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Ambient air pollution and clinical dementia: systematic review 
and meta-analysis
Elissa H Wilker,1,2 Marwa Osman,2 Marc G Weisskopf1,2

AbstrAct
Objective
To investigate the role of air pollutants in risk of 
dementia, considering differences by study factors 
that could influence findings.
Design
Systematic review and meta-analysis.
Data sOurces
EMBASE, PubMed, Web of Science, Psycinfo, and OVID 
Medline from database inception through July 2022.
eligibility criteria fOr selecting stuDies
Studies that included adults (≥18 years), a 
longitudinal follow-up, considered US Environmental 
Protection Agency criteria air pollutants and proxies 
of traffic pollution, averaged exposure over a year or 
more, and reported associations between ambient 
pollutants and clinical dementia. Two authors 
independently extracted data using a predefined data 
extraction form and assessed risk of bias using the 
Risk of Bias In Non-randomised Studies of Exposures 
(ROBINS-E) tool. A meta-analysis with Knapp-Hartung 
standard errors was done when at least three studies 
for a given pollutant used comparable approaches.
results
2080 records identified 51 studies for inclusion. Most 
studies were at high risk of bias, although in many 
cases bias was towards the null. 14 studies could 
be meta-analysed for particulate matter <2.5 µm in 
diameter (PM2.5). The overall hazard ratio per 2 μg/
m3 PM2.5 was 1.04 (95% confidence interval 0.99 to 
1.09). The hazard ratio among seven studies that 
used active case ascertainment was 1.42 (1.00 to 
2.02) and among seven studies that used passive 
case ascertainment was 1.03 (0.98 to 1.07). The 
overall hazard ratio per 10 μg/m3 nitrogen dioxide was 

1.02 ((0.98 to 1.06); nine studies) and per 10 μg/m3 
nitrogen oxide was 1.05 ((0.98 to 1.13); five studies). 
Ozone had no clear association with dementia (hazard 
ratio per 5 μg/m3 was 1.00 (0.98 to 1.05); four 
studies).
cOnclusiOn
PM2.5 might be a risk factor for dementia, as well as 
nitrogen dioxide and nitrogen oxide, although with 
more limited data. The meta-analysed hazard ratios 
are subject to limitations that require interpretation 
with caution. Outcome ascertainment approaches 
differ across studies and each exposure assessment 
approach likely is only a proxy for causally relevant 
exposure in relation to clinical dementia outcomes. 
Studies that evaluate critical periods of exposure and 
pollutants other than PM2.5, and studies that actively 
assess all participants for outcomes are needed. 
Nonetheless, our results can provide current best 
estimates for use in burden of disease and regulatory 
setting efforts.
systematic review registratiOn
PROSPERO CRD42021277083.

Introduction
More than 57 million people worldwide are living 
with dementia and the global burden continues to 
increase.1 However, interventions to delay or prevent 
the onset of dementia are scarce. Long term ambient 
air pollution has been acknowledged as a potentially 
modifiable risk factor for dementia on the basis of 
long standing evidence that supports an association 
between exposure to air pollution and cardiovascular 
disease,2 3 stroke,4 and somewhat more recently, 
cognitive impairment.5 6 Studies have also shown 
that reductions in air pollution concentrations are 
associated with reduced mortality.7 8

The number of studies evaluating the association 
between ambient air pollution and dementia has 
increased over the past decade, but studies have 
used different approaches to identify dementia cases, 
estimate long term exposures to ambient environmental 
exposures, and quantify the associations. Previous 
systematic reviews have either avoided combining 
estimates across studies because of these differences 
or attempted to review and combine estimates without 
acknowledgment of these issues.5 6 9 10 Furthermore, no 
systematic review has been done since the publication 
of several studies that used active case ascertainment 
approaches. Additionally, none have evaluated bias by 
use of the new Risk of Bias In Non-randomised Studies 
of Exposures (ROBINS-E) tool,11 which addresses 
bias issues in environmental studies in much greater 
detail than other assessment approaches. We therefore 
conducted a systematic review and meta-analysis of the 
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WhAt Is AlreAdy knoWn on thIs topIc
Accumulating evidence suggests that air pollutants may contribute to the risk of 
dementia
Few meta-analyses have been performed and none that included more 
recent studies that use active case ascertainment, nor any that used in depth 
assessment of risk of bias with the Risk Of Bias In Non-randomized Studies of 
Exposure (ROBINS-E) tool

WhAt thIs study Adds
A systematic assessment of the literature that suggests exposure to particulate 
matter <2.5 microns in diameter (PM2.5) is associated with increased risk of 
dementia, and with somewhat less data, exposure to nitrogen dioxide and 
nitrogen oxide as well
The findings support the public health importance of limiting exposure to PM2.5 
and other air pollutants and provides a best estimate of effect for use in burden of 
disease and policy deliberations
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literature on associations between ambient pollutants 
and clinical dementia using the ROBINS-E to evaluate 
potential biases and identify how potential biases 
might impact the interpretation of aggregate results. 
A systematic and quantitative analysis of this type 
can provide results for use by regulatory agencies to 
inform policy and information for clinicians to discuss 
dementia risk with their patients.

Methods
literature search
The protocol was registered under PROSPERO 
(CRD42021277083) on 10 November 2021. Two 
people (EW and MO) independently performed a 

literature search of the EMBASE, PubMed, Web of 
Science, Psycinfo, and OVID Medline databases from 
database inception through July 2022. Searches used 
free text and medical subject headings for Alzheimer’s 
disease and dementia and exposures related to US 
Environmental Protection Agency (EPA) criteria 
pollutants or traffic pollution and its surrogates (online 
supplementary material 1). The literature review was 
developed on the basis of the researchers’ experience, 
a preliminary review of existing literature, and 
discussions with research library staff. All articles with 
a potentially relevant abstract, or ones for which the 
relevance was unclear, were reviewed and downloaded 
to an Endnote 20 library (Clarivate, Philadelphia, 
PA, USA). Discrepancies were resolved by a third 
reviewer (MW). Studies were eligible for review if they 
included adults (≥18 years), a longitudinal follow-
up, considered exposure periods of a year or more, 
and reported hazard ratios, odds ratios, relative risks 
or rate ratios and 95% confidence intervals for the 
association between ambient pollutant exposures and 
clinical dementia. We excluded studies that evaluated 
associations between ambient pollution and cognitive 
function, brain imaging, or biomarkers associated with 
dementia.

Data extraction
Using a standardized form, two readers (EW and 
MW) independently and in duplicate extracted data 
from selected articles. Measures of association were 
recorded with 95% confidence intervals, unit of 
exposure (µg/m3, ppb, etc), scaling factor (eg, 1 µg/m3, 
5 µg/m3, 10 µg/m3), and covariate adjustment. Results 
were reviewed for consensus and discrepancies were 
resolved among the authors. If information could not 
be determined for a paper, we attempted to contact the 
authors to clarify.

risk of bias assessment
We used the ROBINS-E tool11 to assess risk of 
bias to support detailed assessment of domain 
specific issues that can raise threats to causal 
inference. The ROBINS-E tool is designed to assess 
non-randomised studies and is adapted from the 
original ROBINS-I (Risk of Bias In Non-randomised 
Studies of Interventions tool12 with a specific focus 
on environmental exposures. Bias is defined as a 
tendency for study results to differ systematically 
from the results expected from a hypothetical 
target randomised trial, conducted on the same 
participants and with no flaws in its conduct.12 For 
this meta-analysis to best inform policy, we defined 
the hypothetical target trial as exposure to a standard 
unit increase in the annual average outdoor ambient 
exposure to the air pollutant in question because this 
criteria is what EPA regulations address. Using the 
ROBINS-E tool, we assessed the risk of bias in seven 
different methodological aspects (called domains). 
Per ROBINS-E protocol, risk of bias in each domain 
was graded as either low, some, high, or very high. We 
also considered whether the mechanisms of bias were 
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fig 1 | flowchart of literature search
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likely to bias towards harm (ie, a higher hazard ratio) 
or away from harm (a lower hazard ratio) for effects 
of the air pollutant on dementia. Where authors 
disagreed on these risk of bias questions, we had a 
discussion and came to a consensus. Overall risk of 
bias for each study was then recorded as the highest 
risk of bias for any domain. Item level judgement 
for each domain of bias was recorded as the most 
dominant risk of bias.

statistical analysis
Inverse variance weighted random effect models were 
used to pool estimates from individual studies for 
pollutants when three or more studies were available 
using comparable approaches with similar definitions 
of exposure and outcome.13 We used Knapp-Hartung 
standard errors as these have been found to result 
in fewer type 1 errors when study population sizes 
differ and study number is small,14 but because 
these standard errors also decrease power,15 we also 
reported confidence limits using DerSimonian-Laird 
standard errors in the supplement. Estimates were 
converted from ppb to μg/m3 where necessary using 
these conversions: 1 ppb NO2=1.88 µg/m3; 1 ppb 

NOx=1.9125 µg/m3; and 1 ppb O3=1.96 O3 μg/m3. 
Tau2 was reported as the variance of the true effect 
sizes and I2 as a measure of inconsistency across the 
findings of the studies. We did not include studies in 
meta-analyses if they did not estimate a hazard ratio 
or did not model exposure continuously (fig 1). We 
pooled estimates from studies that used different sets 
of confounding variables because each study aimed to 
identify the best effect estimates for the air pollutants, 
and issues of risk of bias related to confounding were 
discussed. Data were presented for a fixed unit change 
in exposure for each pollutant. We performed subgroup 
analyses to evaluate differences in associations by 
different study characteristics, and then we performed 
meta-regression to determine the significance of 
the association of the study characteristic with the 
meta-analysis results. In most cases, results from 
single pollutant models were available. Where a 
multipollutant model was provided, we commented 
on whether estimates were substantially altered. All 
statistical analyses were conducted in Stata version 17 
(StataCorp, College Station, TX, USA). Additional plots 
were generated in RStudio v1.4. All hypothesis tests 
were two sided.
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fig 2 | graphical representation of exposure and outcome assessment in studies with active ascertainment included in the meta-analyses. red lines 
indicate period of exposure assessment and circles indicate outcome assessment and follow-up visits. for grande 2020, visits occurred every six 
years for participants ages 60-77 years old indicated by the closed circles and every three years for older participants, indicated by the open circles. 
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fig 3 | graphical representation of exposure and outcome assessment in studies that used passive ascertainment included in the meta-analyses. 
Purple lines indicate period of outcome assessment and red lines indicate exposure assessment
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Patient and public involvement
This research question was developed on the basis 
of discussions with community members and people 
involved in environmental policy, but not by patients. 
Members of the public reviewed a version of this 
article before submission. We plan to disseminate 
these findings to the general public in a press release, 
through social media posts and the Harvard Chan 
National Institute of Environmental Health Sciences 
Center for Environmental Health website, and media 
outlets through Biogen. We have presented this work at 
scientific conferences and will continue to disseminate 
the results through academic presentations. We will 
also share the findings with specific interested parties 
involved with environmental policy, for example at the 
National Institutes of Health and National Institute of 
Environmental Health Sciences, the EPA, and relevant 
European Union committees.

results
study characteristics
Our initial review identified 2079 publications (1092 
unique) across the different databases, and one 

additional article found from the reference lists of 
other papers (fig 1). A total of 51 publications met the 
inclusion criteria,16-66 key characteristics of which are 
in the supplementary material 2 and 3. Particulate 
matter <2.5 µm in diameter (PM2.5) was considered 
most frequently (n=38). All of the publications were 
from the past 10 years, with 33 (65%) in 2020 or 
later, including 13 (72%) of the 18 studies that used 
active case ascertainment. Most studies were in North 
America (n=25), followed by several in Sweden and 
other European countries (n=17), and a few in Asia 
(Taiwan, n=4; Hong Kong, n=3; China, n=1) and 
Australia (n=1).

Among the 51 studies, we only used 16 in the 
meta-analyses for several reasons (fig 1). When 
we excluded a study because the data source was 
the same as another paper,18 19 27 28 44 49 57 58 63 65 
we included the study that we considered primary 
(based on larger numbers or least risk of bias, etc). 
Active case ascertainment studies all used some form 
of screening of the entire study population followed 
by in-person evaluation for dementia among 
individuals who did not have dementia at baseline. 

table 1 | study population and exposure characteristics of studies included in the meta-analyses

first author, year geographical location study population exposures
age distribution in 
years Percentage male

exposure averaging 
period

Active case ascertainment studies
Oudin, 201616 Umea, Sweden Betula Cohort NOx Median 70; range 

55-85
43% Annual average

Astrom 202120 Umea, Sweden Betula Cohort PM2.5 Median 70; range 
55-85

43% Annual average

Wang, 202223 USA WHIMS-Echo PM2.5, NO2, 60% >80 0% 3 year average for recent 
and remote exposures

Grande, 202025 Stockholm, Sweden SNAC-K Cohort PM2.5, NOx Mean 74, SD 11; 
range 60+

37% 5 year time varying 
average

Paul, 202026 California, USA SALSA Cohort TRAP (NOx) Mean 70, SD 7; range 
60-101

42% Annual average

Mortamais 202129 Bordeaux, Montpellier, and 
Dijon, France

3C Study Cohort PM2.5, NO2 Median 73, range 65+ 38% 10 year time varying 
average

Semmens, 202130 Winston Salem NC, 
Hagerstown MD, Sacramento, 
CA and Pittsburgh, PA

Gingko Evaluation of Memory 
Study (GEMS)

PM2.5, NO2 Mean 78.4, SD 3.2 54% 5, 10, 20 year average

Shaffer 202131 Puget Sound region, WA Adult Changes in Thought 
Cohort

PM2.5 Mean 75, SD 6.3, 
range 65+

42% 10 year time varying 
average

Sullivan, 202132 Allegheny County, 
Pennsylvania, USA

MYHAT Cohort PM2.5 Mean 77, SD 7; range 
65+

38% Annual and 5 year time 
varying average

Passive case ascertainment studies
Chen, 201737 Ontario, Canada Health Administrative database 

(ONPHEC)
PM2.5, NO2, O3 Mean 67; range 55-85 47% 5 year time varying 

average
Carey, 201839 London, England Primary care administrative 

database (CPRD)
PM2.5, NO2, O3 Median within 60-69; 

range 50-79
50% Annual average

Cerza, 201943 Rome, Italy Rome Longitudinal Study 
followed through administrative 
hospital discharge data

PM2.5, NO2, NOx, 
O3,

Mean 75, SD 7; range 
65-100

42% Annual average

Smargiassi, 202052 Québec, Canada QIDCSS linked to administrative 
health database

PM2.5, NO Median within 65-74; 
range 65+

45% Annual time varying 
average (NO2); 2 year 
time varying average 
(PM2.5)

Ran, 202156 Hong Kong, China EHS Cohort followed through 
administrative hospital data

PM2.5 Median within 65-74; 
range 65+

34% Annual average

Shi, 202159 USA Medicare denominator and 
Medicare Chronic Conditions

PM2.5 Median within 65-74; 
range 65-114

41% 5 year time varying 
average

Parra, 202262 UK UK Biobank PM2.5, NO2, NOx 60+ 47% Annual average
BC=Black Carbon; 3C Study=Three Cities Study; CPRD=Clinical Practice Research Datalink; EHS=Chinese Elderly Health Service; MYHAT=Monongahela-Youghiogheny Healthy Ageing Team; 
NO2=nitrogen dioxide; NOx=nitrogen oxide; O3=ozone; ONPHEC=Ontario Population Health and Environment Cohort; PM2.5=particulate matter <2.5 µm in diameter; QIDCSS=Québec Integrated 
Chronic Disease Surveillance System; SALSA=The Sacramento Area Latino Study on Ageing; SD=standard deviation; SNAC-K=Swedish National Study on Ageing and Care in Kungsholmen; 
TRAP=traffic related air pollution; WHIMS=Women’s Health Initiative Memory Study
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Studies that used passive case ascertainment 
typically identified dementia via International 
Classification of Diseases codes in insurance claims 

data or medical records (supplementary material 4). 
Among the papers included in the meta-analyses, 
the timing of exposure and dementia assessment 

table 2 | bias aspects of studies included in the meta-analyses

first author, year
misclassification and meas-
urement error of outcome

control of confounding
selection bias/loss 
to follow-up

risk of bias*

socioeconomic control
time varying  
exposure control a b c D Overall

Active case ascertainment studies
Oudin, 201616 Mostly active: in-person 

assessment supplemented 
with MR (some MR only)

Individual level 
adjustment

Not time varying 
exposure

Full follow-up Some Low Low Some Some

Astrom 202120 Mostly active: in-person 
assessment supplemented 
with MR (some MR only)

Individual level 
adjustment

Not time varying 
exposure

Full follow-up Some Low Low Some Some

Wang, 202223 Active: in-person or telephone 
screening followed by in-
person assessment

Individual and area level 
adjustment; 
Adjustment for potential 
mediators

Not time varying 
exposures

Weighting to address 
loss to follow-up

High* Low Some Low High*

Grande, 202025 Active: in-person assessment 
supplemented with death and 
medical records

Individual level 
adjustment; 
Adjustment for potential 
mediators

Time varying 
exposure with 
adjustment for 
time trend

6-11% loss to 
follow-up

High* Low Some Low High*

Paul, 202026 Active: in-person screening, 
with neuropsychological 
exam follow-up reviewed 
by neurologist and 
neuropsychologist review

Individual and area level 
adjustment

Not time varying 
exposures

Weighting to address 
loss to follow-up

Some Low Some Low Some

Mortamais 202129 Active: 3 phase in-person 
assessment, review by geriatric 
specialist

Individual level 
adjustment

Not time varying 
exposure

Weighting to address 
loss to follow-up

High Low Some Low High

Semmens, 202130 Active; screening followed by 
neuropsychological battery, 
neurological evaluation and 
adjudication

Individual and area level 
adjustment

Not time varying 
exposure

Approaches to limit 
selective attrition in 
study design

Some Low Some Low Some

Shaffer 202131 Active: in-person 
assessments, follow-up 
physical, neuropsychological 
evaluations reviewed by 
consensus

Individual and area level 
adjustment

Time varying 
exposure with 
adjustment for 
time trends

14% loss to follow-
up

Some Low Some Low Some

Sullivan, 202132 Active: in-person Clinical 
Dementia Rating assessment 
by trained interviewers 
(case=rating >1)

Individual level 
adjustment

Time varying 
exposure, no 
adjustment for 
time trends

No information on 
loss to follow-up

High Low High* Low High

Passive case ascertainment studies 
Chen, 201737 Passive: ICD codes and 

prescriptions
Area level adjustment Time varying 

exposures; 
reported no 
difference in 
results with time 
trend adjustment

Likely low; province 
wide data, required 
residence >5 years

High High Low High* High

Carey, 201839 Passive: Primary care record 
Quality and Outcomes 
Framework Read Codes, and 
death ICD codes

Area level adjustment Not time varying 
exposures

Censored if GP 
withdrew from 
CPRD; patient loss to 
follow-up not known

Some High Low High* High

Cerza, 201943 Passive: ICD codes Area level adjustment Not time varying 
exposure

Loss to follow-up 
discussed

High High Low High* High

Smargiassi, 
202052

Passive: ICD codes and 
prescriptions

Area level adjustment Time varying 
exposure with 
time trend 
adjustment

Likely low; province 
wide data, required 
residence >4 years

High High Low High* High

Ran, 202156 Passive: ICD codes Individual level 
adjustment

Not time varying 
exposure

Likely none; Hong 
Kong wide data

Some High Low High* High

Shi, 202159 Passive: ICD codes Individual (Medicaid 
eligibility) and area level 
adjustment

Time varying 
exposure with 
time trend 
adjustment

Likely low; all ≥65 
years; 
nationwide data

Some High Low High* High

Parra, 202262 Passive: ICD codes Individual level 
adjustment

Not time varying 
exposure

Censoring for loss to 
follow-up

Some High Low High* High

AOD=Aerosol Optical Depth; AQS=Air Quality System; CPRD=Clinical Practice Research Datalink; GP=general practitioner; ICD=International Classification of Diseases; MR=medical records. 
*Indicates that the likely direction of bias would be towards the null and no other bias is greater than some. Risk of bias domains: A=Confounding; B=Post-exposure intervention; C=Missing data; 
D=Measurement of the outcome. All studies were rated some risk of bias in the domains of “Measurement of the exposure” and “Selection of reported results,” and low risk of bias in the domain 
of “Selection of participants.”
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is shown in figure 2 and figure 3. In some studies, 
land use regression exposure models were based on 
measurements in one year that were then propagated 
to other years (rather than direct measures in those 
years), typically based on land use regression model 
year to other year ratios found in measurements at 
routine monitor sites.29 37 52

risk of bias assessment
A detailed discussion of the reasoning for our 
bias assessments is provided in supplementary 
material 5. Key differences between studies were 
in the domains of confounding, postexposure 
interventions, missing data, and measurement of 
the outcome (online supplementary material 3). For 
confounding, we considered socioeconomic status, 
race and ethnicity, and time trends to be the largest 
threats of bias, likely towards harm.67-75 When 
available, we took results unadjusted for potential 
mediators of the effect of air pollutants on dementia 
(eg, diabetes and cardiovascular conditions), but 
where only results adjusted for potential mediators 
were available, we considered the study at high risk 
of bias, but most likely away from harm.76-78 For post-
exposure interventions, we considered studies that 
used passive case ascertainment to be at high risk 
of bias from effects of air pollutants on the timing 
or presence of a dementia diagnosis (eg, from more 
interaction with medical systems because of other air 
pollution health effects79), likely towards harm. For 
missing data, because worse cognitive function has 
been shown  to  be associated with less participation 
and more loss  to  follow-up in cohort studies, as 

has ill health, which is associated with higher air 
pollution,26 80 81 studies that did not address this 
effect were considered at higher risk of bias, although 
likely away from harm.76 77 82 For measurement 
of the outcome, studies that used passive case 
ascertainment and relied on diagnostic codes, and 
sometimes prescriptions, in administrative datasets 
for identifying outcomes are subject to bias that likely 
goes away from harm.67 68 83-86 In all other domains, 
risk of bias was rated low or some.

Quantitative synthesis
Meta-analyses could only be conducted with 16 of the 
studies (table 1 and table 2). Of 14 studies on PM2.5, seven 
used active case ascertainment,20 23 25 29 30-32 and seven 
used passive case ascertainment.37 39 43 52 56 59 62 Among 
these 14 meta-analysed studies, seven were from North 
America,23 30-32 37 52 59 six from Europe,20 25 29 39 43 62 and 
one from Hong Kong.56 One of the publications from the 
Betula cohort study considered PM2.5 from local sources 
(traffic and stoves) and did not have data for regional 
PM2.5, but assumed that its contribution to variation 
in the study area was small.20 This study had a mean 
of 0.95 μg/m3 (standard deviation 0.34). Among the 
other 13 studies in the meta-analysis, the median/
mean exposure levels ranged from 7.9 μg/m3 to 35.2 
μg/m3, with measures of spread (standard deviation or 
interquartile range) that ranged from 0.08 to 4.8 μg/m3. 
Eight of the studies had mean exposure concentrations 
below the current EPA annual standard of 12 μg/
m3 20 23 25 31 37 52 59 62 with the highest mean at 10.5 μg/
m3 and all but three were below 10 μg/m3 23 31 37 which 
is being considered as a new EPA limit.87
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fig 4 | random effects meta-analysis for Pm2.5. Diamond size represents the relative weight of the studies. study specific estimates are scaled to a 
standard unit change of 2 μg/m3. Pm2.5=particulate matter <2.5 µm in diameter
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For PM2.5, the overall hazard ratio per 2 μg/m3 was 
1.04 (95% confidence interval 0.99 to 1.09; fig 4). 
Among studies with mean PM2.5 exposures that were 
less than the EPA annual standard of 12 μg/m3 (n=8), 
the hazard ratio was also 1.04 (0.97 to 1.11). Two 
studies suggested a levelling off of the association 
between PM2.5 and dementia at higher concentrations, 
but the concentration at which the levelling started 
was often where data were more sparse and differed 
in the two studies (about 8.5 μg/m3 and 35 μg/
m3).25 56 One other study that explored a possible non-
linear dose response association found essentially a 
linear relation with exposure from 3 μg/m3 to 16 μg/
m3.59 Evidence suggested an association with NO2 
(per 10 μg/m3 hazard ratio 1.02 (0.98 to 1.06)) and 
NOx (1.05 (0.98 to 1.13)), with all studies but one of 
each showing small but elevated hazard ratio (fig 5). 
No clear association was noted with O3 (for 5 μg/m3, 
1.00 (0.95 to 1.05); (fig 5). No other pollutant had at 
least three studies that could be meta-analysed (fig 1). 

Studies not included in our meta-analyses generally 
pointed to similar conclusions (online supplementary 
material 6).

Across the primary analyses conducted, values for 
I2 were more than 90% and Tau2 values were reported 
as 0.00, because of truncation, which reflects non-zero 
values of less than 0.001. When analysed separately 
by region (fig 6), the hazard ratio per 2 μg/m3 change 
in PM2.5 exposure in North America was 1.03 (95% 
confidence interval 0.98 to 1.08), while in Europe 
the hazard ratio was 1.21 (0.90 to 1.63), and the 
one study in Asia was 1.04 (1.00 to 1.07). Although 
larger, the estimate for Europe was not statistically 
different from that in North America in the meta-
regression (P=0.59). For PM2.5, the hazard ratio per 2 
μg/m3 among the seven passive case ascertainment 
studies was 1.03 (0.98 to 1.07) and among the seven 
active case ascertainment studies was 1.42 (1.00 to 
2.02; fig 7), a difference that approached statistical 
significance in meta-regression (P=0.06). We excluded 
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fig 5 | random effects meta-analysis for nO2, nOx, and O3. shaded boxes represent the relative weight of the studies. study specific estimates for 
each pollutant are scaled to a standard unit change of 10 μg/m3 nO2, 10 μg/m3 nOx, and 5 μg/m3 O3. nO2=nitrogen dioxide; nOx=nitrogen oxide; 
O3=ozone
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the two active case ascertainment studies deemed at 
high risk of bias away from the null because of possible 
time trend bias,29 32 after which the hazard ratio per 
2 μg/m3 PM2.5 among the remaining five studies was 
1.45 (0.93 to 2.27). The hazard ratio per 10 μg/m3 
NO2 was also larger among active case ascertainment 
studies (hazard ratio 1.06; n=3), than among passive 
case ascertainment studies (hazard ratio 1.02; n=6). 
Seven studies of PM2.5 used time varying exposure so 
follow-up after exposure was effectively within a year 
and the hazard ratio per 2 μg/m3 among this group 
was 1.03 (0.96 to 1.11).25 29 31 32 37 52 59 Among the rest 
(none with time varying exposure), six had 7-13 years 
of follow-up,23 30 39 43 56 62 while the one that used the 
Betula cohort had 20.20 Among this group the hazard 
ratio was 1.11 (1.00 to 1.23; meta-regression P=0.05). 
There was little difference by exposure averaging 
period (meta-regression P=0.75) with a hazard ratio 
per 2 μg/m3 among the six studies that used a 1 year 
average of 1.06 (0.92 to 1.22) and among the eight that 
used longer averages of 1.05 (0.99 to 1.11). Given the 
small number of studies that could be meta-analysed 
for other pollutants, we could not examine differences 
by study characteristics for those.

Exposure variance appeared to change effect sizes. 
Among studies that used active case ascertainment, the 
three with the largest hazard ratios were the three with 
the smallest variance in PM2.5 with a standard deviation 
of 0.7-0.34 μg/m3 and 0.08-0.19 μg/m3 depending on 
the year.20 25 32 One of the other studies did not report the 
exposure standard deviation but was based in the USA 
where other studies typically had a standard deviation 
of more than 2 μg/m3,30 while the other three had a 
standard deviation of 2.15 μg/m3 (estimated from the 
reported interquartile range of 2.9), 2.6 μg/m3, and 2.9 
μg/m3.23 29 31 Of these four higher PM2.5 variance studies, 
we excluded one study deemed at high risk of time trend 
bias,29 after which the hazard ratio per 2 μg/m3 PM2.5 
among the remaining three was 1.17 (0.96 to 1.43). 
The two largest hazard ratios among the studies that 
used passive case ascertainment also had the smallest 
standard deviation in that group of 0.7 (as estimated 
from a reported interquartile range of 0.9) and 1.25 μg/
m3 (compared with 2.0 to 3.6 μg/m3).39 62 Results with 
DerSimonian and Laird confidence limits are shown for 
all meta-analysis results in supplementary material 7. 
Few studies considered confounding by co-pollutants 
(supplementary material 8).
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fig 6 | Pm2.5 estimates by region. region was characterised as north america, europe, or asia. Diamond sizes represent the relative weight of the 
studies. study specific estimates are scaled to a standard unit change of 2 μg/m3 change in Pm2.5. Pm2.5=particulate matter <2.5 µm in diameter
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discussion
Principal findings
The findings from this systematic review and meta-
analysis suggest consistent evidence of an association 
between ambient air pollution and clinical dementia, 
particularly for PM2.5, even below the current EPA 
annual standard of 12 μg/m3, and well below the limits 
of the UK (20 μg/m3) and the European Union (25 μg/
m3). Evidence is also suggestive for an association with 
NO2 and NOx, although with more limited data. Data for 
other pollutants are even more limited. Although the 
Knapp-Hartung confidence limits are wide and have 
better false positive error properties, the consideration 
of false positive versus false negative error might be 
different when considering an exposure that everyone 
is passively exposed to, such as air pollution, rather 
than, for example, a medication that has been actively 
prescribed. Our risk of bias assessment suggested that 
many of the studies have some level of risk of bias, but 
overall, the pattern of results does not suggest that the 
biases would have produced a false association. In 
many cases, any likely bias would be towards the null 
(away from harm), in particular bias from exposure and 
outcome misclassification. Although some concern of 
bias towards harm from confounding exists, studies 
that used methods that inherently avoided confounding 

by personal factors, such as socioeconomic status and 
race and ethnicity, also identified substantial risks of 
dementia associated with PM2.5.36 40 60

The characteristic that made the biggest difference 
to the results was case ascertainment method, with 
hazard ratios for both PM2.5 and NO2 larger for studies 
that used active case ascertainment. The P value for 
this characteristic from the meta-regression was 
only 0.06, but this should be considered in light of 
the fact that fewer than 10 studies per group were 
included in this meta-regression (and all others), 
which has been recommended as a minimum to 
reliably estimate the effects of factors.88 The smaller 
hazard ratio for passive case ascertainment studies 
likely is a result of more outcome misclassification 
when passive case ascertainment is used. Exposure 
measurement error would not generally differ by this 
characteristic. Outcome misclassification (or delay) 
by socioeconomic status and race and ethnicity likely 
would bias towards the null (away from harm) in the 
USA, at least for PM2.5 and NO2, given their relation with 
air pollution. Additionally, data from Europe for the 
association between air pollution and socioeconomic 
status are mixed, and studies from Asia are scarce.86 
Regardless, this misclassification bias is unlikely to 
affect studies that used active case ascertainment. 
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fig 7 | Pm2.5 estimates by outcome ascertainment. active ascertainment studies were those that estimated associations from established cohort 
studies; Passive ascertainment studies made use of data such as claims and medical records. Diamond sizes represent the relative weight of the 
studies. study specific estimates are scaled to a standard unit change of 2 μg/m3 change in Pm2.5. Pm2.5=particulate matter <2.5 µm in diameter
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Bias to the null (away from harm) of any causal 
effect might also occur because the causally relevant 
window for air pollutant exposures is not known. The 
exposure windows assessed in the different studies 
might not capture the causally relevant window 
directly, but rather only correlate with it to different 
degrees. This effect would introduce further error in 
estimation of causally relevant exposure and so also 
contribute to biasing a causal effect estimate towards 
the null.89 90 At the same time, if this relevant window 
is earlier than that measured in a study, decreasing 
trends over time in pollutants and their variance could 
lead to bias towards harm because a unit increase 
in the measured pollutant would represent a larger 
difference in the earlier pollutant level. However, 
this bias would not create a false association, but 
only potentially amplify a true one. The three largest 
effect sizes for PM2.5 among studies that used active 
case ascertainment were noticeably in the studies that 
had the lowest exposure variances of all (standard 
deviation <1 µg/m3).20 25 32 Similarly, the two largest 
effect sizes for PM2.5 among studies that used passive 
case ascertainment were also in those with the lowest 
exposure variances (standard deviation ≤1.25 µg/
m3v ≥2 µg/m3).39 62 Four of these five studies of low 
exposure variance were in Europe, which could have 
accounted for the larger effect size seen overall in that 
region. These kinds of issues also lead to heterogeneity 
between studies: I2 estimates were 90% or greater, 
and T2 close to 0. The T2 finding might occur when 
there is imprecision in the estimates and high variance 
within the study, leading to estimates that vary across 
studies. The bias most likely to cause a spuriously 
harmful association (bias away from the null) is that 
from postexposure intervention in studies that used 
passive case ascertainment (a form of detection bias). 
However, the overall results for those studies was a 
less harmful effect estimate than among the studies 
that used active case ascertainment. Therefore, bias 
away from harm (towards the null) from outcome 
misclassification was likely stronger.

findings in context
The overall effect estimates for the associations were 
often small, but this finding is typical for studies of 
health effects of ambient air pollution.79 91 When 
scaled to the same units (eg, effect estimates per 5 
µg/m3), the effect estimates that we found were very 
similar to those found for annual averages and many 
other outcomes (eg, cardiovascular mortality and 
respiratory mortality). The effect estimates associated 
with air pollution are smaller than those reported for 
other risk factors for dementia (eg, education and 
smoking),69 but given the size of the population that 
is potentially exposed to air pollutants, the population 
health implications can be substantial.

The estimates that we report apply to the effect of 
a change in ambient air pollution concentrations in 
an area, which is what political bodies like the EPA or 
European Union regulate. However, the assumption 
is that any causal effect of the air pollutant would 

have to occur through actual personal exposure. 
The outdoor ambient concentration of pollutants 
is substantially mismatched with actual personal 
exposure because specific behaviours, such as time 
spent at home (where exposures are estimated), are 
not captured. The use of such ambient estimates 
protects against many kinds of confounding, but will 
result in bias towards the null of any causal effects 
through personal exposure levels.92 Nonetheless, 
the effect estimate tied to the outdoor ambient 
pollutant measure would be expected to describe 
the population health benefits of regulatory related 
changes in outdoor ambient exposure levels.

Global estimates of dementia prevalence suggest 
an increase from 57 million in 2019 to 153 million in 
2050.1 The largest bulk of this comes from population 
ageing and population growth, but up to 40% of 
dementia prevalence has been estimated to be 
prevented by targeting modifiable risk factors.69 Air 
pollution is only one of these possible risk factors so 
any effects of reducing air pollution would certainly be 
smaller, but air pollution is relatively directly targeted 
through regulation setting. The contribution of 
modifiable risk factors to dementia prevalence varies 
substantially in different regions of the world, with 
the lowest contribution in high income Asia Pacific 
region countries, and the highest in African, central 
European, and Latin American regions.1 A reduction in 
air pollution limits would be likely to have differential 
impact on dementia prevalence worldwide too 
because pollution levels vary widely.93-95 Nonetheless, 
reductions in air pollution levels anywhere would be 
expected to have an effect commensurate with the level 
of reduction enacted.

Many potential biological mechanisms have been 
suggested to underlie associations between air 
pollutant exposures and dementia. Cardiovascular 
effects of air pollutants are well known,79 91 as 
are cardiovascular conditions as risk factors for 
dementia.96 97 Although some papers suggest that 
vascular factors could mediate an association between 
air pollutants and dementia,6 25 49 issues with these 
kinds of analyses can complicate interpretation.6 
Particulate matter exposure has been found to result 
in systemic inflammation, damage to the blood–brain 
barrier, changes in different neurotransmitter levels, 
and increases in neuroinflammation that can lead to 
neuronal death.98-102 Microglia can be particularly 
relevant cells for these issues as the resident immune 
cells of the brain that respond to injury, produce local 
cytokines, and have been shown to actively eliminate 
synapses.98 100 103 Toxic activation of microglia, possibly 
contributed to by air pollutant exposures, might lead to 
aberrant synapse elimination in older age that is part 
of the pathway to dementia. Demonstration of these 
types of mechanisms occurring in humans, however, 
is difficult. Although neuroimaging studies of brain 
effects of air pollutants are increasing, the literature 
is hard to synthesise and clear evidence for particular 
mechanisms of action linking air pollutant exposures 
to dementia is still elusive.6
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limitations
Few studies have used active case identification 
approaches, considered pollutants other than PM2.5, 
and considered multiple pollutants simultaneously. 
Additionally, other exposures (eg, noise) that could 
co-vary with air pollutants might also need to be 
considered.104 Studies that seek to identify the causally 
relevant time windows for exposure and further 
evaluate exposure-response associations are needed, 
as are those that can provide additional insight into 
underlying mechanisms that are affected by these 
exposures. Meta-analyses of hazard ratios have 
inherent issues that can compromise comparability 
across studies.105 If a causal effect that is not constant 
over time is true, hazard ratios can change with 
longer follow-up after exposure. Typically, this biases 
a true effect towards the null with longer follow-up 
because susceptible individuals get the outcome and 
are censored. We found a slightly larger hazard ratio 
with a longer follow-up, which could instead suggest 
that effects of air pollutant exposures take some time 
to manifest. Lastly, assessment of the possibility of 
publication bias is difficult. The problems with the use 
of funnel plots to assess publication bias have been 
described,106 and the issues of numbers of studies and 
other reasons (than publication bias) for heterogeneity 
between studies are issues of particular concern in the 
context of the air pollution and dementia literature.

conclusions and policy implications
Our results suggest that exposure to ambient PM2.5 is 
associated with a higher rate of dementia, and likely 
NO2 and NOx as well, but with more limited data. 
Our risk of bias assessment and results of stratified 
meta-analyses suggest that the predominant biases 
are probably away from harm rather than towards it. 
Nonetheless, the many limitations discussed in meta-
analysing observational studies of environmental 
exposures, such as air pollution, mean that findings 
must be interpreted with caution. Nevertheless, 
given the available data, our results suggest that 
the best estimate for the effect of a 2 μg/m3 higher 
concentration of PM2.5 is a hazard ratio of 1.42 (95% 
confidence interval 1.00 to 2.02) based on the studies 
that used active case ascertainment. However, given 
concerns of time trend bias and causally relevant time 
windows, a more conservative estimate is 1.17 (0.96 
to 1.43) after removing four studies for these reasons. 
With either estimate, the confidence limits are likely 
too wide given the number and characteristics of the 
included studies.15 Our results strengthen the evidence 
that air pollutants are risk factors for dementia, further 
suggesting that efforts to reduce population exposures 
to these contaminants might help to reduce the 
personal, financial, and societal burden of dementia. 
To some degree, this reduction can be done on a 
personal level and clinicians should communicate the 
risks of air pollutant exposures to their patients. More 
importantly, steps can be taken at a broader public 
policy level. These findings can provide regulatory 
agencies and others with a best estimate for use in 

burden of disease estimation and regulation setting 
efforts, as well as inform summaries of risk factors for 
dementia.69
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