Automotive SDN: Prototype and Use-cases

Hyun taek Hong (LG Electronics Inc. <a href="https://h

Kilho Lee (Soongsil University khlee.cs@ssu.ac.kr)

Agenda

- **✓** Introduction
- √ Use cases
- **✓** Architecture
- ✓ Evaluation
- **✓** Conclusion

Why Automotive SDN?

✓ Vehicle network architecture trend and future roadmap

- High Bandwidth
- Ethernet backbone among ECUs
- Heterogeneous network around zone ECUs
- ✓ Further consideration of future vehicle network
 - Fail-over
 - Dynamic bandwidth control
 - Flexibility of future network capability

SDN as a solution

- ✓ Key characteristics of SDN
 - SDN can provide fail-over operation in case of failure
 - 2 SDN can control bandwidth dynamically based on the vehicle situation
 - 3 SDN can reconfigure the network after the new service is deployed

SDN in general

Traditional Network

Software Defined Network

Category	Description
Control Plane	Centralized softwareGlobal view of the network
Data Plane	Control by SW-based control applicationProgrammable

Protocol	Description
Open Flow	Control packet forwarding tableUse case : Routing control
NETCONF	Control network configurationUse case : Bandwidth control

✓ Software Defined Network

- An alternative to the traditional switch-based network
- Centralized Control
- Programmability

Considerations for Automotive SDN

- ✓ Relatively small compared with traditional data center
 - Number of network nodes for end-to-end communications are small
- ✓ Hardware upgrade is limited
 - Once the vehicle is delivered to customer, it should be maintained more than 10 years
- ✓ The possibility of physical damage is higher than the legacy IT system.
 - Crash can be happening a lot compared with traditional systems
- ✓ Co-existance with legacy network like CAN
 - Legacy network traffic is combined with Ethernet traffic
- ✓ Energy efficient network management
 - Minimal network operation according to the given situation

Previous study of Automotive SDN

✓ MC-SDN (Mixed-Criticality SDN)

- Network flows with different levels of criticality
- Dynamic scheduling policy depending on the system mode

<Full version> https://youtu.be/4iAPk9lTe8Q

✓ FR-SDN (Fault-Resilient SDN)

- Recover from link failure by finding alternative routes
- Perform path restoration from SDN controller-driven to switch-driven

<Full version>
https://youtu.be/m2GmAq1F5gQ

SDN use-case 1: Dynamic bandwidth/priority control

- ✓ Scenario
 - Reserve bandwidth to the front camera / sensors when emergency event is detected
- ✓ It dynamically manages bandwidth/priority guarantees according to the runtime network usages
- ✓ Bandwidth/Priority controls
 - Queue management

SDN use-case 2: CAN signal transfer with priority

- ✓ Scenario
 - Radar signal transfer when lane-change is triggered
- ✓ There will still be CAN signals as it will take a long time to eliminate legacy parts.
- ✓ Priority controls
 - Select relevant priority when transferring
 - Transfer frequency control
 - Packet size control

SDN use-case 3: Maintain reliable communication

- ✓ Scenario
 - It maintains reliable communication even if a fault happens on some network link/node
- ✓ Upon detecting a fault, it then establishes an alternative path to detour the fault.
- ✓ Path reconfiguration
 - Flow table update
 - Measure QoS
 - Control path re-establish

Reference architecture: Overall design

✓ Draft architecture considering 3 scenarios

System Architecture ECU (dummy) ECU (dummy) Front-view Dummy CAM frames GW-FL GW-FR Turn signal Turn-signa Service (CAN) **SDN Switch SDN Switch** V-COM App **SDN Controller SDN Switch** GW-RL GW-RR Light Radar **RADAR** Service Service (CAN) **SDN Switch** SDN Switch

SDN 3 Layers

Reference architecture: Network planner

✓ Role of Network planner

- Monitors & maintains the global information of all the network nodes
- Reserves the bandwidth for a specific flow by controlling multiple nodes
- Reconfigures the path by monitoring each network node status

- ✓ Considerations for Network planner for automotive networking systems
 - Dynamic bandwidth reservation & packet prioritization
 - Reliable communication based on runtime fault recovery

Reference architecture: Routing

- ✓ Role of the routing component
 - Determines a proper route subject to the flow requirement
- ✓ Considerations for the routing component
 - Responsiveness
 - QoS/timing requirements
 - Runtime dynamic routing

Reference architecture: Fault handling

- ✓ Role of the fault handling component
 - Restores flow routes upon link/node faults
- ✓ Considerations for the fault handling component
 - Fault detection
 - Responsive route update
 - Control channel recovery

Reference architecture: Signal to Service Translator

- ✓ Role of Signal to Service Translator
 - Focusing on deterministic transmission of CAN signals with priority control logic
- ✓ Considerations for Signal to Service Translator
 - Priority control
 - Filtering while translation (eliminate duplication, scenario based filtering)
 - Relationship with SOA

Signal to Service Translator		
Signal Handler	Service Handler	
Filter	Priority Manager	
CAN Manager	SOME/IP	

Component	Description
Signal Handler	Translate CAN signal to Service message
Service Handler	Translate Service message to CAN signal
Filter	Filter CAN signal to translate
Priority Manager	Assign priority to Service message
CAN Manager	Send / Receive CAN signal
SOME/IP	Send / Receive Service message

Reference architecture: Experiment

- ✓ Prototype implementation
 - Networked embedded nodes
 - Physical Ethernet & CAN communications

Evaluation: bandwidth reservation

- ✓ Efficacy of routing & bandwidth reservation
 - The target (safety- or mission-critical flow) effectively reserves the bandwidth.
 - Despite the contending best effort flows.
- ✓ Setup
 - Target flow: RR → V-COM, UDP, 70Mbps
 - Background: FR → VCOM, TCP, BE (up to 100Mbps)

Evaluation: CAN signal prioritization

- ✓ Efficacy of CAN signal prioritization
 - The safety-critical CAN signal shows stable latency
 - Despite the contending best effort flows.
- ✓ Setup
 - Target CAN signal: CAN device → CAN-BUS → RR(S2S) → VCOM (8 Bytes@1000 Hz, UDP encap.)
 - Background: FR → VCOM, TCP, BE (up to 100Mbps)

Evaluation: Fault handling

- Efficacy of Fault handling
 - Effectively restores flow route upon link failure.
- ✓ Setup
 - Target CAN signal: CAN device → CAN-BUS → RR(S2S) → VCOM

Conclusion

- ✓ Recap: automotive SDN
 - Key issues and use-cases
 - Reference architecture
 - Prototyping & evaluation
- √ Implications
 - Better flexibility, efficiency, and reliability → essential features for SDV.
- ✓ Discussion & further considerations
 - Security
 - Functional Safety
 - Better SDN interfaces for automotive
 - Integration with the automotive software architecture

Q&A

Hyun taek Hong

Research Fellow / Architect Vehicle component Solutions Company LG Electronics Inc.

ht.hong@lge.com

Kilho Lee

Assistant Professor School of Al Convergence Soongsil University, Korea

khlee.cs@ssu.ac.kr

