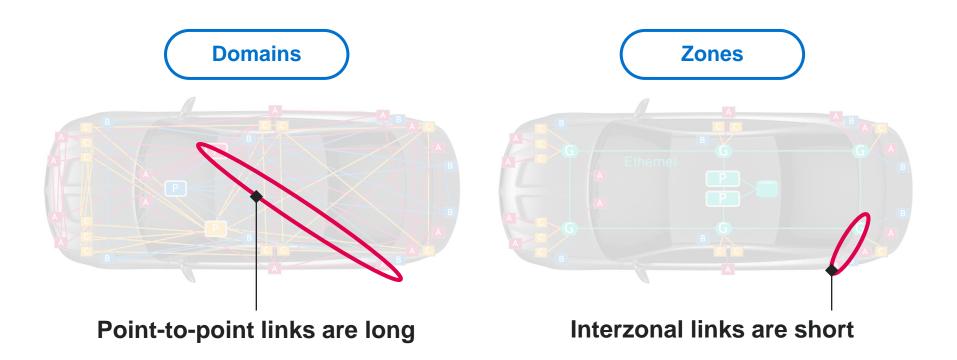
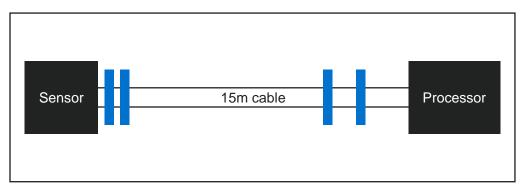



# Zonal Architecture and New Opportunities to Optimize the Cost and Power of Interzonal Links


Alireza Razavi, Ragnar Jonsson, David Shen | Marvell

IEEE SA Ethernet & IP @ Automotive Technology Day 19-20 September 2023, São Paulo, Brazil

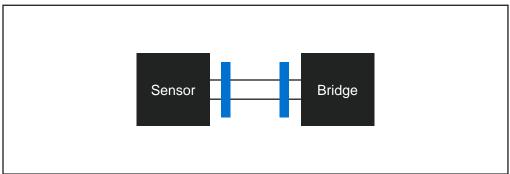

#### Domain-based vs. zonal architecture



#### Zonal links are shorter



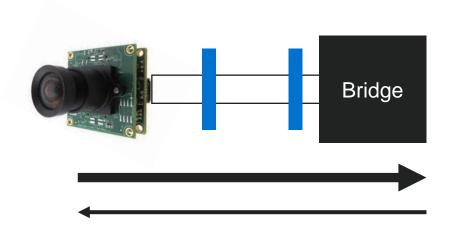
#### Point-to-point vs. interzonal link attributes




#### Point-to-point

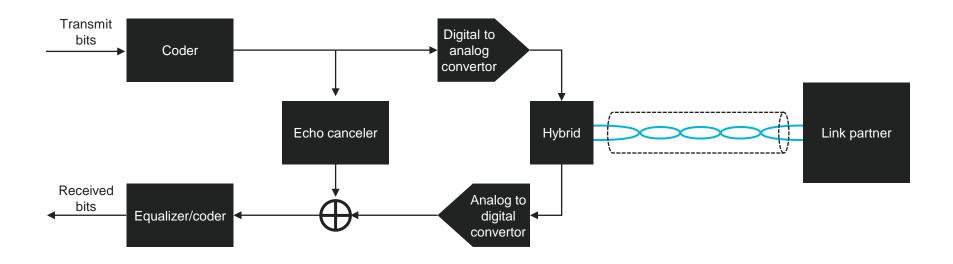
15m:1000/2.5G/5G/10GBASE-T1

11m: 25GBASE-T1


Up to four inline connectors



#### Interzonal


- Much shorter (less than 5m)
- Fewer inline connectors

### Short-reach interzonal links ideal for camera-bridge



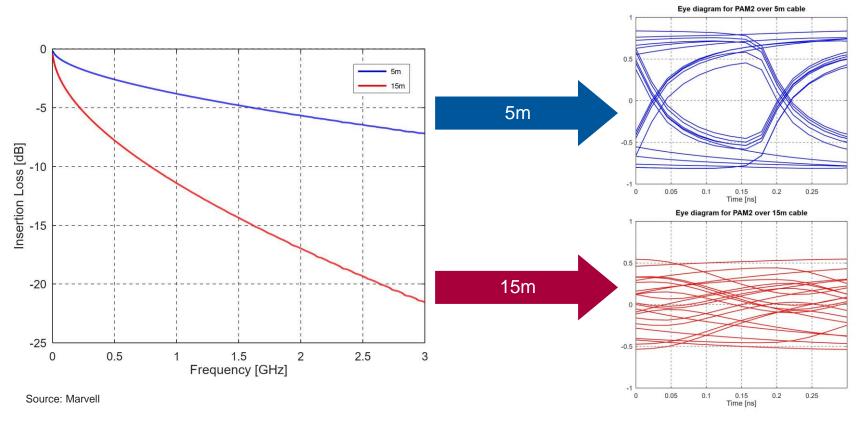
#### Camera Bridge is subject of recent 802.3 study group

# Typical full-duplex link

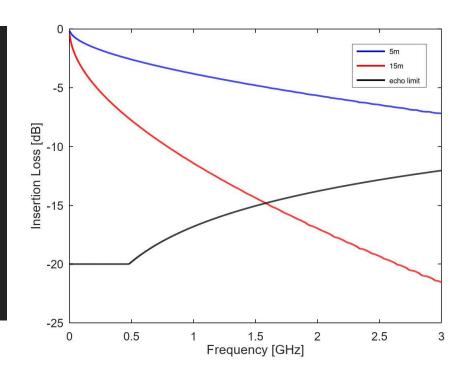


#### What we want to optimize



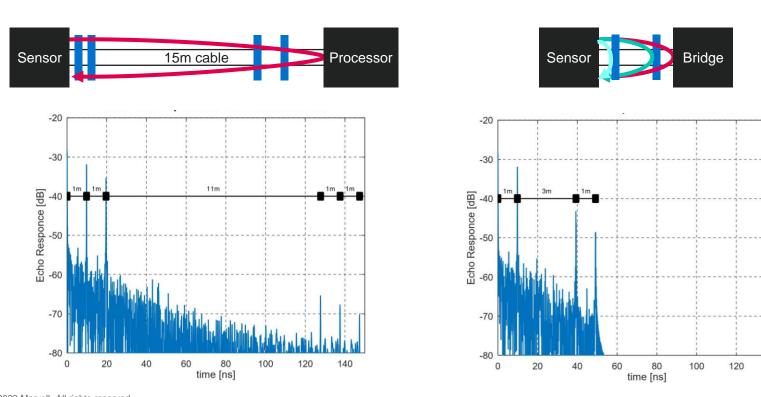

Power consumption




Silicon area (cost)

#### Lower power and area means lower complexity

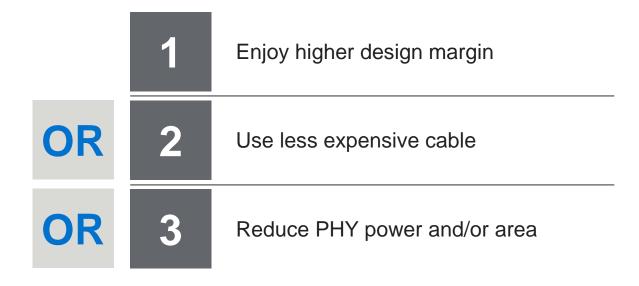
# Lower insertion loss = simpler equalization



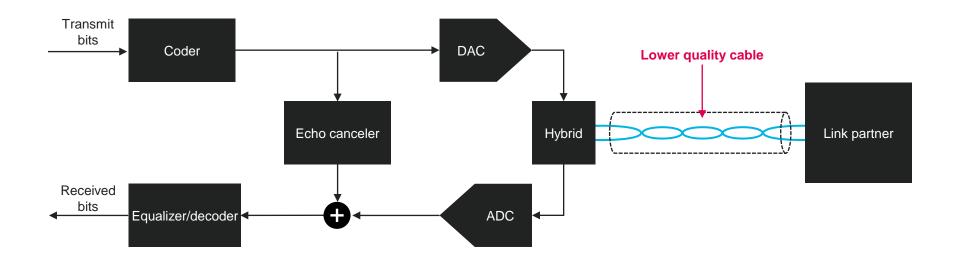

# Lower insertion loss = less echo cancelation needed



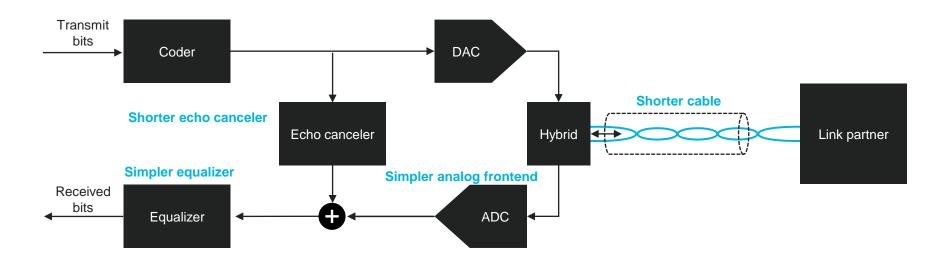
Source: Marvell


#### Shorter echo duration = simpler echo cancelers




© 2023 Marvell. All rights reserved.

140


### How can we take advantage of the shorter link?



### Use less expensive cable

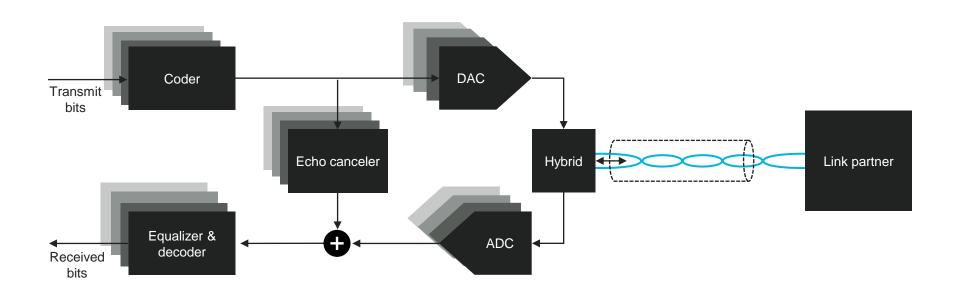


#### Power savings possible under current standards



Chip area savings not possible with current standards
Still need to support longer cables

## What if...we optimized design for interzonal links?


Optimize equalization and echo cancellation circuits

Use lower baud rate, higher-order modulation

Power and area savings

Power savings: f(baud rate)
Reduced need for HW
parallelism = area savings

### Lower baud rate reduces HW requirements



Use 802.3cy tool to compare PAM4 and PAM16

|                                         | Upstream              | Downstream      |  |  |
|-----------------------------------------|-----------------------|-----------------|--|--|
| Requirements                            |                       |                 |  |  |
| Data Rate [Gbps]:                       | 10                    | 10              |  |  |
| Target RS-FEC output BER:               | 1.00E-12              | 1.00E-12        |  |  |
| Cable Length [m]:                       | 15.000                | 15.000          |  |  |
| Wire u-reflections limit:               | jonsson*12_08_2       | jonsson*12_08_3 |  |  |
| Number of Connectors:                   | 4                     | 4               |  |  |
| Modulation                              |                       |                 |  |  |
| PAM Levels:                             | 4                     | 4               |  |  |
| FEC Block Size (n):                     | 360                   | 360             |  |  |
| FEC Data Size (k):                      | 326                   | 326             |  |  |
| RS-FEC Correction Efficiency:           | 100%                  | 100%            |  |  |
| Bits per FEC Symbol:                    | 10                    | 10              |  |  |
| TDD Time Duty-Cycle:                    | 100%                  | 100%            |  |  |
| Framing Overhead:                       | 1.875%                | 1.875%          |  |  |
| Transmit Signal                         |                       |                 |  |  |
| PSD-mask:                               | PSD_ZOH               | PSD_ZOH         |  |  |
| Transmit Power [dBm]:                   | 0                     | 0               |  |  |
| Design Tradeoff                         |                       | _               |  |  |
| Impulse Error Rate:                     | 1.00E-04              | 1.00E-04        |  |  |
| AFE-noise [dBm/Hz]:                     | -140                  | -140            |  |  |
| Cable Reflection Echo Cancelation [dB]: | 6                     | 6               |  |  |
| Connector Echo Cancelation [dB]:        | 50                    | 50              |  |  |
| Implementation Loss [dB]:               | 5                     | 5               |  |  |
| Simulation Parameters                   |                       |                 |  |  |
| Cable Model:                            |                       | 1_12_01_20_stp  |  |  |
| PCB model:                              | pcb_kadry_3cy_02_0820 |                 |  |  |
| PCB trace length [m]:                   | 0.0762                |                 |  |  |
| Connector Echo Model:                   | Hard                  |                 |  |  |
| Temperature [°C]:                       | 20                    |                 |  |  |
| Max Simulation Frequency:               | 5.00E+09              |                 |  |  |


| Calculated Values                      |          |            |  |
|----------------------------------------|----------|------------|--|
|                                        | Upstream | Downstream |  |
| Theoretical Slicer SNR [dB]:           | 26.69    | 26.69      |  |
| Estimated Slicer SNR [dB]:             | 21.69    | 21.69      |  |
| Required Slicer SNR [dB]:              | 17.20    | 17.20      |  |
| SNR Margin [dB]:                       | 4.49     | 4.49       |  |
| Wire u-reflections [dB]:               | -42.79   | -42.79     |  |
| Nyquist Frequency [GHz]:               | 2.81     | 2.81       |  |
| Channel Insertion Loss @ Nyquist [dB]: | 28.80    | 28.80      |  |
| Cable Insertion Loss @ Nyquist [dB]:   | 27.79    | 27.79      |  |

|                                         | Upstream              | Downstream      |  |  |
|-----------------------------------------|-----------------------|-----------------|--|--|
| Requirements                            |                       |                 |  |  |
| Data Rate [Gbps]:                       | 10                    | 10              |  |  |
| Target RS-FEC output BER:               | 1.00E-12              | 1.00E-12        |  |  |
| Cable Length [m]:                       | 5.000                 | 5.000           |  |  |
| Wire u-reflections limit:               | jonsson*12_08_2       | jonsson*12_08_2 |  |  |
| Number of Connectors:                   | 4                     | 4               |  |  |
| Modulation                              |                       |                 |  |  |
| PAM Levels:                             | 16                    | 16              |  |  |
| FEC Block Size (n):                     | 360                   | 360             |  |  |
| FEC Data Size (k):                      | 326                   | 326             |  |  |
| RS-FEC Correction Efficiency:           | 100%                  | 100%            |  |  |
| Bits per FEC Symbol:                    | 10                    | 10              |  |  |
| TDD Time Duty-Cycle:                    | 100%                  | 100%            |  |  |
| Framing Overhead:                       | 1.875%                | 1.875%          |  |  |
| Transmit Signal                         |                       |                 |  |  |
| PSD-mask:                               | PSD_ZOH               | PSD_ZOH         |  |  |
| Transmit Power [dBm]:                   | 0                     | 0               |  |  |
| Design Tradeoff                         |                       |                 |  |  |
| Impulse Error Rate:                     | 1.00E-04              | 1.00E-04        |  |  |
| AFE-noise [dBm/Hz]:                     | -140                  | -140            |  |  |
| Cable Reflection Echo Cancelation [dB]: | 6                     | 6               |  |  |
| Connector Echo Cancelation [dB]:        | 50                    | 50              |  |  |
| Implementation Loss [dB]:               | 5                     | 5               |  |  |
| Simulation Parameters                   |                       |                 |  |  |
| Cable Model:                            | mueller_3cy_0         | 1_12_01_20_stp  |  |  |
| PCB model:                              | pcb_kadry_3cy_02_0820 |                 |  |  |
| PCB trace length [m]:                   | 0.0762                |                 |  |  |
| Connector Echo Model:                   | Hard                  |                 |  |  |
| Temperature [°C]:                       | 20                    |                 |  |  |
| Max Simulation Frequency:               | 5.00E+09              |                 |  |  |

| Calculated Values                      |          |            |
|----------------------------------------|----------|------------|
|                                        | Upstream | Downstream |
| Theoretical Slicer SNR [dB]:           | 36.39    | 36.39      |
| Estimated Slicer SNR [dB]:             | 31.39    | 31.39      |
| Required Slicer SNR [dB]:              | 29.09    | 29.0       |
| SNR Margin [dB]:                       | 2.30     | 2.30       |
| Wire u-reflections [dB]:               | -35.00   | -35.00     |
| Nyquist Frequency [GHz]:               | 1.41     | 1.4        |
| Channel Insertion Loss @ Nyquist [dB]: | 6.14     | 6.14       |
| Cable Insertion Loss @ Nyquist [dB]:   | 5.60     | 5.60       |

## Use 802.3cy tool to compare PAM4 and PAM16





### Areas for further study



Electromagnetic noise



Error correction codes/latency



Jitter sensitivity

#### Key takeaways

4

1 Existing standards designed for point-point and backbone network

Zonal architecture: most links are between sensors and local switches

3 Current Ethernet PHYs are overdesigned for interzonal links

Standards evolution would enable PHY optimization for interzonal links



# Thank You



Essential technology, done right™

# Special thanks to Mark Davis for his valuable inputs