 signature varies by leucocyte subset. (A) IFN-1 module expression by diagnosis for the four leucocyte subsets. Short black horizontal lines indicate the median of each group, and the dotted red horizontal lines indicate the threshold used for elevated IFN-1 module expression (see text). p Values (Kruskal-Wallis) are shown in each panel, testing for differences by diagnosis. Where differences are significant overall, significant pairwise differences (Wilcoxon test, with Holm correction) are shown above. *p<0.05, **p<0.005, ***p<0.0005. (B) Mean and SEM is shown for the same data as (A), stratified by diagnosis and leucocyte subset. (C) Proportion of samples within each diagnostic category with elevated IFN-1 module expression. IBD, inflammatory bowel disease; IFN-1, type 1 interferon; SLE, systemic lupus erythematosus.
A threshold for elevated IFN-1 module expression in each leucocyte subset was set on the basis of the 99th centile of IFN-1 module expression in HV (after outliers, defined as those samples with an adjusted normal p value <0.001, were removed), as shown by the dashed lines in figure 4A. We found that by this method the proportion of SLE samples considered IFN-1 high varied considerably from 75% for CD8+ T cell samples to 19% for neutrophils. In each subset, a variable, but small, proportion of samples from patients with other diagnoses was also found to be IFN-1 high.