Introduction
All countries have committed to monitor progress towards national and international health goals, including the Sustainable Development Goals (SDGs) and the goals and targets set forth in the WHO’s Noncommunicable Diseases Global Monitoring Framework (NCD GMF).1 2 Global and local goals and targets are a key component of any health and development strategy, providing vital intelligence on the effectiveness of targeted interventions and the outcomes of significant investments in health systems. Many of these health goals require accurate and timely cause of death (COD) and all-cause mortality data for the country, disaggregated by age and sex.3 Indeed, 7 of the 17 SDGs, and 17 of their corresponding indicators, require cause-specific mortality data from a Civil Registration and Vital Statistics (CRVS) system for their measurement.4 A good example is SDG 3.4 which aims, by 2030, to reduce premature mortality from NCDs by one-third.1
The COD data to measure progress with these goals should ideally come from a complete and timely CRVS system where the cause of every death is ascertained using the International Medical Certificate of Cause of Death (MCCOD) completed by a physician, adhering to the certification and coding rules of the International Classification of Diseases Revision in force (currently ICD-10).5 However, the ability of national governments to reliably measure indicators for these, and other health goals, is affected by incomplete death registration and often poor-quality COD data. Only about two in three deaths worldwide are registered, while close to 70% of the world’s population live in a country where less than 90% of deaths are registered or otherwise known to health authorities, overwhelmingly low/middle-income countries (LMICs) where the burden of premature mortality is greatest.6 Reliable COD data are even less available for policy and planning.7 In many countries, the only available COD data are from hospitals, but these are often misdiagnosed or otherwise of poor quality and are unrepresentative of national COD patterns because they are biased towards younger ages at death and acute diseases.8 9 Data on community (ie, non-hospital) deaths, which comprise the majority of deaths in LMICs, are commonly either unavailable or contain vague or ill-defined diagnoses due to poor-quality data collection and diagnostic practices.10
Typically, the guidance offered to countries to assist them to compute national values of these indicators does not adequately specify what methods to apply when faced with incomplete or suboptimal quality data. For example, SDG Indicator 23 (pertaining to SDG 3.4 mentioned above) measures the probability of dying between exact ages 30 and 70 years from either a cardiovascular disease, cancer, diabetes or chronic respiratory disease. The SDG guidance states that the most reliable data source for this indicator should be based on death certificates and administrative data from health facilities, but without any mention of the intrinsic biases in health facility data.11 The guidance offered goes on to state that where coverage of death certification is poor, household surveys can be used to measure NCD mortality, but without any specific guidance on potential quality issues or biases commonly associated with survey data on CODs, nor on the feasibility of using this source, or how to use them to calculate the indicator.11 Similarly, the WHO’s NCD GMF specifies that, for the same indicator, the preferred data source is CRVS systems of sufficient completeness to calculate all-cause mortality rates, with other possible sources being sample registration systems and verbal autopsy (VA).2 Again, there is no guidance about the potential limitations of these data nor how to use or interpret them. For many countries, these challenges in calculating mortality-based indicators mean there is a heavy reliance on estimates produced by the Global Burden of Disease (GBD) Study and other international efforts using complex statistical models, often largely based on other countries’ COD data, with very little direct evidence on the local epidemiological situation.12–14 Further, these estimates are not generally available for subnational populations for the vast majority of countries. Recent research has suggested methods to estimate population-level CODs by extrapolating from in-hospital cause patterns, but it is unclear how widely applicable this approach might be.15
For many, if not most, LMICs, complete death registration and widespread use of medical certification to ascertain CODs are unlikely to be achieved in the foreseeable future, in part because there is limited experience and knowledge about cost-effective ways to notify community deaths to official authorities and typically low physician to population ratios.16 17 Increasingly, VA is being used or trialled in LMICs to ascertain the cause of community deaths in rural populations, together with more effective data management practices with the potential to integrate them into routine death registration and reporting systems.10 VA predicts the probable COD based on an interview of family members of the deceased using a standardised questionnaire about the signs and symptoms experienced by the deceased prior to death; these responses are then applied to automated diagnostic algorithms or reviewed by a physician, to ascertain the probable COD. For example, in Myanmar, since 2018 VAs have been collected from 42 townships that comprise a representative sample of the national population.10 Routinely collected VA data on all, or a sample of, community deaths, diagnosed using an established, validated diagnostic method, together with COD data from hospitals ascertained using MCCOD, can, in principle, lead to more policy-relevant, representative COD statistics than either source alone. Yet, there has been relatively little scientific debate about issues in the integration of the two data sources, despite the fact that this process has significant potential to fill key data gaps that currently exist in many LMICs and enable countries to more reliably monitor progress with health goals.
This integration is not straightforward, however, and needs to consider not only the number of reported VAs and hospital deaths from each cause, but also the extent to which the reporting of the fact of death is incomplete in hospitals and the community, by age and sex. As a result, there have been few attempts to integrate VA and MCCOD data; previous studies to generate national cause-specific mortality rates by integrating VA and MCCOD data have been conducted in Malaysia and Thailand but have relied on complete or close to complete death registration systems where there is reasonable certainty about the true numbers of deaths by age and sex.18 19
To our knowledge, there are no published studies, with replicable methods, on the use of incomplete death reporting and the integration of VA and MCCOD data to calculate national cause-specific mortality rates, despite the policy utility of this information. National Statistics Offices and Ministries of Health should be empowered to calculate these indicators themselves using available data, in order to be able to continuously assess progress towards national and subnational health goals. In this paper, we propose a method for local analysts to apply to estimate national and subnational cause-specific mortality rates for populations where both MCCOD and VA data are available, and where death registration or reporting is incomplete. We then provide an example of the application and interpretation of the method to calculate SDG Indicator 23, the probability of dying between exact ages 30 and 70 years from any of cardiovascular disease, cancer, diabetes and chronic respiratory disease, for a nationally representative population of Myanmar.