General health checks in adults for reducing morbidity and mortality from disease: Cochrane systematic review and meta-analysis
BMJ 2012; 345 doi: https://doi.org/10.1136/bmj.e7191 (Published 20 November 2012) Cite this as: BMJ 2012;345:e7191- Lasse T Krogsbøll, doctor,
- Karsten Juhl Jørgensen, doctor,
- Christian Grønhøj Larsen, doctor,
- Peter C Gøtzsche, professor, director
- Correspondence to: L T Krogsbøll ltk{at}cochrane.dk
- Accepted 15 October 2012
Abstract
Objectives To quantify the benefits and harms of general health checks in adults with an emphasis on patient-relevant outcomes such as morbidity and mortality rather than on surrogate outcomes.
Design Cochrane systematic review and meta-analysis of randomised trials. For mortality, we analysed the results with random effects meta-analysis, and for other outcomes we did a qualitative synthesis as meta-analysis was not feasible.
Data sources Medline, EMBASE, Healthstar, Cochrane Library, Cochrane Central Register of Controlled Trials, CINAHL, EPOC register, ClinicalTrials.gov, and WHO ICTRP, supplemented by manual searches of reference lists of included studies, citation tracking (Web of Knowledge), and contacts with trialists.
Selection criteria Randomised trials comparing health checks with no health checks in adult populations unselected for disease or risk factors. Health checks defined as screening general populations for more than one disease or risk factor in more than one organ system. We did not include geriatric trials.
Data extraction Two observers independently assessed eligibility, extracted data, and assessed the risk of bias. We contacted authors for additional outcomes or trial details when necessary.
Results We identified 16 trials, 14 of which had available outcome data (182 880 participants). Nine trials provided data on total mortality (11 940 deaths), and they gave a risk ratio of 0.99 (95% confidence interval 0.95 to 1.03). Eight trials provided data on cardiovascular mortality (4567 deaths), risk ratio 1.03 (0.91 to 1.17), and eight on cancer mortality (3663 deaths), risk ratio 1.01 (0.92 to 1.12). Subgroup and sensitivity analyses did not alter these findings. We did not find beneficial effects of general health checks on morbidity, hospitalisation, disability, worry, additional physician visits, or absence from work, but not all trials reported on these outcomes. One trial found that health checks led to a 20% increase in the total number of new diagnoses per participant over six years compared with the control group and an increased number of people with self reported chronic conditions, and one trial found an increased prevalence of hypertension and hypercholesterolaemia. Two out of four trials found an increased use of antihypertensives. Two out of four trials found small beneficial effects on self reported health, which could be due to bias.
Conclusions General health checks did not reduce morbidity or mortality, neither overall nor for cardiovascular or cancer causes, although they increased the number of new diagnoses. Important harmful outcomes were often not studied or reported.
Systematic review registration Cochrane Library, doi:10.1002/14651858.CD009009.
Footnotes
We thank Guy De Backer, Walter W Holland, Sven-Olof Isacsson, Torben Jørgensen, Olof Lannerstad, Torsten Lauritzen, David Murray, Charlotta Pisinger, Lennart Welin, and Lars Wilhelmsen for additional information on their trials, and David Mant, Alice Fuller, Holger Theobald, and Janus L Thomsen for providing unpublished outcome data. We also thank the EPOC trials search coordinator, Michelle Fiander, for designing, conducting, and updating the searches, the EPOC Cochrane review group for editorial assistance in producing the corresponding Cochrane review, and the peer reviewers for their valuable comments.
This paper is based on a Cochrane review by the same authors.11 Cochrane reviews are regularly updated as new evidence emerges and in response to comments and criticisms. The Cochrane Library should be consulted for the most recent version of the review.
Contributors: PCG initiated the project. LTK drafted the protocol, and KJJ and PCG provided comments. LTK, CGL, and KJJ screened titles and abstracts and made decisions about inclusion of trials. LTK and KJJ extracted data. LTK analysed data and drafted the review, and KJJ, PCG, and CGL contributed to the revisions. LTK is guarantor.
Funding: LTK was partly supported by a grant from Trygfonden (non-profit foundation). The funder had no role in study design or data collection, analysis, or interpretation.
Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.
Ethical approval: Not required
Data sharing: An excel sheet detailing the inverse variance analyses and the exact numbers used are available from the authors.
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.