You are currently logged in as an
Institutional Subscriber.
If you would like to logout,
please click on the button below.
Home / Publications / E-library page
Only AES members and Institutional Journal Subscribers can download
In the context of audio restoration, the need to remove background noise from historical music recordings is a recurring problem, for which traditional signal processing and supervised deep learning methods have been previously applied. In this work, a generative approach that adapts conditional diffusion sampling for removing perceptually distributed noise is investigated, using the particular case of background noise removal from solo classical piano recordings as a proof of concept. The proposed method uses a set of noise examples to simulate perceptually distributed noise with specific characteristics throughout conditional diffusion sampling. Experiments with real historical 78 RPM recordings and clean recordings with added 78 RPM noise and tape hiss demonstrate that diffusion-based audio denoising performs comparably to state-of-the-art deep learning methods.
Author (s): Miranda, Bernardo V.; Deslandes, Rafael A.; Irigaray, Ignacio; Biscainho, Luiz W. P.
Affiliation:
Signals, Multimedia, and Telecommunications Laboratory, Departamento de Eletrônica e Computação, Escola Politécnica (DEL/POLI), and Programa de Engenharia Elétrica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (PEE/COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Signals, Multimedia, and Telecommunications Laboratory, Departamento de Eletrônica e Computação, Escola Politécnica (DEL/POLI), and Programa de Engenharia Elétrica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (PEE/COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Grupo de Procesamiento de Audio, Facultad de Ingeniería (FING), Instituto de Ingeniería Eléctrica (IIE), Universidad de la República, Montevideo, Uruguay
(See document for exact affiliation information.)
Publication Date:
2025-04-07
Import into BibTeX
Permalink: https://aes2.org/publications/elibrary-page/?id=22814
(341KB)
Click to purchase paper as a non-member or login as an AES member. If your company or school subscribes to the E-Library then switch to the institutional version. If you are not an AES member Join the AES. If you need to check your member status, login to the Member Portal.
Miranda, Bernardo V.; Deslandes, Rafael A.; Irigaray, Ignacio; Biscainho, Luiz W. P.; 2025; Diffusion-Based Denoising of Historical Recordings [PDF]; Signals, Multimedia, and Telecommunications Laboratory, Departamento de Eletrônica e Computação, Escola Politécnica (DEL/POLI), and Programa de Engenharia Elétrica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (PEE/COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Signals, Multimedia, and Telecommunications Laboratory, Departamento de Eletrônica e Computação, Escola Politécnica (DEL/POLI), and Programa de Engenharia Elétrica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (PEE/COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Grupo de Procesamiento de Audio, Facultad de Ingeniería (FING), Instituto de Ingeniería Eléctrica (IIE), Universidad de la República, Montevideo, Uruguay; Paper ; Available from: https://aes2.org/publications/elibrary-page/?id=22814
Miranda, Bernardo V.; Deslandes, Rafael A.; Irigaray, Ignacio; Biscainho, Luiz W. P.; Diffusion-Based Denoising of Historical Recordings [PDF]; Signals, Multimedia, and Telecommunications Laboratory, Departamento de Eletrônica e Computação, Escola Politécnica (DEL/POLI), and Programa de Engenharia Elétrica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (PEE/COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Signals, Multimedia, and Telecommunications Laboratory, Departamento de Eletrônica e Computação, Escola Politécnica (DEL/POLI), and Programa de Engenharia Elétrica, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (PEE/COPPE), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Grupo de Procesamiento de Audio, Facultad de Ingeniería (FING), Instituto de Ingeniería Eléctrica (IIE), Universidad de la República, Montevideo, Uruguay; Paper ; 2025 Available: https://aes2.org/publications/elibrary-page/?id=22814
@article{miranda2025diffusion-based,
author={miranda bernardo v. and deslandes rafael a. and irigaray ignacio and biscainho luiz w. p.},
journal={journal of the audio engineering society},
title={diffusion-based denoising of historical recordings},
year={2025},
volume={73},
issue={4},
pages={220-230},
month={april},}