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ABSTRACT

Objectives To assess the performance of a panel of

common single nucleotide polymorphisms (genotypes)

associatedwith type 2 diabetes in distinguishing incident

cases of future type 2 diabetes (discrimination), and to

examine the effect of adding genetic information to

previously validated non-genetic (phenotype based)

models developed to estimate the absolute risk of type 2

diabetes.

DesignWorkplace based prospective cohort study with

three 5 yearly medical screenings.

Participants 5535 initially healthy people (mean age

49 years; 33% women), of whom 302 developed new

onset type 2 diabetes over 10 years.

OutcomemeasuresNon-genetic variables included in two

established risk models—the Cambridge type 2 diabetes

risk score (age, sex, drug treatment, family history of type

2 diabetes, body mass index, smoking status) and the

Framingham offspring study type 2 diabetes risk score

(age, sex, parental history of type 2 diabetes, body mass

index, high density lipoprotein cholesterol, triglycerides,

fasting glucose)—and 20 single nucleotide

polymorphisms associated with susceptibility to type 2

diabetes. Cases of incident type 2 diabetes were defined

on the basis of a standard oral glucose tolerance test, self

report of a doctor’s diagnosis, or the use of anti-diabetic

drugs.

Results A genetic score based on the number of risk

alleles carried (range 0-40; area under receiver operating

characteristics curve 0.54, 95% confidence interval 0.50

to 0.58) and a genetic risk function in which carriage of

risk alleles was weighted according to the summary odds

ratios of their effect frommeta-analyses of genetic studies

(area under receiver operating characteristics curve 0.55,

0.51 to 0.59) did not effectively discriminate cases of

diabetes. The Cambridge risk score (area under curve

0.72, 0.69 to 0.76) and the Framingham offspring risk

score (area under curve 0.78, 0.75 to 0.82) led to better

discrimination of cases than did genotype based tests.

Adding genetic information to phenotype based risk

models did not improve discrimination and provided only

a small improvement in model calibration and a modest

net reclassification improvement of about 5% when

added to the Cambridge risk score but not when added to

the Framingham offspring risk score.

Conclusion The phenotype based risk models provided

greater discrimination for type2 diabetes thandidmodels

based on 20 common independently inherited diabetes

risk alleles. The addition of genotypes to phenotype

based risk models produced only minimal improvement

in accuracy of risk estimation assessed by recalibration

and, at best, a minor net reclassification improvement.

Themajor translational application of the currently known

common, small effect genetic variants influencing

susceptibility to type 2 diabetes is likely to come from the

insight they provide on causes of disease and potential

therapeutic targets.

INTRODUCTION

Around one in 10 middle aged Europeans develop
type 2 diabetes over a 10 year period.1 This may rise
with the threatened epidemic of type 2 diabetes, driven
partly by the increase in obesity, which is projected to
result in a prevalence of type 2 diabetes worldwide of
366 million by 2030 (www.who.int/diabetes/facts/
world_figures/en/).2 This will place a considerable
burden on healthcare systems, as type 2 diabetes is a
common cause of renal failure and blindness and
increases the risk of cardiovascular diseases and
mortality.
Estimation of people’s absolute risk of coronary

heart disease, based on the Framingham, PROCAM,
and QRISK equations,3-5 has become established as a
means of targeting preventive interventions to those at
highest risk. Earlier risk functions for estimating the
risk of type 2 diabetes required an oral glucose toler-
ance test, which is impractical for screening large num-
bers of people. Despite evidence that some
interventions prevent or delay development of type 2
diabetes in people at high risk,6 the prediction of risk of
new onset type 2 diabetes has not been part of routine
clinical practice.
Two risk scores were published in 2007 and 2008.

They were based on demographic, anthropometric,
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andbiochemicalmeasures but didnot require informa-
tion from an oral glucose tolerance test. The Cam-
bridge type 2 diabetes risk score is a pragmatic
algorithm incorporating the routinely assessed vari-
ables age, sex, drug treatment, family history of type
2 diabetes, body mass index, and smoking status.7 In
validating this risk score in the EPIC-Norfolk study,
Rahman et al reported that the model performed well
in distinguishing cases of later type 2 diabetes (discri-
mination), with an area under the receiver operating
characteristics curve of 0.75 (where 1 indicates perfect
discrimination and 0.5 indicates no discrimination).7

The Framingham offspring type 2 diabetes risk score
also makes use of routinely collected clinical data and
biochemical measures including age, sex, parental his-
tory of type 2 diabetes, body mass index, high density
lipoprotein cholesterol, triglycerides, and fasting glu-
cose. This model also provided good discrimination
of incident cases of diabetes, with an area under the
receiver operating characteristics curve of 0.85.8 Nota-
bly, the addition of other non-routinely collected mea-
sures of glucose metabolism such as the homoeostasis
model assessment, fasting insulin, or two hour oral glu-
cose tolerance test did not improve the risk prediction.8

Both risk algorithms include information on family
history of type 2 diabetes. However, family history
reflects shared environment as well as genotype, and
whereas biochemical and non-biochemical features
associated with type 2 diabetes alter with age, genetic
predisposition is determined at conception and fixed
through life. Identifying genotypes that alter suscept-
ibility to type 2 diabetes, and using them on their own
or in combination with existing phenotype based risk
algorithms,might therefore improve prediction of risk,
particularly if genotypes identify differences in the
activity of pathways unmeasured in non-genetic risk
models.
Large case-control studies using whole genome

arrays of single nucleotide polymorphisms (genome-
wide association studies) have identifiedmultiple com-
mon risk alleles for type 2 diabetes, many of which
reside in or near genes not previously implicated in
the pathogenesis of diabetes,9-12 in addition to confirm-
ing loci identified by previous candidate gene
studies.13 14 Around 20 single nucleotide poly-
morphisms associated with type 2 diabetes have been
identified, for which the findings from the discovery
study have been independently replicated in addi-
tional datasets and the effect sizes evaluated precisely
bymeta-analysis (as detailed inweb tableA).15-18 For all
loci identified to date, effect sizes have been modest,
with odds ratios for risk of type 2 diabetes ranging
from 1.37 for single nucleotide polymorphisms in the
geneTCF7L2 to 1.09 for those in the geneADAMTS9,18

raising the question of whether information on geno-
type would be useful for prediction of risk. Moreover,
risk alleles have been discovered mainly by using
case-control studies, which, although efficient for the
discovery of disease associated single nucleotide poly-
morphisms, are suboptimal for evaluating their perfor-
mance as predictors of risk. This is optimally assessed

by genotyping the genetic markers in prospective stu-
dies of initially healthy people in whom cases of inci-
dent disease accrue over time. However, the study
designs, the number of disease associated single
nucleotide polymorphisms evaluated, the metrics
used to evaluatepredictive performance, and themeth-
ods used to compare the performance of genotypewith
non-genetic risk factors have been variable. Despite
this, genetic tests for the prediction of type 2 diabetes
have already become available in the commercial sec-
tor (for example, www.23andme.com and www.deco
deme.com/).
In this study, we first compared the ability of two

phenotype based risk algorithms, the Cambridge risk
score and the Framingham offspring risk score,7 8 with
genotype based risk models for the discrimination of
incident cases of type 2 diabetes in the prospective
Whitehall II study of civil servants in the United King-
dom.We then evaluated the effect of addition of geno-
types to the two non-genetic risk algorithms on the
ability to discriminate between people who developed
type 2 diabetes and those who remained free of the
disease. We further assessed the effect of adding geno-
type to the calibration of the risk models (which
involves assessing the closeness of the observed event
rate to the predicted risk in different risk categories) as
well as reclassification (which assesses the extent to
which addition of genetic information shifts people to
categories of predicted risk that better reflect their
eventual outcome).19

METHODS

Study population

Between 1985 and 1988, all civil servants aged
between 35 and 55 years in 20 departments in central
London were invited to a medical examination at their
workplace.20 21 With 73% participation, the cohort
included 10 308 participants at entry to the study. At
phase 3 in 1991-3, all participants known to be alive
and in the country were invited to the screening clinic,
which included an oral glucose tolerance test; 6058
men and 2758 women (85.5% of the original sample)
attended. For this analysis, phase 3 (when an oral glu-
cose tolerance test was done for the first time) serves as
the baseline. Biochemical screening was repeated at
phase 5 (1997-9) and phase 7 (2003-4). Additional
questionnaire-only phases assessed diabetes status at
phase 4 (1995-6) and phase 6 (2001). Of the baseline
participants, 6156 participated in phase 7 screening, at
which DNA was collected.

Clinical characteristics

Wemeasured age, sex, bodymass index, waist circum-
ference, blood pressure, lipids, C reactive protein,
fibrinogen, glucose, smoking, and coronary heart dis-
ease and diabetes status at baseline. Weight was mea-
sured in underwear to the nearest 0.1 kg on Soehnle
electronic scales. We measured height in bare feet to
the nearest 1 mm by using a stadiometer with the par-
ticipant standing erectwith head in the Frankfort plane.
We calculated bodymass index as weight (kilograms)/
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height (metres) squared. We measured waist circum-
ference, taken as the smallest circumference at or
below the costal margin, with participants unclothed
in the standing position by using a fibreglass tape mea-
sure at 600 g tension.Wemeasured systolic bloodpres-
sure and diastolic blood pressure twice in the sitting
position after fiveminutes’ rest with theHawksley ran-
dom zero sphygmomanometer. We took the average
of the two readings to be themeasured blood pressure.
We took venous blood in the fasting state or at least five
hours after a light, fat free breakfast, before a two hour
75 g oral glucose tolerance test was done. Serum for
lipid analyses was refrigerated at −4°C and assayed
within 72 hours.Weused aCobas Fara centrifugal ana-
lyser (Roche Diagnostics System, Nutley, NJ) to mea-
sure cholesterol and triglyceride concentrations. We
measured high density lipoprotein cholesterol by pre-
cipitating non-high density lipoprotein cholesterol
with dextran sulfate-magnesium chloride with the use
of a centrifuge and measuring cholesterol in the super-
natant fluid.We used the Friedewald formula to calcu-
late low density lipoprotein cholesterol concentration.
We measured C reactive protein in serum stored at
−70°C with a high sensitivity immunonephelometric
assay in a BN ProSpec nephelometer (Dade Behring,
Milton Keynes). We measured fibrinogen by an auto-
mated Clauss assay in anMDA-180 coagulator (Orga-
non Teknika, Cambridge), using the manufacturer’s
reagents and the international fibrinogen standard.
We measured blood glucose by the glucose oxidase
method on a YSI Model 23A glucose analyser,22 23

and serum insulin with an in-house human insulin
radioimmunoassay.24 We defined prevalent coronary
heart disease as meeting MONICA criteria,25 giving
positive responses to questions about chest pain,26 phy-
sician’s diagnosis, evidence from medical records, or
positive electrocardiographic findings.

Diabetes, HbA1c, and homoeostasis model assessment

Wedetermineddiabetes status on the basis of a 75 g oral
glucose tolerance test (phases 3, 5, and 7), use of anti-
diabetic drugs, or self report of a doctor’s diagnosis
(phases 3 to 7). We defined diabetes by a two hour glu-
cose of at least 11.1 mmol/l or fasting glucose of at least
7 mmol/l.27 Glycated haemoglobin (HbA1c) was mea-
sured at phase 7 in EDTA whole blood on a calibrated
HPLC system with automated haemolysis before injec-
tion. HbA1 is resolved as a separate peak, which does
not interfere with quantification of HbA1c.28 We calcu-
latedhomoeostasismodel assessment as (fastingglucose
(mmol/l) × fasting insulin (mU/l)/22.5).29 Non-fasting
participants (fasting less than five hours) were assigned
a missing value (n=435, 9.1%).

Genotyping

We extractedDNA from blood samples by usingmag-
netic bead technology (Medical Solutions, Notting-
ham). Medical Solutions used SNPLex (Applied
Biosciences) to determine the following single nucleo-
tide polymorphisms, chosen because their association
with diabetes risk has been replicated and the effect size

has been estimated with precision from large scale
meta-analysis (web table A): ADAMTS9 rs4607103,
CALPN10 rs3792267, CDC123 (CAMK1D)
rs12779790, CDKN2B rs10811661, FTO rs1421085
(which is complete LD with rs993050630), HHEX
rs1111875, HNF1A (TCF2) rs1800574, IGF2BP2
rs440296, JAZF1 rs864745, KCNJ11 rs521, NOTCH2
rs10923931, PPARG rs1801282, SLC30A8
rs13266634, TCF2(HNF1B) rs4430796, TCF7L2
rs12255372, THADA rs7578597, and TSPAN8
(LGR57) rs7961581. Single nucleotide poly-
morphisms in BCL11A rs10490072, CDKAL1
rs17036101, TCF7L2 rs7901695, and VEGFA
rs9472138 were genotyped by using the 50K IBC
CVD chip (web table B).31 All single nucleotide poly-
morphisms were in Hardy-Weinberg equilibrium (χ2,
P>0.05).

Statistical analysis

We used two sample t tests to compare mean baseline
values of continuous variables in people who devel-
oped diabetes and those who did not.Where appropri-
ate, we log transformed variables and present
geometric means and approximate standard devia-
tions. We used the χ2 test to compare categorical vari-
ables. We assessed the association of each genotype
with risk of diabetes by logistic regression analysis
and summarised the data by odds ratios and 95% con-
fidence intervals.We used published regression coeffi-
cients to calculate the Cambridge type 2 diabetes risk
score and Framingham offspring study type 2 diabetes
risk score for each participant.7 8 In addition, we calcu-
lated two genetic scores. In the first, we assigned each
person a score based simply on the number of risk
alleles carried. Thus for CDKAL1, CDC123/
CAMK1D, FTO, HNF1A, IGFBP2, KCNJ11, NOTCH2,
TCF2, TCF7L2, TSPAN8/LRG5, and VEGFA, we
coded genotypes “0” for common allele
homozygotes,11 “1” for heterozygotes, and “2” for
rare allele homozygotes,22 and for ADAMTS9,
BCL11A, CALPN10, CDKN2A/2B, HHEX, JAZF1,
PPARG, SLC30A8, and THADA, coding was “2” for
common allele homozygotes and “0” for rare allele
homozygotes,11 as the rare allele is reported to be pro-
tective (see web table B). In the second score, we calcu-
lated a genetic risk function by using weights derived
from the risk coefficient for each gene based on odds
ratios reported in previous meta-analyses (web table
A).15 16 18 32 Risk estimates for each allele were available
for 18 genes, and wemultiplied these coefficients by 0,
1, or 2 according to thenumberof risk alleles carriedby
each person. Where effect estimates were reported for
carriage of either one or two copies of each risk allele as
a single group (CALPN10 and HNF1A), we multiplied
risk coefficients by a score of 0 or 1. We assumed
genetic and clinical variables to be independent and
added the weighted genetic score to each of the risk
algorithms to provide a combined phenotypic and
genetic score.
We assessed discrimination with the detection rate,

which is equivalent to sensitivity and defined as the
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proportion of all cases detected for a pre-specified false
positive rate, as well as the area under the receiver
operating characteristics curve. We assessed the cali-
bration of the Cambridge risk score and Framingham
offspring risk score in the estimation of the absolute
risk of type 2 diabetes by comparing the difference
betweenobserved and expected event rates in different
categories of risk with the Hosmer-Lemeshow test,
with Akaike’s information criterion and the likelihood
ratio test as globalmeasures ofmodel fit.33We used the
net reclassification improvementmeasure to assess the
extent towhich adding the genetic variables reassigned
people to risk categories that better reflected their final
outcome.34

RESULTS

Web table C shows the baseline characteristics of the
study participants. We excluded 103 people with pre-
valent type 2 diabetes at baseline from subsequent ana-
lysis. Of the 5135 participants followed for amedian of
11.7 years to phase 7, with complete phenotype and
genotypemeasures, 302 haddeveloped type 2 diabetes
by phase 7.

Discrimination using phenotype based risk scores

The odds ratio for developing diabetes was 8.4 (95%
confidence interval 5.1 to 13.9) for people in the top
fifth of the Cambridge risk score distribution com-
pared with those in the bottom fifth, and the area
under the receiver operating characteristics curve was
0.72 (95% confidence interval 0.69 to 0.76) at phase 7
(table 1). The odds ratio for type 2 diabetes in partici-
pants in the top fifth of the Framingham offspring risk
score distribution compared with those in the bottom
fifth was 18.2 (9.8 to 33.8), with a significantly greater
area under the receiver operating characteristics curve
of 0.78 (0.75 to 0.82) (P=0.01) (table 1 and fig 1).Detec-
tion rates (sensitivity) for a 5% false positive rate were
19.7 (95% confidence interval 14.1 to 25.3) for the
Cambridge risk score (cut-off point 0.34) and 30.6
(24.1 to 37.1) for the Framingham offspring risk score
(cut-off point 0.08). The respective detection rates for a
10% false positive rate were 34.2 (27.5 to 40.9; cut-off
point 0.26) and 43.0 (36.0 to 50.0; cut-off point 0.05)
(table 1).

Discrimination using genotype based risk scores

Web table B shows details of the 20 single nucleotide
polymorphisms typed, together with risk estimates for
type 2 diabetes from published meta-analyses (web
table A). All genotypes were in Hardy-Weinberg equi-
librium. In line with previous reports, FTO rs1421085
was associated with body mass index (P<0.001).30

CDC123/CAMK10 rs10811661 (P=0.001), KCNJ11
rs5219 (P<0.01), and TCF7L2 rs7901695 (P<0.002)
were associated with two hour glucose after an oral
glucose tolerance test. CALPN10 rs3792267 was asso-
ciated with significant differences in concentrations of
total cholesterol and low density lipoprotein choles-
terol (P=0.01). We found no other associations
between genotypes and phenotypes included in either

of the non-genetic risk models at phase 3 or phase 7
(web tables D-J). The point estimates of the effect
sizes were consistent with previous meta-analyses
involving many thousands of cases of type 2 diabetes
(web table A). However, as would be expected in a
prospective study with fewer cases of diabetes and in
agreement with the previous report from a prospective
study of similar size,35 most associations were not sig-
nificant at P<0.05 in this dataset.
Figure 2 shows the distribution of the gene count

score in people who developed type 2 diabetes and
those who remained free of diabetes; the web figure
shows the equivalent data for genetic risk function.
Fourteen per cent of people with type 2 diabetes were
in the top fifth of the gene count score compared with
13.9% of those without type 2 diabetes (web table K).
Theodds ratio for type 2 diabetes for participants in the
top fifth of the score was 1.6 (0.9 to 2.5) compared with
those in the bottom fifth. Twenty-five per cent of peo-
ple with type 2 diabetes were in the top fifth of the
genetic risk function, compared with 20% of those
without diabetes, giving an odds ratio for type 2 dia-
betes of 2.3 (1.5 to 3.8) (web table K). The mean gene
count score was 21.1 (SD 2.6) in people with type 2
diabetes and 20.5 (2.7) in those without type 2 diabetes
(web table K). The simple gene count and the genetic
risk function gave very similar discrimination, with
areas under the receiver operating characteristics
curve of 0.54 (0.50 to 0.58) (fig 1) and 0.55 (0.51 to
0.59) (table 1). Table 1 shows the detection rates at
5% and 10% false positive rates.

Effect of adding genetic information to discrimination and

calibration of risk models

The addition of genetic information to either of the
phenotype based risk models (using the simple gene
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Fig 1 | Receiver operating characteristics curves for gene count

score alone (area under curve 0.54, 95% CI 0.50 to 0.58),

Framingham offspring risk score (area under curve 0.78, 0.75

to 0.82), and gene count score incorporated into Framingham

offspring risk score (area under curve 0.78, 0.75 to 0.81)
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count or the genetic risk function) did not improve dis-
crimination (table 1). Because part of the information
included in the family history component of a risk
score could reflect carriage of common genotypes,
this may have undermined the incremental value of
genetic information for predicting risk. However, the
variants we studied explain only a small proportion of
the familial aggregation of diabetes, and a formal ana-
lysis of the effect of inclusion or exclusion of the family
history variable had almost no effect on the area under
the receiver operating characteristics curve (data avail-
able on request). 36

The addition of genetic information did little to alter
the accuracy of the phenotype based models when
assessed with the Hosmer-Lemeshow test of calibra-
tion (table 2). Although the improvement in fit of the
modelwas statistically significantwhen theCambridge
risk score was supplemented by the genetic risk func-
tion, the magnitude of the change was very small and
unlikely to have any worthwhile clinical impact.

We generated four 10 year risk categories for type 2
diabetes for each of the two phenotype based riskmod-
els (≤5%, 5-9.9%, 10-14.9%, and ≥15%) and then com-
pared the observed and predicted event rates in each
category of risk to assess if the addition of genetic infor-
mation improved calibration (that is, the closeness of
the observed event rate to the predicted risk) (table 3).
The phenotype based riskmodels accurately estimated
the rates of diabetes in each of the four categories of
predicted risk.

Reclassification

We used the net reclassification index to assess the
extent towhich adding genotype data to the phenotype
based risk models resulted in the movement of partici-
pants into risk categories thatmore accurately reflected
their eventual outcome. In these analyses, we used the
same four risk categories (≤5%, 5-9.9%, 10-14.9%, and
≥15%) and did the analyses separately for people diag-
nosed as having type 2 diabetes on follow-up and those
who remained healthy. Among the eventual cases, a
shift to a higher risk category on the addition of genetic
information is classed as a correct reclassification and a
downward shift as an incorrect reclassification. The
opposite is the case for people who remained healthy.
The addition of the simple gene count to the Cam-
bridge risk score resulted in a net reclassification
improvement of −1.1% (95% confidence interval
−6.0% to 3.8%) (table 4), and the addition of informa-
tion from the genetic risk function produced a net
reclassification improvement of 4.6% (−2.0% to
11.3%) (P=0.17) (web table L). Neither the simple
gene count score (net reclassification improvement
0.2%, −5.1 to 4.7) (table 5) nor the genetic risk function
(net reclassification improvement −3.2%, −9.9 to 3.5)
(web table M) resulted in a net reclassification
improvement when added to the Framingham off-
spring risk score.

Table 1 | Odds ratios and area under receiver operating characteristics curve for Cambridge type 2 diabetes risk score, Framingham offspring type 2 diabetes

risk score, and genetic risk scores alone and in combination in Whitehall II study

Risk model Odds ratio* (95% CI)

Area under receiver
operating characteristics

curve (95% CI)
Detection rate for 5% false

positive rate
Detection rate for 10% false

positive rate

Cambridge risk score 8.4 (5.1 to 13.9) 0.72 (0.69 to 0.76) 19.7 (14.1 to 25.3) 34.2 (27.5 to 40.9)

Framingham offspring risk score 18.2 (9.8 to 33.8) 0.78 (0.75 to 0.82) 30.6 (24.1 to 37.1) 43.0 (36.0 to 50.0)

Gene count score 1.7 (0.9 to 2.5) 0.54 (0.50 to 0.58) 6.5 (3.5 to 10.8) 9.9 (6.2 to 14.9)

Genetic risk function score 2.3 (1.5 to 3.8) 0.55 (0.51 to 0.59) 6.4 (3.5 to 10.8) 11.4 (7.4 to 16.6)

Cambridge risk score and gene count score 9.7 (5.4 to 17.4) 0.73 (0.69 to 0.76) 20.3 (15.0 to 26.5) 33.7 (27.2 to 40.6)

Cambridge risk score and genetic risk function score 7.9 (4.5 to 13.7) 0.73 (0.69 to 0.76) 21.8 (16.3 to 28.1) 32.2 (25.8 to 39.1)

Framingham offspring risk score and gene count score 11.2 (6.1 to 20.5) 0.78 (0.75 to 0.81) 29.7 (23.5 to 36.5) 42.6 (35.7 to 49.7)

Framingham offspring risk score and genetic risk function score 11.0 (6.0 to 20.1) 0.78 (0.74 to 0.81) 31.2 (24.9 to 38.1) 40.1 (33.3 to 47.2)

*Odds ratio for top versus bottom fifth.

Gene count score
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Type 2 diabetes Type 2 diabetes-free

Fig 2 | Percentage of participants in each gene count score

category among those who developed type 2 diabetes and

those who remained free from diabetes. Risk of developing

diabetes according to gene count shown as fitted line from

regression analysis

Table 2 | Effect of adding genetic information to global model fit and calibration of risk

models to examine indices of model fit

Risk model

Hosmer-
Lemeshow P

value

Akaike’s
information
criterion

Likelihood ratio
test P value

Cambridge risk score 0.77 1416.1 NA

Framingham offspring risk score 0.42 1319.7 NA

Cambridge risk score plus gene count score 0.85 1414.9 0.07

Framingham offspring risk score plus gene count score 0.52 1319.7 0.17

Cambridge risk score plus genetic risk function score 0.50 1413.4 0.03

Framingham risk score plus genetic risk function score 0.55 1318.9 0.10

NA=not applicable.
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DISCUSSION

In a British cohort (the Whitehall II study), a panel of
20 genotypes associated with type 2 diabetes per-
formed less well than theCambridge and Framingham
offspring type 2 diabetes risk scores in discriminating
incident cases of type 2 diabetes. Adding the genetic
panel to the phenotype based risk models did not
improve discrimination and produced only minimal
improvement in accuracy of risk estimation assessed
by recalibration and, at best, a minor net reclassifica-
tion improvement.
Over the past five years, the pace of identification of

genetic loci underlying susceptibility to common dis-
eases has increased rapidly, leading to interest in how
this information might best be used to improve perso-
nal and public health. One potential application is the
use of genetic information to help predict susceptibility
to disease in initially healthy people, so as to focus pre-
ventive interventions on those at the highest risk of
future disease. This targeted approach to prevention
is exemplified by the established use of risk equations
based on non-genetic variables to estimate risk of cor-
onary heart disease and guide blood pressure lowering
and cholesterol lowering treatment.3 4 This approach to
the preventionof vascular disease, forwhichdiabetes is
a major risk factor, will becomemore systematic in the
next two years, through the Department of Health’s
vascular health check scheme (www.dh.gov.uk/en/

Publicationsandstatistics/Publications/PublicationsPo
licyAndGuidance/DH_083822).

Preventive interventions also exist for type 2 dia-
betes, which motivated the recent evaluation of risk
scores (including those studied here) for the prediction
of type 2 diabetes. The Cambridge risk score and the
Framingham offspring risk score are based on a com-
bination of demographic, family history, anthropo-
metric, and biochemical data, but neither includes
genetic information.78 Although these phenotype
based risk models seem to perform well, an important
question is whether typing a panel of validated genetic
risk factorsmight improve their ability to predict type 2
diabetes. Some studies in this area have used case-con-
trol datasets.37-39 Although efficient for gene discovery,
these are a suboptimal design for evaluating the predic-
tive performance of a marker, as risk information is
available only in relative terms and the rangeofmetrics
that can be derived to assess predictive performance is
more limited than for prospective studies with incident
cases of disease. Those prospective studies that have
previously evaluated the performance of genetic mar-
kers have been set outside the UK, typed fewer type 2
diabetes risk alleles, or reportedonly someof a rangeof
metrics available to evaluate the performance of a pre-
dictive test (table 6). 35 40-42 In a prospective study set in
theUK,we therefore tested the performance of a panel
of 20 common genes associated with type 2 diabetes,

Table 3 | Prevalence and percentage of incident cases of type 2 diabetes in categories of predicted risk calculated by using

phenotype based risk models alone, and same models with addition of genetic data

Category of predicted risk Proportion
reclassified (%)<5% 5-9.9% 10-14.9% >15%

Cambridge risk score

Without genotype scores 64/2257 (2.8) 54/753 (7.2) 48/328 (14.6) 36/188 (19.2) NA

With simple gene count score 63/2226 (2.8) 59/787 (7.5) 41/317 (12.9) 39/196 (19.9) 322/3526 (9.9)

With genetic risk function 57/2191 (2.6) 61/824 (7.4) 42/309 (13.6) 42/202 (20.8) 522/3526 (16.0)

Framingham offspring risk score

Without genotype scores 60/2403 (2.5) 42/603 (7.0) 31/261 (11.9) 69/259 (26.6) NA

With simple gene count score 54/2385 (2.3) 49/598 (8.2) 32/265 (12.1) 67/278 (24.1) 210/3526 (6.0)

With genetic risk function 55/2381 (2.3) 54/614 (8.8) 26/255 (10.2) 67/276 (24.3) 432/3526 (12.3)

NA=not applicable.

Table 4 | Net reclassification improvement based on addition of gene count score to Cambridge risk score

Predicted diabetes risk
(Cambridge risk score)

No of people Reclassified Net correctly
reclassified

(%)<5% 5-10% 10-15% >15%
Increased

risk
Decreased

risk

Plus gene count score——people without diabetes during follow-up (n==3324)

<5% 2088 105 0 0

167 131 −1.1
5-9.9% 75 581 43 0

10-14.9% 0 42 219 19

≥15% 0 0 14 138

Plus gene count score——people with diabetes during follow-up (n==202)

<5% 60 4 0 0

12 12 0
5-9.9% 3 49 2 0

10-14.9% 0 6 36 6

≥15% 0 0 3 33

Net reclassification improvement −1.1% (95% CI −6.0% to 3.8%); P=0.66.
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each of which confers a small to moderate increase in
the risk of type 2 diabetes, and compared prediction
based on genetic information alone, phenotypic infor-
mation alone, and both, by using a range of metrics to
assess predictive performance.

We found that risk functions based on routinely
measured clinical variables better discriminated inci-
dent type 2 diabetes cases than did a panel of 20 dia-
betes associated single nucleotide polymorphisms.
The inclusion of genetic information in the riskmodels
did not improve the discrimination of cases of type 2

diabetes, and nor did it provide clinically important
improvement in the accuracy of these models when
assessed by calibration. The addition of genetic data
to phenotype based riskmodels also providedminimal
net reclassification improvement. The addition of
genetic information resulted in the reassortment of
people into different risk categories, but not all the
shifts were helpful. Although some eventual cases
were upgraded to higher risk categories, almost as
many had their risk downgraded, and the opposite
was true for many of those who remained healthy.

Table 6 | Comparison of published studies that have used genetic information with or without non-genetic risk factors to discriminate between people with

and without type 2 diabetes, in case-control, cross sectional, or prospective settings

Study Study design No of cases Non-genetic risk factors No of risk alleles studied
Other metrics of prediction

reported

Including Diabetes UK Warren 2
repository and people with early
onset type 2 diabetes and 1958
birth cohort as controls44

Case-control 2406 type 2 diabetes, 3668
controls

None 3 None

DESIR37 Prospective 187 type 2 diabetes, 336
impaired glucose tolerance,
2732 non-type 2 diabetes

Age, sex, body mass index 3 None

DESIR plus DIAB2.NEPHRO-GENE
and people with normal glucose
tolerance from SU.VI.MAX38

Case-control 4232 type 2 diabetes,
4595 glucose tolerant

Age, sex, body mass index 15 None

Rotterdam Study39 Prospective 686 type 2 diabetes, 5221 non-
type 2 diabetes

Age, sex, body mass index 18 None

Framingham Offspring Study35 Prospective 255 type 2 diabetes, 2122 non-
type 2 diabetes

Age, sex, family history of type 2
diabetes, body mass index,
fasting glucose, systolic blood
pressure, triglycerides, high
density lipoprotein cholesterol

18 Net reclassification index

Mälmo Preventive Project and
Botnia Study40

Prospective 2063 type 2 diabetes, 12 210
non-type 2 diabetes; 138 type 2
diabetes, 2632 non-type 2
diabetes

Age, sex, family history of type 2
diabetes, body mass index,
blood pressure, triglycerides,
fasting glucose

16 Integrated discrimination
improvement

GoDARTS41 Case-control 2309 cases, 2598 controls Age, sex, body mass index 18 None

Co-Laus42 Cross sectional 356 type 2 diabetes, 5004 non-
type 2 diabetes

Age, body mass index, family
history of type 2 diabetes, waist:
hip ratio, triglyceride:high
density lipoprotein cholesterol
ratio, physical activity

15 Integrated discrimination
improvement

Inter99 study, ADDITION study,
plus type 2 diabetes cases and
people with normal glucose
tolerance43

Cross sectional 4093 type 2 diabetes,
5302 glucose tolerant

Age, sex, body mass index 19 None

See Forrest plots at www.ucl.ac.uk/genetic-epidemiology/WebMaterial.

Table 5 | Net reclassification improvement based on addition of gene count score to Framingham offspring risk score

Predicted diabetes risk
(Framingham offspring
risk score)

No of people Reclassified Net correctly
reclassified

(%)<5% 5-10% 10-15% >15%
Increased

risk
Decreased

risk

Plus gene count score—people without diabetes during follow-up (n=3324)

<5% 2295 48 0 0

121 64 −1.7
5-9.9% 36 482 43 0

10-14.9% 0 19 181 30

≥15% 0 0 9 181

Plus gene count score—people with diabetes during follow-up (n= 202)

<5% 52 8 0 0

14 11 1.5
5-9.9% 2 37 3 0

10-14.9% 0 4 24 3

≥15% 0 0 5 64

Net reclassification improvement 0.2% (95% CI −5.1 to 4.7); P=0.94.
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Our findings are consistentwith theninepreviouspub-
lished reports of 10 study populations (table 6),35373840-44

even though the number and range of genotypes and the
phenotype based risk models used for prediction varied
across studies (see Forrest plots at www.ucl.ac.uk/
genetic-epidemiology/WebMaterial). All models
included age, body mass index, and sex, and much of
the predictive information in any phenotype based
model is likely to be encompassed in these terms.
The relations shown in figure 2 and the web figure

illustrate one reason for the poor predictive perfor-
mance of a panel of single nucleotide polymorphisms
associatedwith commondiseases.Althoughpeople car-
rying multiple risk alleles are at more extreme risk of
type 2 diabetes than those carrying fewer copies, they
represent only a small proportion of the population,
because the inheritance of each risk allele is an indepen-
dent event—the probability of inheriting multiple risk
alleles is a function of the frequency of each allele in the
population. For example, the probability of inheriting
10 independent risk alleles with frequencies around 0.3
is 0.310 (about 6×10−6). People with an intermediate
number of risk alleles would therefore be expected to
account for themajor portionof cases of type2 diabetes,
because of the large number of people at intermediate
risk in the population. This explains the substantial
overlap of the distribution of risk alleles among people
who developed diabetes and those who remained dis-
ease-free, whichmakes it difficult to set a cut-off point of
a gene count (or genetic risk function) that reliably dis-
criminates later cases of type 2 diabetes. Although
genetic tests for type 2 diabetes, based on a subset of
the alleles studied here, can already be purchased in
the commercial sector, our findings suggest that much
more rigorous evaluation of their use as a health tech-
nology is neededbefore such tests shouldbe adoptedby
healthcare organisations.
As a technology, however, genotype based tests

have several inherent advantages over non-genetic
tests. Genotype based assays are cheap, have high fide-
lity, and can be multiplexed, in contrast to multiple
phenotypic risk factors and biomarkers, many of
which require different methods for their measure-
ment, and which are more affected by biological varia-
bility and measurement error than is genotyping.
Moreover, because genotype is invariant it offers the
prospect of risk assessment from much earlier in life
than is possible with phenotype based tests. In the
case of cardiovascular risk factors, evidence shows
that greater benefits accrue from earlier intervention
among people at higher risk (for example, in the form
of smoking cessation or cholesterol lowering).45 46 The
findings of our study should thus not lead to the pre-
mature dismissal of genotype based risk prediction as a
health technology. Rather, increased efforts should be
made to understand the strengths and limitations of
such tests as well as their optimal place in health care,
a conclusion highlighted in the recent House of Lords
Science and TechnologyCommittee’s report on geno-
mic medicine (www.publications.parliament.uk/pa/
ld200809/ldselect/ldsctech/107/107i.pdf).

Limitations of study

Some limitations of our study should be noted.
Although prospective, the Whitehall II study is work-
place based and therefore not necessarily representa-
tive of the general population. However, the excellent
performance in Whitehall II of the non-genetic risk
functions for type 2 diabetes, both ofwhichwere devel-
oped and validated in general populations, suggests
that this is unlikely to bias our conclusions substan-
tially. Moreover, our findings are consistent with
those of prospective studies set in representative gen-
eral populations. Our findings are also not generalisa-
ble to people of non-European ancestry, who we
excluded from this analysis. Although DNA was col-
lected some time after baseline, which could have
introduced a survivor bias, we think that this is unlikely
to have affected our results given the modest effect of
the alleles we studied on risk of diabetes and the long
natural history of the development of the life threaten-
ing complications of diabetes.
The two risk tools studied, based on non-genetic

markers, performed better than genotype based tests
despite the fact that themodels, which were developed
in different datasets, were not specifically recalibrated
for theWhitehall II population. The common diabetes
associated single nucleotide polymorphisms we stu-
died might have greater incremental value in the pre-
diction of type 2 diabetes when evaluated against some
of the other validated risk models. However, we chose
the Framingham and Cambridge risk scores because
they are contemporary (which could be important,
given the recent increase in the incidence and preva-
lence of type 2 diabetes), were developed in popula-
tions with a similar profile to the Whitehall II
participants, and were based on studies set in the Uni-
ted States and the UK, where many of the genetic stu-
dies were done. Moreover, both include variables that
are routinely measured in clinical practice.We did not
evaluate QDRisk, which is based on routinely col-
lected primary care data (including deprivation scores,
ethnicity, and current drug treatment for hypertension
or cardiovascular disease and corticosteroid use),
which was reported during the preparation of this
manuscript.47

Because part of the information included in the
family history component of a risk score will reflect
common genotypes, this may have undermined the
incremental value of genetic information for risk pre-
diction. However, the variants we studied explain only
a small proportion of the familial aggregation of
diabetes.36Whether genotypes have greater predictive
utility in particular categories of patient (such as among
leaner people or those of a particular ancestry) couldbe
assessed by pooling participant level data from a large
number of prospective studies with the relevant infor-
mation to ensure adequate power.Our current analysis
is limited to the 20 common risk alleles for type 2 dia-
betes identified by large association or genome-wide
studies. However, sequence variants of intermediate
frequency but larger effect size are likely to be uncov-
ered by future research, so our interpretation on the
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predictive utility of genotype should be regarded as
interim. Moreover, as the actual causal variants at
each gene/region remain for the most part uncertain,
the predictive utility of genetic markers may also have
been underestimated.
Our conclusions about the performance of genetic

testing for type 2 diabetes are confined to the use of
single common alleles at each locus. Other common
risk alleles are likely to exist at the same genetic loci
(including the causal variants), which could provide
additional information relevant to prediction. Our
conclusions are also not transferrable to other common
diseases. For example, genetic variants underlying the
susceptibility to age relatedmacular degenerationhave
been identified, at least one of which is both common
and large in its effect on risk.48 We previously exam-
ined the predictive utility of a common single nucleo-
tide polymorphismassociatedwith the risk of coronary
heart disease at the 9p23.1 chromosomal locus
(rs10757274) when added to a risk function that
included variables incorporated in the Framingham
coronary heart disease risk equation.49 Although this
genotype added minimally to the ability of the Fra-
mingham risk score to discriminate future events,
improving the area under the receiver operating char-
acteristics curve by only 3%, it did significantly
improve reclassification of risk of coronary heart dis-
ease, albeit modestly. Moreover, for some disorders,
including age related macular degeneration, few if
any non-genetic biomarkers or risk factors exist that
can be used to estimate risk of future disease.

Conclusions

Phenotype based risk models (the Framingham off-
spring and Cambridge risk scores) provided greater
discrimination for type 2 diabetes than did models
based on 20 common independently inherited alleles
associated with risk of type 2 diabetes. The addition of
20 common genotypes associated with modest risk to
phenotype based risk models produced only minimal

improvement in the accuracy of risk estimation
assessed by recalibration and at best aminor net reclas-
sification improvement. Themajor translational appli-
cation of the currently known common, small effect
genetic variants influencing susceptibility to type 2 dia-
betes is likely to come from the insight they provide on
causes of disease and potential therapeutic targets.
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